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Abstract— In this paper we extend our previous work on
solving the inverse kinematics problem for a humanoid robot
in general multi-contact stances under physical limitations and
static equilibrium constraints, to the case in which the contact
is made on a non-rigid deformable environment support. We
take a finite element approach to solve the static equilibrium
equations for the system made of the robot and the deformable
support within the linear elasticity model. Example simulation
results show the humanoid robot HRP-2 taking contact support
with hand or foot link on a deformable cube.

I. INTRODUCTION

In [1] we presented an optimization-based solution for the

inverse kinematics problem on non-horizontal non-coplanar

frictional multi-contact stances for a humanoid robot subject

to joint and torque limits under the static equilibrium con-

straint. This work was subsequently used within a contact-

before-motion planning framework [2] that extended the

seminal works of [3], [4] to general multi-agent systems for

solving indifferently locomotion and manipulation planning

problems centred around the humanoid robot.

One common assumption in all of these works is the

rigidity hypothesis, for both the robot links and the envi-

ronment objects. Our aim in this work is to further extend

the capabilities of these contact-before-motion planners to

cope with deformable objects in the environment under the

linear elasticity hypothesis. This can be made possible if the

underlying inverse kinematics solver under static equilibrium

constraint can deal with such linear elasticity models. Thus

we focus on this latter task, extending the solver presented

in [1] to the case in which the contact prints are positioned

on a surface belonging to a deformable object in the envi-

ronment.

The approach we choose to solve for the static equilibrium

equations of the elastic material is based on the finite element

method. The deformation of the contact support is related

to the corresponding position of the supported link of the

robot and is as such a function of the configuration of the

robot. This deformation generates reaction forces that have

to be taken into account in the equilibrium equation of the

robot. The main contribution of this work is thus to relate the

induced deformation forces to the configuration of the robot

in a way that will allow us to derive the gradient of the

extended static equilibrium constraint fed to the non-linear

constrained optimization solver.
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Laboratory) UMI3218/CRT, AIST, Tsukuba, Japan; and with
CNRS-University of Montpellier 2 LIRMM, Montpellier, France.
{karim.bouyarmane,abderrahmane.kheddar}@aist.go.jp

The rest of the paper is organized as follows. In Section II

we introduce the notations used by recalling the finite ele-

ment method for linear elasticity models. We then write the

constraint and its gradient in Section III which constitutes

the main development of the paper. Example applications

are presented in Section IV, before concluding the paper by

discussing limitations and perspectives in Section V.
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Fig. 1. Overview illustration of the method.

II. THE FINITE ELEMENT METHOD

We first recall the finite element method we use to formu-

late and solve the problem. This section is mainly adapted

from the reference textbook [5] that we reproduce here in

order to introduce the notations that we need for the sake of

our formulation.1

1We encourage the reader familiar with the method to still go through this
section as a minimum requirement to understand the notations and reasoning
of the rest of the paper.
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So let us consider a solid object that occupies in the

Euclidean space a volume denoted Ω subject to the behaviour

model of linear elasticity under the small deformation hy-

pothesis. The following equations govern the static equilib-

rium of the object:

ε(x) =
1

2
(∇u+∇Tu)(x) , (1)

div σ(x) + ρ f(x) = 0 , (2)

σ(x) = A : ε(x) , (3)

where x ∈ Ω, ε is the strain tensor field, u is the displacement

field, σ is the Cauchy stress tensor field, A is the elasticity

tensor, ρ is the mass density of the material, f is the body

force density field. The boundary conditions for a well-posed

problem are specified as:

σ(x).n(x) = TD(x) (x ∈ ST ) , (4)

u(x) = uD(x) (x ∈ Su) , (5)

where TD and uD are respectively the prescribed surface

force density (traction) and prescribed displacement fields

on the the surfaces ST and Su that constitute a partition of

the frontier ∂Ω (ST ∩ Su = ∅ and ST ∪ Su = ∂Ω ), and

n(x) is the unit normal to the surface ∂Ω at the point x.

By applying the virtual work principle, or by following a

variational approach minimizing potential energy, we can get

to the weak formulation of the problem, in which we look

for a displacement field u satisfying (5) such that:
∫

Ω

ε[u] : A : ε[w] dV =

∫

Ω

ρf.w dV +

∫

ST

TD.w dS , (6)

for all the virtual displacement fields w that are zero on the

surface Su, where we have used the notation

ε[v] =
1

2
(∇v +∇T v) . (7)

We approximate the domain Ω by a domain Ωh = ∪eEe

(1 ≤ e ≤ NE) made of isoparametric elements Ee of

characteristic dimension h (the subscript h will be used

to make distinction between the exact problem and the

approximated problem) that constitute a mesh of Ωh, the

nodes of which are denoted x(n) (globally within the whole

mesh, or x
(k)
e , 1 ≤ k ≤ ne, locally within each element

e). The position of a point x ∈ Ee is interpolated from the

positions of the nodes of the element using the local shape

functions Nk

x =

ne
∑

k=1

Nk(a)x
(k)
e , (8)

where a is a parameter varying in a reference non-deformed

“unit” element ∆e, and we choose to interpolate accordingly

an arbitrary displacement field vh on the nodal displacements

v(k) using the same interpolation

vh =

ne
∑

k=1

Nk(a)v
(k) . (9)

We also introduce an injective index function dof(n, j)
such that dof(n, j) > 0 if the coordinate j (along the basis

vector ej) of the node x(n) is free, meaning that the node

x(n) does not belong to the prescribed-displacement surface

Su,h ⊂ ∂Ωh, and dof(n, j) ≤ 0 otherwise.

Finally we apply the Galerkin method. We look for a

displacement field of the form

uh(x) = u
(D)
h (x) + u

(0)
h (x) , (10)

where the fields u
(D)
h and u

(0)
h , respectively satisfying the

boundary condition (5) and vanishing on the surface Su,h,

are interpolated as

u
(D)
h (x) =

∑

(n,j)|dof(n,j)≤0

Ñn(x)u
(D)
j (x(n)) ej , (11)

u
(0)
h (x) =

∑

(n,j)|dof(n,j)>0

Ñn(x)u
(n)
j ej , (12)

where Ñn are the global shape functions constructed from

the functions Nk in (8) so as to represent the position of

a point expressed in the whole domain Ωh. The virtual

displacement field defined in the weak formulation (6) takes

the form

w(x) =
∑

(n,j)|dof(n,j)>0

Ñn(x)w
(n)
j ej , (13)

and the weak formulation (6) amounts now to finding a field

u
(0)
h of the form (12) such that for every field w of the

form (13) we have

∫

Ωh

ε[u
(0)
h ] : A : ε[w] dV = −

∫

Ωh

ε[u
(D)
h ] : A : ε[w] dV

+

∫

Ωh

ρf.w dV +

∫

ST,h

TD.w dS . (14)

By gathering the free nodes displacements coordinates

u
(n)
j and w

(n)
j (dof(n, j) > 0) respectively in the vectors

{UF } and {W}, the formulation (14) takes the following

linear system form

{W}T [KF ]{UF } = {W}T {F} , (15)

or equivalently

[KF ]{UF } = {F} , (16)

where the rigidity matrix [KF ] and generalized nodal forces

{F} are defined as sums of elementary integrals over the

elements Ee through identification respectively in

{W}T [KF ]{UF } =

NE
∑

e=1

∫

Ee

ε[u
(0)
h ] : A : ε[w] dV , (17)

and

{W}T {F} =

NE
∑

e=1

−

∫

Ee

ε[u
(D)
h ] : A : ε[w] dV

+

∫

Ee

ρf.w dV +

∫

ST,h∩Ee

TD.w dS . (18)
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The Voigt Notation

Let us differentiate the two relations (8) and (9)

dx = J(a) da , (19)

dvh = H(a) da . (20)

This allows us to rewrite the relation (7) applied to the field

vh as

ε[vh](x) =
1

2

(

H(a).J−1(a) +
(

H(a).J−1(a)
)T
)

. (21)

By introducing the Voigt representations of the symmetric

tensors ε and σ, which are the R
6 vectors containing the 6

independents components of the two tensors

{σ} = {σ11 σ22 σ33 σ12 σ13 σ23}
T , (22)

{ε} = {ε11 ε22 ε33 2 ε12 2 ε13 2 ε23}
T , (23)

the relation (21) takes the form

{ε} = [Be(a)]{Ve} , (24)

where {Ve} is the R
3ne vector concatenating the nodal

displacements v(k) and [Be(a)] is a 6× 3ne matrix obtained

through identification in (21). Moreover, the relation (3)

simplifies into

{σ} = [A]{ε} , (25)

where [A] is the 6× 6 matrix written in terms of the Lamé

parameters λ and µ for an isotropic homogeneous material

[A] =





















λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





















. (26)

These relations allows for a simple evaluation of the

elementary integrals in (17) and (18) using a Gauss-point-

based numerical method.

III. FORMULATION OF THE PLANNING PROBLEM

Let us now consider the problem of a humanoid robot in

multi-contact stance with its environment, in which one of

the contacts (we will refer to it as the “deformable contact”)

is made on the surface of the deformable object introduced

in the previous section. See Fig. 1. Let the corresponding

contact surface on the robot be denoted Sr, which is a

planar surface defined on a link l of the robot r. The desired

relative position and orientation of the deformable contact

(x, y, θ) ∈ SE(2) define a contact print, that is the image of

the surface Sr projected onto ∂Ω and positioned according to

(x, y, θ). Let this contact print be denoted Sprint ⊂ ∂Ω, and

the corresponding bijective projection mapping pprint : Sr →
Sprint, which is simply a rigid transformation. Furthermore, a

portion Sfixed of the frontier ∂Ω is fixed on the environment,

for instance the base of the deformable object contacting the

Ee|e ∈ E

Sprint

x
(1)
e

x
(3)
e

x
(2)
e

x
(4)
e

f (1)

e

f (3)

e

f (2)

e

Fig. 2. Nodal reaction forces.

rigid floor. Let P and F be the subsets of the surface nodes

of the mesh x(n) that lie inside Sprint and Sfixed respectively

P = {x(n) | x(n) ∈ Sprint} , (27)

F = {x(n) | x(n) ∈ Sfixed} . (28)

The prescribed-displacement surface in the boundary condi-

tion (5) is in this case Su = Sprint∪Sfixed, and the prescribed

nodal displacements are

u(D)(x(n)) =

{

0 if x(n) ∈ F ,

p−1
print(x

(n))− x(n) if x(n) ∈ P.
(29)

On the remaining surface ST = ∂Ω \ (Sprint ∪ Sfixed) the

prescribed traction is set to zero

TD(x) = 0 (x ∈ ST ) , (30)

and the body force density is also set to zero

f(x) = 0 (x ∈ Ω) . (31)

In these conditions, by concatenating the prescribed nodal

displacements u(D)(x(n)) into the vector {UD}, the nodal

forces vector (18) takes the form

{F} = −[KD]{UD} , (32)

where the matrix [KD] is defined through identification in

{W}T [KD]{UD} =

NE
∑

e=1

∫

Ee

ε[u
(D)
h ] : A : ε[w] dV . (33)

Finally equation (16) reduces to

[KF ]{UF }+ [KD]{UD} = 0 , (34)

which can be rewritten as

{U} =

{

U
F

U
D

}

=

[

−[KF ]−1[KD]

I

]

{UD} , (35)

the vector {U} containing now the displacements of all

the nodes of the mesh, and I being the identity matrix of

dimension dim({UD}). We rewrite this latter equation in a

more compact form

{U} = [K]{UD} . (36)
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Nodal Reaction Forces

We would like now compute the nodal reaction forces

{FR} that are applied through the nodes of the contact print

P on the contact link l of the robot r. See Fig. 2. First let us

define what we mean by such nodal reaction forces. Let TP

be the traction that is applied on the the deformable object

through the surface Sprint. For a point x ∈ Sprint we have

TP (x) = σ(x).n(x) . (37)

We approximate the the surface print Sprint by Sprint,h

defined as the union of the surfaces of the elements that have

all of their frontier nodes belonging to P . These elements

are members of the set

E =
{

e ∈ {1, . . . , NE} | Ee ∩ ∂Ωh ⊂ Sprint

}

, (38)

and thus Sprint,h is

Sprint,h =
⋃

e∈E

Ee ∩ ∂Ωh . (39)

For every e ∈ E , we would like to compute the traction

TP (x) when x varies in Ee ∩ ∂Ωh. Since we chose to use

tetrahedron elements, the matrix [Be(a)] defined in (24) can

be shown to be independent of the parameter a, [Be(a)] =
[Be], and the stress field σ(x) is thus constant within every

element Ee, σ(x) = σ
e
. Since Ee∩∂Ωh reduces in this case

to a planar triangle, the normal n(x) is constant throughout

Ee ∩ ∂Ωh, we denote it ne, and subsequently TP (x) is

also constant throughout Ee ∩ ∂Ωh, we denote it TP
e . The

nodal surface forces {FP
e } are defined such that for every

virtual displacement field w(x), x ∈ Ee ∩ ∂Ωh interpolating

the nodal displacements {WP
e } of the three surface triangle

nodes through the interpolation (9) we have

{WP
e }

T {FP
e } =

∫

Ee∩∂Ωh

TP
e .w dS . (40)

If αe denotes the area of the triangle Ee∩∂Ωh, we can show

that identification in this latter relation leads to

{FP
e } =

αe

3
N σ

e
.ne , (41)

where N is a duplication matrix

N =
[

I3×3 I3×3 I3×3

]T
. (42)

{FR
e }, the contribution of the element e ∈ E to the nodal

reaction forces {FR}, is the opposite of this vector

{FR
e } = −{FP

e } = −
αe

3
N σ

e
.ne , (43)

The application points of {FR
e } are the vertices

(x
(1)
e , x

(2)
e , x

(3)
e ) of the triangle Ee ∩ ∂Ωh. Finally the

reaction surface force distribution over the triangle

Ee ∩ ∂Ωh is equivalent from a virtual work point of view

to the set of three point forces






















f (1)

e
= −

αe

3
σ
e
.ne applied at x(1)

e

f (2)

e
= −

αe

3
σ
e
.ne applied at x(2)

e

f (3)

e
= −

αe

3
σ
e
.ne applied at x(3)

e























. (44)

The Optimization Approach

We recall now the approach followed in [1] for solving an

inverse problem. if q denotes the configuration of the robot

(including the free-flying base component in SE(3)) and

Λ the set of non-negative coefficients along the linearised

friction cone generators at the contact points, the approach

consists in solving the non-linear constrained optimization

problem of an arbitrary objective function obj2

min
(q,Λ)

obj(q,Λ) (45)

under joint limits, (46)

torque limits, (47)

friction cone, (48)

and static equilibrium constraints. (49)

Taking into account the deformable contact is straight-

forward by adding the forces (44) to the set of contact

forces applied on the robot in the formulation of the torque

limits and static equilibrium constraints (47) and (49) of

the formulation (45). One difficulty arises in computing the

contribution of these forces to the gradient of these two

constraints (47) and (49).

So let us consider one of these forces f (j)

e
(e ∈ E and

j ∈ {1, 2, 3}) and try to explicit its dependency on the

configuration of the robot q. We have

f (j)

e
(q) = −

αe

3
σ
e
(q).ne(q) . (50)

Note that since the projection operator pprint is a rigid

transformation the area of the element frontier triangle αe

is constant and does not depend on q. Let [D] be the 9× 6
duplication matrix

[D] =





































1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0





































, (51)

such that we can write the definition of the Voigt nota-

tion (22) of the stress tensor {σe} as a vectorization relation

[D] {σe} = vec(σ
e
) , (52)

where vec(M) means the column vector obtained by con-

catenating all the columns of M into one column vector [6].

2The objective function is designed in a way to minimize a distance
to a reference posture and to optimize the repartition of contact forces or
actuation torques. In the present case an additional weighted component
aimed at minimizing the deformation can be added by minimizing the
norm of the nodal reaction forces that will are derived in the subsequent
development of the paper. This is done in particular in the presented results
at the end of the paper.

490



Since σ
e
.ne is already a column vector then its vectorization

is trivial

vec(σ
e
.ne) = σ

e
.ne . (53)

The algebra of the vectorization operation tells us that the

vectorization of a matrix product can be derived using the

Kronecker product operation ⊗

vec(M1 M2) = (MT
2 ⊗ Ik×k) vec(M1) , (54)

where k is the number of rows of M1. So the relation (53)

using (52) becomes

σ
e
.ne = vec(σ

e
.ne) , (55)

= (nT
e ⊗ I3×3) vec(σe

) , (56)

= (nT
e ⊗ I3×3) [D] {σe}. (57)

Moreover, from (24) and (25) we can write

{σe} = [A][Be]{Ue} , (58)

where {Ue} are the nodal displacements of the four vertices

of the element Ee, which can be obtained from (36) as

{Ue} = [Ke]{U
D} , (59)

[Ke] being the matrix extracted by keeping only the 12 rows

of the matrix [K] corresponding to the 12 components {Ue}
in {U}. Finally we can rewrite an explicit expression of (50)

f (j)

e
(q) = −

αe

3

(

ne(q)
T ⊗ I3×3

)

[D][A][Be][Ke]
{

U
D(q)

}

.

(60)

The gradient of (60) with respect to q can now be derived

based on the two computationally available Jacobian matrices

of the contact link l of the robot r

∂ne(q)

∂q
, (61)

∂
{

U
D(q)

}

∂q
. (62)

(Recall that at the solution Sr = Sprint and thus ne(q) and

the non-zero components of
{

U
D(q)

}

can be considered as

rigidly attached to Sr ie. rigidly attached to the link l). This

gradient takes the final form

∂f j

e

∂q
=

−
αe

3

[(

[

∂ne

∂qi

]T

⊗ I3×3

)

[D][A][Be][Ke]
{

U
D
}

]dim(q)

i=1

−
αe

3

(

nT
e ⊗ I3×3

)

[D][A][Be][Ke]
∂
{

U
D
}

∂q
. (63)

The gradients of the moment of the force f (j)

e
(q) and the

torques resulting from it follow directly using the Jacobians

at the application points that can also be considered as being

attached to the surface Sr and thus to the link l of the robot r

∂x
(j)
e (q)

∂q
. (64)

Finally the computation of these gradients allows us to use

non-linear optimization solvers such as [7], [8] to solve the

problem (45) taking into account the nodal reaction forces.

IV. SIMULATION RESULTS

We applied the presented method to an example scenario

in which the humanoid robot HRP-2 [9] takes support with

both feet on the rigid ground and with a modified hand link

on a deformable object.

The deformable object is a simple 1m × 1m × 1m cube

with an isoparametric mesh made of 166 nodes and 570
tetrahedron elements. See Fig. 3. Table I gives the physical

properties of the material that constitutes the cube.

Fig. 3. The mesh of the deformable environment contact support.

Young’s modulus E 106 Pa

Poisson’s ratio ν 0.4

Mass density ρ 103 kg/m3

TABLE I

PROPERTIES OF THE DEFORMABLE MATERIAL.

Fig. 4 shows the resulting configuration together with

snapshots configurations along the optimisation iteration pro-

cess. Note that we are only interested in the final iterate, the

intermediate configurations do not have physical meaning.

In another example scenario, shown in Fig. 5, the HRP-2

robot has its left foot supporting on a rigid object and its

right foot supporting on the same deformable cube.

Finally, Fig. 6 shows for the sake of visualization an

on-purpose exaggerated deformation resulting from lower

Young’s modulus of the material constituting the cube.

This configuration is not physically valid since the linear

elasticity regime should be applied under the small defor-

mation hypothesis, which occurs only in the first case. For

large deformations, non-linear approaches such as [10], [11]

should be investigated.

As for execution time, the orders of magnitude as reported

in [1] range from one to ten seconds per query. Adding

the FEM resolution step keeps it in the order of tens of

seconds, without any effort devoted to reducing this time in

our prototype implementation.
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(a) Final result

(b) i = 0/68 (c) i = 1/68 (d) i = 20/68 (e) i = 50/68 (f) i = 68/68

Fig. 4. Example of the execution of the optimisation algorithm. i is the
iteration counter. The total number of iterations is 68.

(a) Non-deformed configuration (b) Deformed cube after taking a step

Fig. 5. HRP-2 taking a step on the deformable cube.

(a) E = 106Pa (b) E = 5× 105Pa

Fig. 6. Resulting configuration with different Young’s mudulus E.

V. CONCLUSION AND FUTURE WORK

We extended our multi-contact static posture planning

optimisation framework to take into account non-rigid linear-

elasticity-based deformable model as a possible contact

support. The linear behaviour made it possible to derive

the gradient of the nodal reaction forces with respect to

the configuration of the robot, which defines the boundary

conditions of the deformation.

One limitation of this approach resides in its non appli-

cability to the planning of the whole sequence of postures

in the framework of contact-before-motion planning in its

continuous formulation as presented in [2]. The reason is that

the position of the contact print (x, y, θ) on the deformable

surface should be specified and fixed beforehand in the

current approach. If we were to keep this position (x, y, θ)
as an optimisation variable, then the reaction forces would

not any more be continuous functions of the configuration

since the set E of the finite elements belonging the non-

fixed contact print Sprint would vary in a discrete non-

continuous way. Thus it is not possible to use a finite-

element-based approach to plan for the sequence of postures

under continuous search of the best positions of the contacts.

One way to overcome this limitation is to resort to

a contact-before-motion planning approach in its pre-

discretized contact positions formulation as in [4], where

we pre-process the environment by sampling a finite set

of possible contact positions (fixed) on the environment,

in particular on the deformable support, and perform a

discrete search along these sampled positions. The approach

presented in this paper is thus suitable in this case.

Finally, one remaining difficulty lies in the formulation of

the collision-avoidance constraint with deformable objects.

ACKNOWLEDGEMENT

This work is partially supported by Japan Society for

the Promotion of Science (JSPS) Grant-in-Aid for Scientific

Research (B), 22300071, 2010.

REFERENCES

[1] K. Bouyarmane and A. Kheddar, “Static multi-contact inverse problem
for multiple humanoid robots and manipulated objects,” in Proceedings

of the IEEE-RAS Int. Conf. on Humanoid Robots, 2010.
[2] ——, “Multi-contact planning for multiple agents,” in Proceedings of

the IEEE-RAS Int. Conf. on Robotics and Automation, 2011.
[3] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-

points for humanoid robots and experiments on HRP-2,” in Proceed-

ings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2006.

[4] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid lo-
comotion planning,” in Proceedings of the IEEE-RAS Int. Conf. on

Humanoid Robots, 2005.
[5] M. Bonnet and A. Frangi, Analyse des solides deformables par la

methode des elements finis. Ecole Polytechnique, 2005.
[6] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with

Applications in Statistics and Econometrics. Wiley, 1999.
[7] C. T. Lawrence and A. L. Tits, “Nonlinear equality constraints in

feasible sequential quadratic programming,” Optimization Methods

and Software, vol. 6, pp. 265–282, 1996.
[8] A. Wachter and L. T. Biegler, “On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, pp. 25–57, 2006.

[9] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki,
M. Hirata, K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” in
Proceedings of the IEEE Int. Conf. on Robotics and Automation, 2004.

[10] J. Barbic and D. L. James, “Real-time subspace integration for
st.venant-kirchhoff deformable models,” ACM Transactions on Graph-

ics, vol. 24, no. 3, 2005.
[11] Y.Zhuang and J. Canny, “Real-time global deformations,” in Proceed-

ings of the Workshop on Algorithmic Foundations of Robotics, 2000.

492


