
Multi-Contact Stances Planning for Multiple Agents

Karim Bouyarmane and Abderrahmane Kheddar

Abstract— We propose a generalized framework together
with an algorithm to plan a discrete sequence of multi-contact
stances that brings a set of collaborating robots and manipu-
lated objects from a specified initial configuration to a desired
goal through non-gaited acyclic contacts with their environment
or among each other. The broad range of applications of
this generic algorithm includes legged locomotion planning,
whole-body manipulation planning, dexterous manipulation
planning, as well as any multi-contact-based motion planning
problem that might combine several of these sub-problems. We
demonstrate the versatility of our planner through example
scenarios taken from the aforementioned classes of problems
in virtual environments.

I. INTRODUCTION

Recent works [1], [2] started tackling the acyclic motion

planning problem for humanoid and/or legged robots taking

a contacts-before-motion planning approach. The approach

is based on planning a feasible sequence of stances from an

initial configuration to a goal configuration, before planning

the subsequent continuous motion that goes through this

planned sequence of stances. This paper is concerned only

with the first part of the problem, i.e. the discrete stances

sequence planning sub-problem. Such a decoupling scheme

of the two components of the problem, though less theoreti-

cally founded in terms of completeness than the interleaved

approach of multi-modal planning [3], enables us to reduce

the complexity of the problem and yet still manages to solve

highly constrained situations as demonstrated on practical

real-life humanoid robot experiments [4], [5], [6].

The core algorithm we are using here was first introduced

in the works of Escande et al. [4]. In its most reduced form,

it is a Best-First Planning (BFP) algorithm [7], [8] that

explores the continuum of the workspace for finding best

contact locations, as opposed to the main other method first

introduced in the works of Hauser et al. [9] requiring prior

discretization of possible contact locations on the environ-

ment. A major drawback of this latter approach resides in the

difficult trade-off between the possible combinatorial issues

that would be raised by too many pre-discretized locations,

versus the possible misses of solutions induced by too few

pre-discretized locations.

In this paper we build on this BFP-based algorithm and

propose a novel framework that makes it possible, with one

unique planner, to solve different classes of robotics contacts

planning problems, beyond the initially targeted “legged

locomotion for a single robot” problem. Such a planner can

The authors are with CNRS-AIST JRL (Joint Robotics
Laboratory) UMI3218/CRT, AIST, Tsukuba, Japan; and with
CNRS-University of Montpellier 2 LIRMM, Montpellier, France.
{karim.bouyarmane,abderrahmane.kheddar}@aist.go.jp

solve, for example, the non-gaited dexterous manipulation

problem, some example approaches of which can be found

in the past few years’ literature [10], [11], [12], [13]. A

more original contribution is to solve the contacts planning

problem for collaborative robots manipulating objects [14].

The needed synchronization of contacts planning for the co-

operative carrying of a heavy object by two humanoid robots

is one example of the results of the planner. Additionally, by

unifying locomotion and manipulation, the planner can also

solve contact planning problems for situations interleaving

both, which can prove useful for platforms such as humanoid

robots that are designed to execute both locomotion and

manipulation tasks.

These contributions (extension to multiple agents, gen-

eralization to any robotic platform, and non-decoupling of

locomotion and manipulation) are made possible thanks to

a formulation of the problem that reaches a higher level

of abstraction, necessary in order to achieve the desired

generalization. It allows us to make the extensions listed

above with little rewriting effort of the existing algorithms.

In other words, the algorithms here are the same as their

original form [1], [2]; by generalizing the formalism and the

framework, we extend their capabilities to a wider range of

applications. This is our main contribution.

However, we emphasize once again that addressing the

continuous motion generation problem is beyond the scope

of this paper. In our previous approaches [4], [5], [6],

the stances planning and continuous motion planning are

two independent stages of a global planning framework.

They are addressed as independent problems. This decoupled

approach is justified by the experimental validation presented

in our previous works [4], [5], [6]. Moreover, a quantitative

analysis of completeness and global optimality issues of

the proposed algorithms is also beyond the scope of the

paper. Since no fundamental algorithmic contributions are

brought along with our generalization process, these algo-

rithmic issues/characteristics are no different from the ones

encountered in the original works [1], [2] to which we refer

the interested reader.

The rest of this paper is organized as follows. We first

propose a formulation of the problem using the language

and formalism of basic set theory (Section II). We then write

our algorithm in this synthetic language and compare it with

the other existing method (Section III). Last we demonstrate

some results obtained by our planner on different classes of

problems (Section IV).

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-385-8/11/$26.00 ©2011 IEEE 5246

II. PRELIMINARY NOTATIONS AND DEFINITIONS

In this section we will introduce the set-theoretic for-

malism that will make the extensions and the locomotion-

manipulation unification process easier to write. The abstrac-

tion effort invested in this section will later be rewarded in

the algorithms writing section (Section III). It will allow us to

write the algorithms in a very generic, synthetic, and rigorous

style. It might be useful to recall beforehand that, within this

formalism, for any two sets A and B, p : A → B denotes

a mapping from A to B, P(A) denotes the power set of A

(set of subsets of A), card(A) the cardinality of A, and for

any two subsets A′ ∈ P(A) and B′ ∈ P(B), p(A′) and

p−1(B′) denote respectively the direct and inverse images of

A′ and B′ under the mapping p. We use the symbol A1 \A2

to denote the difference of two subsets A1, A2 ∈P(A).
So let us suppose we have a system of N robots indexed

in the set {1, . . . , N}. A “robot” here is either a fully-

or under-actuated articulated mechanism or a non-actuated

manipulated object. The environment can also be considered

as a special case of “robot”, indexed with 0. Thus the index

set {0, . . . , N} contains all the articulated mechanisms, the

manipulated objects, and the environment.

Each robot r ∈ {0, . . . , N} can be represented as a

kinematic tree made of br bodies (nodes of the tree) indexed

in {0, . . . , br− 1}, linked by jr actuated joints (edges of the

tree) indexed in {1, . . . , jr} (or ∅ if jr = 0). See Fig. 1.

• br = 1 and jr = 0 if r refers to the environment or to

a manipulated object.

• The index 0 in the set {0, . . . , br− 1} refers to the root

body of the kinematic tree representing the robot r.

The configuration q of the system is an element of C =
∏N

r=1 Cr, the Cartesian product of the configuration spaces

of the individual robots of the system. Hence

q = (q1, . . . , qN) ,

where, for r ∈ {1, . . . , N},

• qr = (xr, yr, zr, αr, βr, γr, δr, θr,1, . . . , θr,jr), if r

refers to a free-base articulated mechanism such as a

humanoid robot for example, the first seven components

representing the 3D position and the unit quaternion-

parametrized orientation of its root body indexed by 0.

• qr = (xr, yr, zr, αr, βr, γr, δr), if r refers to a rigid

non-articulated manipulated object.

• qr = (θr,1, . . . , θr,jr), if r refers to a fixed-base manip-

ulator such as the finger of a multi-fingered dexterous

hand for example.

• qr is not defined for r = 0 (the environment). It could

be if we were considering deformable environment for

example.

On each robot r ∈ {0, . . . , N} we further specify a set of

mr planar surface patches indexed in {1, . . . ,mr}. A pair

(r, s) ∈ {0, . . . , N} × {1, . . . ,mr}, which characterizes the

surface, refers to an element (b′r,s, Tr,s) of {0, . . . , br−1}×
SE(3), where b′r,s denotes the body to which the surface

(r, s) is rigidly attached and Tr,s = (or,s, ~xr,s, ~yr,s, ~zr,s)
denotes a frame attached to the body b′r,s, such that the

1

2 3 0 4 5

6 7

8 9

0

0

1 2 3

4 5 6

7 8 9

0

Fig. 1. Examples of the 4 types of kinematic trees yielding configuration
space. Top left: a humanoid robot. Top right: a dexterous hand. Bottom left:
the environment. Bottom right: a manipulated object. In red: fixed base. In
green: free-flying base. A system of robots consists of an arbitrary number
of any of those 4 types of kinematics trees.

point or,s belongs to the surface, the vector ~zr,s is the

inwards normal to the surface, and the vectors ~xr,s, ~yr,s
are tangential to the surface. More general (i.e. non-planar)

surface patches can be handled by considering normalized

Gauss frames [15].

A contact is given by the specification of the two surfaces

in contact (r1, s1) and (r2, s2) (i.e. a 4-tuple (r1, s1, r2, s2))
as well as their relative position/orientation (x, y, θ). More

precision is found in the following definition:

Definition 1 (contact, set of contacts E): A contact is a

7-tuple (r1, s1, r2, s2, x, y, θ), such that r1 ∈ {1, . . . , N},
r2 ∈ {0, . . . , N}, r2 ≤ r1, s1 ∈ {1, . . . ,mr1}, s2 ∈
{1, . . . ,mr2}, s2 < s1 if r1 = r2, b′r1,s1 6= b′r2,s2 if r1 = r2,

and (x, y, θ) ∈ R
2 × S

1. We define the set of contacts E as

the subset of N4 × R
2 × S

1 made of such 7-tuples.

Remark 1: We can notice that this very generic definition

only excludes environment-environment contacts (r1 6= 0),

all other contact situations are possible, including a contact

between two different bodies of the same robot (case r1 =
r2). The ordering imposed on (r1, r2) and on (s1, s2) if r1 =
r2 is required to avoid representing twice the same contact

situation.

A contact (r1, s1, r2, s2, x, y, θ) geometrically corre-

sponds to setting

~zr1,s1(q) = −~zr2,s2(q) , (1)

~xr1,s1(q) = cos(θ)~xr2,s2(q) + sin(θ)~yr2,s2(q) , (2)

~yr1,s1(q) = sin(θ)~xr2,s2(q)− cos(θ)~yr2,s2(q) , (3)

or1,s1(q) = or2,s2(q) + x~xr2,s2(q) + y ~yr2,s2(q) . (4)

We call these equations the contact equations. They are

illustrated in Fig. 2. Once again, for simplicity these are

restricted to the planar surfaces case; for surfaces modeled

as manifolds, the more general contact equations [15] should

be considered (see Section IV for our practical handling of

non-planar surfaces).

5247

y

x

θ

θ

~yr2,s2

~xr2,s2

~zr2,s2

~zr1,s1

~xr1,s1

~yr1,s1

or1,s1

or2,s2

Fig. 2. Geometric illustration of a contact (r1, s1, r2, s2, x, y, θ).

On N
4 × R

2 × S
1 we consider the projection map pN4 :

(r1, s1, r2, s2, x, y, θ) 7→ (r1, s1, r2, s2) which keeps only

the first 4 components of the 7-tuple. pN4 maps a contact to

the pair of surfaces that constitute that contact.

Definition 2 (stance, set of stances Σ): A stance σ is a

subset of the set of contacts E such that every pair of surfaces

appears at most once. The set of all stances is denoted Σ ,

Σ =
{

σ ∈P(E) | ∀c1, c2 ∈ σ :

c1 6= c2 ⇒ pN4(c1) 6= pN4(c2)
}

.

Remark 2: A stance σ is necessarily a finite subset of E,

given that

card(σ) ≤ card(pN4(E)) ≤ N (N + 1) (max
r∈{0,...,N}

mr)
2 .

Every configuration of the system of robots defines a

unique stance made of all the contacts for the robots in

that configuration. Let us then denote pΣ : C → Σ the

“forward kinematics” mapping that maps every configura-

tion q to its stance σ. Inversely, each stance σ defines an

“inverse kinematics” submanifold Qσ of the configuration

space containing all the configurations that satisfy the contact

equations (1), (2), (3), and (4) for all the contacts in the

stance,

Qσ = p−1
Σ ({σ}) .

On this submanifold we isolate a special subspace of same

dimensionality but less volume Fσ in which the configu-

rations are physically valid static configurations (i.e. con-

figurations that are in static equilibrium, collision-free, for

which the joint angles and torques are within their prescribed

bounds).

The planning we will perform will be made on the set of

stances Σ, rather than on the configuration space C as it is

the case in usual motion planning. We thus need to define

an adjacency relation between stances. Two stances will be

considered adjacent if they differ by exactly one contact. To

formalize this we define the binary relation “have one contact

less than”, that we denote ⊏, as

σ1 ⊏ σ2 if σ1 ⊂ σ2 and card(σ2) = card(σ1) + 1 .

Definition 3 (adjacency): Two stances σ1 and σ2 are said

to be adjacent if σ1 ⊏ σ2 or σ2 ⊏ σ1. Given a stance σ

we define the three following adjacency sets: Adj+(σ) the

set of stances that add one contact to σ, Adj−(σ) the set of

stances that remove one contact from σ, and Adj(σ) the set

of stances that are adjacent to σ (add or remove one contact).

Formally:

Adj+(σ) = {σ′ ∈ Σ | σ ⊏ σ′} ,

Adj−(σ) = {σ′ ∈ Σ | σ′
⊏ σ} ,

Adj(σ) = Adj+(σ) ∪Adj−(σ) .

A step in the plan will be a transition from one stance to an

adjacent stance. Such a step will be feasible if there exists a

common transition configuration that realizes both stances at

the same time, i.e. if the intersection of the respective feasible

spaces of the two stances is non-empty. This motivates the

following definition:

Definition 4 (feasible sequence of stances): A sequence

of stances (σ1, . . . , σn) ∈ Σn, n ≥ 2, is said to be feasible if

it is made of a succession of adjacent stances with common

transition configurations between two successive stances

∀ i ∈ {1, . . . , n−1} σi+1 ∈ Adj(σi) and Fσi
∩Fσi+1

6= ∅ .

We can now formulate the problem we want to solve:

Problem 1 (non-gaited stances planning problem):

Given two stances σstart and σgoal in Σ, find a feasible

sequence of stances (σ1, . . . , σn) such that σ1 = σstart and

σn = σgoal.

The ability to solve Problem 1 rather than cyclic gaited

steps planning problems makes the robots more autonomous

in handling unexpectedly structured environment. Note, how-

ever, that in many simple cases, gaited sequences emerge

automatically (“naturally”) in our results from solving Prob-

lem 1 (cf. Section IV).

Remark 3: We can also specify the goal to reach in terms

of a configuration qgoal rather than a stance σgoal. In this

case we get the same formulation as Problem 1 where σgoal

simply denotes pΣ(qgoal). These are actually the kind of

queries we are addressing in Section IV.

Solving Problem 1 in a greedy algorithmic way amounts

to exploring Adj(σ) for a given σ, choosing σ′ ∈ Adj(σ),
finding a configuration q in Fσ ∩Fσ′ to validate the choice

of σ′, and iterating on σ′. Let us then analyse more closely

the structure of Adj(σ) for a given σ ∈ Σ. First, we should

rewrite constructive expressions of the adjacency sets. From

Definition 3 it follows that

Adj+(σ) =
{

σ ∪ {c} | c ∈ p−1
N4

(

pN4(E) \ pN4(σ)
)}

,

Adj−(σ) =
{

σ \ {c} | c ∈ σ
}

.

5248

Fσ∪σ′

Qσ∩σ′

Qσ∪σ′

Fσ∩σ′

Fig. 3. Venn diagrams illustrating Proposition 1.

The removing-one-contact set Adj−(σ) is thereby a finite

set, with card
(

Adj−(σ)
)

= card(σ). The adding-one-

contact set Adj+(σ), however, needs to be more finely

structured. When adding a contact (r1, s1, r2, s2, x, y, θ), we

first choose the two surfaces (r1, s1) and (r2, s2) that we

want to add as a contact, then we decide what their relative

position/orientation (x, y, θ) will be. A nice way to formalize

this is through equivalence classes. Let us define on Adj+(σ)
the following equivalence relation

σ1 ∼σ σ2 if

σ1 = σ∪{c1} and σ2 = σ∪{c2} and pN4(c1) = pN4(c2) .

This equivalence relation only makes distinction between the

surface pairs in the added contacts with no consideration

for the positions (x, y, θ). The quotient set Adj+(σ)/∼σ
,

containing all the possible surface pairs that we can add to

the stance, is in canonical bijection with pN4(E) \ pN4(σ),
i.e. the set of surface pairs that are not already present in the

stance. So for each 4-tuple (r1, s1, r2, s2) ∈ pN4(E)\pN4(σ)
we denote clσ(r1, s1, r2, s2) the corresponding equivalence

class, which contains all the possible positions (x, y, θ) when

we want to add the surface pair (r1, s1, r2, s2) as a contact

(this equivalence class is thus homeomorphic to R
2 × S

1)

clσ(r1, s1, r2, s2) =
{

σ ∪
{

(r1, s1, r2, s2, x, y, θ)
}

| (x, y, θ) ∈ R
2 × S

1
}

.

We now have all the ingredients to write an algorithm that

tries to solve Problem 1: exploring Adj−(σ) is straightfor-

ward; for Adj+(σ), the algorithm explores every equivalence

class from Adj+(σ)/∼σ
by solving an optimization problem

on (x, y, θ).
Before concluding this section, we will state a last useful

property related to feasible transitions between two adjacent

stances. For two adjacent stances σ and σ′, a configuration

in Fσ ∩Fσ′ is a configuration that realizes the geometric

closure condition for the larger stance of the two (Qσ∪σ′)

and the feasibility condition for the smaller stance of the

two (Fσ∩σ′). We can formalize this through the following

property, illustrated in Fig. 3:

Proposition 1: Let σ ∈ Σ and σ′ ∈ Adj(σ) . Then we

have

Fσ ∩Fσ′ = Qσ∪σ′ ∩Fσ∩σ′ .

F{c1}

Q{c2} Q{c4}

Q{c3}

Q{c3,c4}Q{c2,c3}Q{c1,c2}

F{c4}

F{c3}

F{c2}

F{c1,c2} F{c2,c3} F{c3,c4}

Q{c1}

C

c1 c3

c2 c4

c1 c3

c2 c4

c1 c3

c2 c4

c1 c3

c2 c4

c1 c3

c2 c4

c1 c3

c2 c4

Fig. 4. Transfer and transit paths for a biped feasible sequence of stances.
In green transfer paths, in red transit paths. The top figure represents the
footprints in Σ (right foot in blue, left foot in black), the bottom figure is
a representation in C (for clarity Q{c1} ∩ Q{c4} is not represented).

Proof: Fσ∩Fσ′ ⊂ Qσ∪σ′∩Fσ∩σ′ is trivial. Inversely,

let q ∈ Qσ∪σ′∩Fσ∩σ′ . This implies that q belongs to Qσ∪σ′

and is a physically valid static configuration, hence q ∈
Fσ∪σ′ and subsequently q ∈ Fσ∩σ′ ∩Fσ∪σ′ = Fσ ∩Fσ′ .

Corollary 1: Let σ ∈ Σ and clσ(r1, s1, r2, s2) ∈
Adj+(σ)/∼σ

. Then we have

Fσ ∩
(

⋃

(x,y,θ)

Fσ∪{(r1,s1,r2,s2,x,y,θ)}

)

=

Fσ ∩
(

⋃

(x,y,θ)

Qσ∪{(r1,s1,r2,s2,x,y,θ)}

)

.

The role of Proposition 1 is to release redundant con-

straints in Definition 4, while Corollary 1 will prove useful

later in the course of this paper (Section III-B).

Remark 4: In some works [16], [10], [17] a path through

Fσ from q ∈ Fσ to q′ ∈ Fσ ∩ Qσ′ for σ′ ∈ Adj+(σ)
would be called a transit path, and a path through Fσ from

q ∈ Fσ to q′ ∈ Qσ ∩ Fσ′ for σ′ ∈ Adj−(σ) is called a

transfer path (cf. Fig. 4).

III. ALGORITHM

Our objective now is to solve Problem 1 formulated in

Section II.

A. The Discrete Approach

In this section we discuss the approach proposed in the

works of Hauser et al. and see how it fits in our generalized

formalism for multiple agents. This approach is based on

prior discretization of E. Let Efinite be a finite subset of E

containing the start and goal stances,

(σstart ∪ σgoal) ⊂ Efinite ⊂ E, card(Efinite) <∞ .

Let Σfinite be the restriction of Σ to Efinite,

Σfinite = {σ ∈ Σ | σ ⊂ Efinite} .

5249

Σfinite is a finite set endowed with a finite undirected

graph structure defined by the adjacency relation, as can be

seen through the following constructions (“Trans” stands for

transitions [2])

Adjfinite(σ) = Adj(σ) ∩ Σfinite ,

Trans(σ) = {σ} ×Adjfinite(σ) ,

G =
⋃

σ∈Σfinite

Trans(σ)

= {(σ1, σ2) ∈ Σ2
finite | σ1 ⊏ σ2 or σ2 ⊏ σ1} .

These constructions give us the finite graph structure that we

wanted (Σfinite,G).
Hauser’s algorithm explores this graph by growing a

connected sub-graph (V ,E), V ⊂ Σfinite, E ⊂ G , and

maintaining a priority queue Q ⊂ G ×R. Let f : Σfinite → R

be a cost function on the stances, this cost function is based

on different heuristics such as the distance to goal, the

distance to reference configurations, and the robustness of

the static equilibrium. Algorithm 1 gives the outline of the

planner (the expansion phase of the multi-modal planner [2]).

pG : G × R→ G denotes the canonical projection on G .

Algorithm 1 FIND SEQUENCE OF STANCES(σstart, σgoal)

1: V ← {σstart}
2: E ← ∅

3: Q← ∅

4: for all (σstart, σ
′) ∈ Trans(σstart) do

5: Q← Q ∪ {(σstart, σ
′, f(σ′))}

6: end for

7: repeat

8: (σcurrent, σadjacent, c)← Q.POP LOWEST COST()
9: qadjacent ← SAMPLE RANDOM(Fσcurrent∩σadjacent

∩
Qσcurrent∪σadjacent

)
10: if qadjacent 6= NULL then

11: V ← V ∪ {σadjacent}
12: E ← E ∪ {(σcurrent, σadjacent)}
13: for all (σadjacent, σ

′) ∈ Trans(σadjacent) \ pG (Q)
do

14: Q← Q ∪ {(σadjacent, σ
′, f(σ′))}

15: end for

16: else

17: Q ← Q ∪ {(σcurrent, σadjacent, c +
COST INCREMENT)}

18: end if

19: until σgoal ∈ V or c.IS OUT OF RANGE()

Starting from σstart the algorithm enqueues all the dis-

cretized stances that are adjacent to σstart (lines 1 to 5),

indifferently adding or removing a contact since they are all

in finite number. Then it enters the main search loop (lines 7

to 19): first dequeuing the “most promising” pair of stances

made of the currently explored stance along with one of

its adjacent stances (line 8), and tries to sample a feasible

transition configuration using Proposition 1 (line 9). In case

of success (lines 10 to 15), the adjacent stance is added to

the exploration graph (lines 11 and 12) and all the transitions

from this adjacent stances (i.e. the stances that are adjacent to

the adjacent stance) that are not already present in the queue

are enqueued for future exploration (lines 13 to 15). In case

of failure to sample a transition configuration, the considered

pair is penalised by augmenting its cost and re-enqueued into

Q (lines 16 and 17). As the exploration progresses and no

solution is found, more time will be allocated to sampling

reluctant transitions.

In the worst case, this algorithm will end up exploring

all the stances in the connected component of (Σfinite,G)
containing σstart. However, if no solution is found then this

does not necessarily mean that Problem 1 does not have

a solution, but it could also be due to the fact that the

discretization performed by choosing Efinite might not have

been fine enough. This problem is not encountered in our

proposed algorithm that we detail hereunder.

B. The Continuous Approach

In this approach we do not need to discretize Σ. We grow

a tree (V ,E), V ⊂ Σ, E ⊂ Σ2, and we maintain on it a

priority queue Q ⊂ Σ×R. Let f : C → R be a cost function

on the configuration space. Algorithm 2 gives the outline of

the planner, where ε and δ are two positive parameters, and

DISTANCE is a heuristic “metric” on Σ.

Algorithm 2 FIND SEQUENCE OF STANCES(σstart, σgoal)

1: qstart ← FIND BEST CONFIG(Fσstart
)

2: V ← {σstart}
3: E ← ∅

4: Q← {(σstart, f(qstart))}
5: repeat

6: (σcurrent, c)← Q.POP LOWEST COST STANCE()
7: for all σadjacent ∈ Adj−(σcurrent) do

8: qadjacent ← FIND BEST CONFIG
(

Qσcurrent
∩

Fσadjacent

)

9: if qadjacent 6= NULL and DISTANCE(σadjacent,V) >
ε then

10: V ← V ∪ {σadjacent}
11: E ← E ∪ {(σcurrent, σadjacent)}
12: Q← Q ∪ {(σadjacent, f(qadjacent))}
13: end if

14: end for

15: for all clσcurrent
(r1, s1, r2, s2) ∈

Adj+(σcurrent)/∼σcurrent
do

16: qadjacent ← FIND BEST CONFIG
(

Fσcurrent
∩

(
⋃

(x,y,θ)∈R2×S1
Qσcurrent∪{(r1,s1,r2,s2,x,y,θ)})

)

17: σadjacent ← pΣ(qadjacent)
18: if qadjacent 6= NULL and DISTANCE(σadjacent,V) >

ε then

19: V ← V ∪ {σadjacent}
20: E ← E ∪ {(σcurrent, σadjacent)}
21: Q← Q ∪ {(σadjacent, f(qadjacent))}
22: end if

23: end for

24: until DISTANCE(σgoal,V) < δ or Q = ∅

5250

First, the algorithm enqueues σstart (lines 1 to 4). Then it

enters the main search loop (lines 5 to 24), which consists

once again in dequeuing the “most promising” stance (line

6), and exploring the adjacent stances. This exploration is

split into two stages: the adjacent stances by removing a

contact (lines 7 to 14) and the adjacent stances by adding

a contact (lines 15 to 23). The former adjacent stances are

in finite number and for each of them the algorithm tries to

sample a feasible transition configuration (line 8). In case of

success, the adjacent stance, if not already in the exploration

graph, is added to this exploration graph and enqueued (lines

9 to 13). The latter adjacent stances are explored via their

equivalence classes, meaning that the algorithm picks up

a pair of surfaces not already in the currently explored

stance (line 15), and for every such pair it tries to find a

transition configuration while simultaneously looking for the

best relative position for the pair of surfaces (line 16), upon

sucess the pair of surfaces is completed as a contact with the

found relative position and added to the current stance (line

17) to form the adjacent stance that will be enqueued and

added the exploration graph if not already present (lines 18

to 22).

The main added value of Algorithm 2 with regard to

Algorithm 1 lies in line 16. Indeed, both Algs. 1 and 2 rely

on an inverse stance solver that returns configurations from

3 types of queries:

• type 1 queries are made on spaces of the form Fσ ,

• type 2 queries are made on spaces of the form Qσ∩Fσ′

where σ′ ∈ Adj−(σ) (cf. Proposition 1),

• type 3 queries are made on spaces of the form

Fσ ∩ (
⋃

(x,y,θ) Qσ∪{(r1,s1,r2,s2,x,y,θ)}) where

clσ(r1, s1, r2, s2) ∈ Adj+(σ)/∼σ
(cf. Corollary 1).

In Algorithm 1 this inverse stance solver is called through

SAMPLE RANDOM and is based the Iterative Constraint

Enforcement method described in [9]. In Algorithm 2 the

solver is called through FIND BEST CONFIG. It is based

on a “black-box” non-linear optimization solver, detailed

in [18]. While type 2 queries are answered by both solvers,

processing type 3 queries is a specificity of our solver, which,

for σ ∈ Σ and clσ(r1, s1, r2, s2) ∈ Adj+(σ)/∼σ
, solves the

following optimization problem

min
q,(x,y,θ)

obj(q)

subject to











(x, y, θ) = pR2×S1(q)

q ∈ Fσ

q ∈ Qσ∪(r1,s1,r2,s2,x,y,θ) ,

where pR2×S1 : C → R
2 × S

1 is the “forward kinematics”

mapping which inverts for (x, y, θ) the contact equations (2),

(3), and (4). The objective function to minimize obj(q) takes

the form

obj(q) = (q − qgoal)
TA (q − qgoal)

+
(

or1,s1(q)− or1,s1(qgoal)
)T

B1

(

or1,s1(q)− or1,s1(qgoal)
)

+
(

or2,s2(q)−or2,s2(qgoal)
)T

B2

(

or2,s2(q)−or2,s2(qgoal)
)

,

Fig. 5. Biped locomotion over irregular terrain. Coulomb friction allows
the robot not to slip. The friction coefficient is set to µ = 1.

where A, B1, B2 are symmetric positive semi-definite matri-

ces and qgoal is either a configuration from Fσgoal
or an inter-

mediate milestone from a guide path given by a collision-free

path planner detailed in our previously published work [19].

Algorithm 2 is a best-first search algorithm. As such, it

is a greedy algorithm that suffers from the local minima

problem. To avoid this, many heuristics can be added to

the algorithmic blueprint defined by Algorithm 2 [1], [4],

[5], [19]. However, anecdotally, such problems were not

encountered in the runs of the planner that we made in

the experiments of Section IV. Although completeness and

global optimality issues are not tackled in our work, the

analysis here being only qualitative, the proposed algorithm

proved to be practically efficient in solving the queries of

Section IV.

IV. RESULTS

In this section we show results obtained by applying the

generic algorithm Algorithm 2 to different classes of prob-

lems, cf. Figs. 5, 6, 7, 8, and 9. In all these figures, for the

computed solution sequence of stances (σ1, . . . , σn) ∈ Σn

of the considered problem, we display a sample subsequence

of a sequence of configurations (q′1, . . . , q
′
n) ∈ C n such

that q′1 ∈ Fσ1
and ∀ i ∈ {2, . . . , n} q′i ∈ Fσi

∩ Fσi−1
.

It is very important to emphasize here that the pictures are

not snapshots of a continuous motion. They are not merely

representative of the result, they are the result. So it is

important to keep this in mind in order not to over-estimate

the results presented here.

In these scenarios we used three robots models:

• a model of the HRP-2 humanoid robot [20] appearing

in Figs. 5, 7, 8, and 9,

• rigid objects: the ball of Fig. 6, the table of Fig. 7, and

the box of Fig. 8,

• fixed-base manipulators: the four fingers of Fig. 6.

Surface patches on the robots have been chosen as follows:

• one surface per foot of the HRP-2 robot in all the

scenarios, one surface per hand in Figs. 7, 8, and 9,

5251

Fig. 6. Dexterous manipulation. The objective is to rotate the 3 kg ball
upside down. The fingers are 6-DOF elbow-like manipulators with wrist-
like end-effectors. The friction coefficients between the end-effectors of the
fingers and the ball are set to µ = 1. No limits are considered on the torques
delivered by the actuators in the fingers.

Fig. 7. Collaborative manipulation. Here we use an improved version of
Algorithm 2 as contacts between the hands of the robots and the handles
of the table are required not to be broken during the planning, as specified
at problem-instantiation-time by the user.

Fig. 8. Combined whole-body manipulation and locomotion. The objective
is for the HRP-2 robot to advance 2m forward while simultaneously
performing half rotation of the 5 kg box, bringing the purple face up. Friction
coefficients between the hands and the box are set to µ = 1.

Fig. 9. Bilateral contacts on monkey bars. This example illustrates the
necessity of use of bilateral contacts to solve the planning problem.

• one surface per planar piece of the ground in all the

scenarios,

• one surface per face of the cube in Fig. 8,

• one surface per handle of the table in Fig. 7,

• one surface per monkey bar in Fig. 9,

• one surface per fingertip in Fig. 6,

• 20 regularly distributed planar surfaces tangent to the

ball in Fig. 6. Every such plane approximates the

spherical surface around the tangent point. Contacts

yielded on this tangent planes are then projected back

onto the spherical surface.

In the modeling of the feasible spaces Fσ we considered

the following constraints [18]:

• static equilibrium for all the underactuated free-base

robots (including objects) considered as individual sys-

tems, under the action of external contact forces, gravity

force, and actuation torques,

• Newton’s third law for all the internal contact forces on

the system of robots and objects considered as a whole,

• Coulomb friction model for the unilateral contact forces

(all the forces except the ones listed in the next item),

• fixed grasp model for the bilateral contact forces: the

contacts between the hands of the robots and the handles

of the table in Fig. 7, and between the hands of the robot

and the monkey bars in Fig. 9,

• joint angles limits for all the joints of the poly-

articulated mechanisms (HRP-2 and the multi-fingered

hand),

• bounds on the torques of all the actuators in HRP-2,

except for the wrist actuators.

However, collision avoidance constraints have not yet been

taken into account in our current implementation of the

feasible spaces. This did not affect the scenarios that we

5252

TABLE I

EXPERIMENTAL RESULTS

Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9

N (robots) 1 5 3 2 1
dim(C) 46 30 98 52 46

Num. of steps 32 17 26 24 33
Size of the tree 51 846 47 144 91
Comp. time (s) 133 830 318 230 750

have chosen on purpose, but we are currently working on

integrating these constraints in our inverse stance solver.

Note also that, when applicable, the scenarios were chosen to

demonstrate the performance of the planner in situations in

which friction is specifically required to solve the problem,

as highlighted by a relatively high coefficient of friction

(µ = 1). Such a high friction coefficient is required for

example to cross the steepest part of the hill in Fig. 5 (as

opposed to standing on horizontal planar surface in which

low friction is enough), or to manipulate the box using

only planar unilateral contact in Fig. 8 without resorting

to bilateral grasps. Lower coefficient of friction would be

sufficient for less constraining problems.

Tab. I gives some experimental figures concerning these

scenarios made on a 3.06 GHz computer running under

Windows XP. The program is compiled from a C++ imple-

mentation of the framework.

V. CONCLUSION

We wrote a multi-contact stances planning algorithm for

multiple robots having to make use of contacts to perform lo-

comotion or manipulation tasks. The autonomy of the robots

is enhanced as little domain knowledge is required to plan

an acyclic non-gaited sequence of stances. This autonomy is

further increased by not specifying pre-discretized candidate

contact locations on the environment, the continuity of which

is totally explored by the planner. Along with autonomy, the

other key driving concept of this work was the generality.

Our planner was not targeted for any specific model of robot

or system of robots. The planner successfully performed on

a set of problems taken from different sub-fields of motion

planning in robotics, namely, the legged locomotion, dex-

terous manipulation, combined whole-body locomotion and

manipulation, and collaborative manipulation problems. All

these locomotion and manipulation problems were unified

within the same framework.

The next step is to take the output of this algorithm as

an input of a motion planning algorithm that would plan the

continuous motion going through these stances. Although

static criteria were considered in the stances planning stage,

the continuous motion planner can use them, along with

the generated configurations that correspond to each stance

of the plan, as milestones to plan a dynamic trajectory. At

this latter stage, the kinematics of changing contact modes

such as sliding, pure rolling, etc. as listed in [12] can

also be considered, they could not be taken into account

within our static formulation that was designed for planning

static stances with no kinematics or dynamics considerations.

These are our current subjects of research.

ACKNOWLEDGEMENT

This work is partially supported by Japan Society for

the Promotion of Science (JSPS) Grant-in-Aid for Scientific

Research (B), 22300071, 2010.

REFERENCES

[1] A. Escande, “Contact planning for acyclic motion with application
to humanoids,” Ph.D. dissertation, University of Evry-Val d’Essone,
December 2008.

[2] K. Hauser, “Motion planning for legged and humanoid robots,” Ph.D.
dissertation, Stanford University, December 2008.

[3] K. Hauser and J.-C. Latombe, “Multi-modal motion planning for non-
expansive spaces,” in Proceedings of the Workshop on the Algorithmic

Foundations of Robotics, 2008.
[4] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-

points for humanoid robots and experiments on HRP-2,” in Proceed-

ings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2006.
[5] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning

support contact-points for acyclic motions and experiments on HRP-
2,” in Proceedings of the International Symposium on Experimental

Robotics, 2008.
[6] A. Escande and A. Kheddar, “Contact planning for acyclic motion

with tasks constraints,” in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2009.
[7] J. C. Latombe, Robot Motion Planning. Kluwer Academic Publishers,

1991.
[8] S. M. LaValle, Planning Algorithms. Cambridge University Press,

2006.
[9] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid lo-

comotion planning,” in Proceedings of the IEEE-RAS International

Conference on Humanoid Robots, 2005.
[10] J.-P. Saut, A. Sahbani, S. El-Khoury, and V. Perdereau, “Dexterous ma-

nipulation planning using probabilistic roadmaps in continuous grasp
subspaces,” in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2007.
[11] J. Xu, J. Koo, and Z. Li, “Finger gaits planning for multifingered ma-

nipulation,” in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2007.
[12] M. Yashima, Y. Shiina, and H. Yamaguchi, “Randomized manipulation

planning for a multifingered hand by switching contact modes,” in
Proceedings of the IEEE International Conference on Robotics and

Automation, 2003.
[13] A. Miller and P. K. Allen, “Graspit!: A versatile simulator for robotic

grasping,” IEEE Robotics and Automation Magazine, vol. 11, no. 4,
pp. 110–122, December 2004.

[14] C. Esteves, G. Arechavelata, J. Pettré, and J.-P. Laumond, “Animation
planning for virtual characters cooperation,” ACM Transactions on

Graphics, vol. 25, no. 2, pp. 319–339, April 2006.
[15] D. J. Montana, “The kinematics of contact and grasp,” International

Journal of Robotics Research, vol. 7, no. 3, pp. 17–32, June 1988.
[16] R. Alami, J.-P. Laumond, and T. Siméon, “Two manipulation planning

algorithms,” in Proceedings of the Workshop on the Algorithmic

Foundations of Robotics, 1995.
[17] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipula-

tion planning with probabilistic roadmaps,” International Journal of

Robotics Research, vol. 23, no. 7-8, pp. 729–746, July-August 2004.
[18] K. Bouyarmane and A. Kheddar, “Static multi-contact inverse problem

for multiple humanoid robots and manipulated objects,” in Proceedings

of the IEEE-RAS International Conference on Humanoid Robots, 2010.
[19] K. Bouyarmane, A. Escande, F. Lamiraux, and A. Kheddar, “Po-

tential field guide for multicontact humanoid motion planning,” in
Proceedings of the IEEE International Conference on Robotics and

Automation, 2009.
[20] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki,

M. Hirata, K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” in
Proceedings of the IEEE International Conference on Robotics and

Automation, 2004.

5253

