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Abstract We demonstrate the possibility of solving plan-
ning problems by interleaving locomotion and manipulation
in a non-decoupled way. We choose three low-dimensional
minimalistic robotic systems and use them to illustrate
our paradigm: a basic one-legged locomotor, a two-link
manipulator with a manipulated object, and a simultane-
ous locomotion-and-manipulation system. Using existing
motion planning and control methods initially designed for
either locomotion or manipulation tasks, we see how they
apply to both our locomotion-only and manipulation-only
systems through parallel derivations, and extend them to the
simultaneous locomotion-and-manipulation system. Motion
planning is solved for these three systems using two differ-
ent methods: (i) a geometric path-planning-based one, and
(ii) a kinematic control-theoretic-based one. Motion con-
trol is then derived by dynamically realizing the geometric
paths or kinematic trajectories under the Couloumb friction
model using torques as control inputs. All three methods
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apply successfully to all three systems, showing that the
non-decoupled planning is possible.

Keywords Locomotion planning - Manipulation
planning - Contact planning

1 Introduction

Robots are traditionally categorized into fixed-base manip-
ulators [16, 38] and mobile navigation robots (wheeled
[34] or legged [27]). Many of them, however, do not fall
strictly into one of these two categories, as they feature both
locomotion and manipulation capabilities and are designed
for performing indifferently both kinds of tasks, falling
thus into a third locomotion-and-manipulation category.
Humanoid robots [30], which constitute the initial motiva-
tion that inspired this work, are typical examples of such
locomotion-and-manipulation integrated systems.

It is well known that, from a motion planning and control
point-of-view, locomotion and manipulation are conceptu-
ally the same problems. Their commonality comes from
their inherent under-actuation that is solved through the con-
tact forces: a locomotion system is under-actuated in the
sense that the position of the mobile base is not controlled
directly through actuators torques, but rather results from
both the actuation torques action and the contact forces
with the support environment; a manipulation system (by
manipulation system we mean both the manipulator and
the manipulated object) is also under-actuated in a strictly
equivalent way: the degrees of freedom of the manipulated
object are not actuated and its position is an indirect result of
the actuation of the manipulator through the contact forces
that it establishes with the manipulated object. Besides, they
both obey Lagrangian dynamics, they both involve friction,
and they both have contact strata of various dimensions.
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Though being equivalent, these two problems have usually
been tackled in a decoupled way for integrated manipu-
lation-and-locomotion systems. A decoupled approach
might be pertinent for classes of systems in which the initial
design imposes totally unrelated locomotion and manipu-
lation components. In that case the decoupled strategy is
arguably the most adequate one. However, for systems such
as humanoid robots, the frontier between the two kinds of
tasks is more blurred, and it is restrictive to exclusively
assign upper-body limbs to manipulation and lower-body
limbs to locomotion. For instance, a humanoid robot might
be required to use its arms to climb a ladder [44] or to crawl
under a table [19], it might also need to use its legs to push
an object on the floor while walking. In such situations,
decoupled approaches using an upper-body joint-space or
task-space controller for manipulation and an independent
lower-body walking subsystem controller for locomotion
[24] can be restrictive and not use the full potential of the
human-inspired design.

As for related work, [3, 5, 6, 31] present examples of
mechanical designs of robots integrating locomotion and
manipulation, other than humanoid robots. Very few works,
however, address their motion planning and control prob-
lems in an integrated way. Yamamoto and Yun [46] con-
siders for example a mobile manipulator and understands
the coordinated locomotion and manipulation in the sense
of finding the best location of the mobile manipulator to
realize the manipulation task. The sequential and functional
decoupling of the locomotion and manipulation components
is still however existing in this approach, which we aim to
erase in ours. A similar remark can be done for approaches
such as [17, 28, 29, 39] for humanoid robots, e.g. deploy-
ing a virtual mechanism for the footstep placement to find
the best fixed footstep location from which the whole-body
reaching can be performed. On another level, using a com-
mon planning and control framework for locomotion and
manipulation is presented in works such as [2, 49], but not
with a common ground specification of the task letting the
planner autonomously decompose it in its locomotion and
manipulation components, as necessary for the task comple-
tion and taking into account the kinematics and dynamics of
the robot.

Our driving objective is to erase high-level distinction
between manipulation and locomotion, both in terms of
specification of the tasks and of the planning method to plan
the motion to realize them. In the resulting motion, inter-
leaved manipulation and locomotion should emerge with no
prior high-level distinctive formulation. See Fig. 1.

The methodology chosen is to capture the locomotion
and manipulation problems into the the lowest possible
configuration spaces’ dimension. The systems are only the-
oretical planar academic examples but we believe they are
still pertinent enough to illustrate our point. As such, this
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paper is primarily focused on this theoretic and conceptual
level and the extension to the above-mentioned humanoid
problems is beyond its scope. The three systems we chose
are representative of the three categories of robots we
mentioned earlier:

— one exclusively locomotion-oriented system,

— one exclusively manipulation-oriented system,

— one hybrid locomotion-and-manipulation
system.

(L&M)

We then investigate two main existing motion planning
methods from the literature applicable to our systems:

— a geometric path planning approach based on a reduc-
tion property proved initially in [1] and used in a
randomized planning algorithm in [41];

— a control-theoretic BVP (Boundary Value Problem)
approach for kinematic systems based on a control-
lability theorem proved in [21] and a BVP resolution
algorithm developed in [22].

The first approach deals directly with the obstacle avoid-
ance problem. The second is more adequate for dealing with
the velocity constraints and nonholonomy which may not
translate directly into geometric terms. To make our study
complete and self-contained, we also tackle the dynamic
trajectory generation problem along the geometric paths
resulting from these motion planning algorithms, using the
works of [42] and [7] as a basis. We derive a time-optimal
open-loop torques control law that realizes a given contact
motion.

Taking each one of these three motion planning and con-
trol techniques, we first apply it the locomotion system,
then we show formal equivalence with the manipulation
system, before finally extending it to the locomotion-and-
manipulation system, which is the main contribution of this
work.

Following this methodology, the rest of the paper is struc-
tured as follows: Section 2 introduces the three robots we
study with their configuration spaces, Section 3 applies
the geometric path planning approach to our motion plan-
ning problem, Section 4 uses control theory for solving the
motion planning problem seen as a BVP, finally Section 5
synthesizes time-optimal control law that realizes the geo-
metric paths provided in previous sections. Each of these
sections is divided into three subsections: one for the loco-
motion robot, one for the manipulation robot, and one for
the locomotion-and-manipulation robot.

2 Systems

Throughout this paper, we thoroughly study three low-
dimensional planar mechanical systems:
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Fig.1 Overview of the

System
approaches
Locom. task Locom. motion .
EEE—— Locom. planner dedicated
L . t
ocom. componen —| final L&M motion
Manip. task Manip. motion . J
—_— Manip. planner dedicated
Manip. component
(a) The existing decoupled approach.
System
Locom. task
. L&M . J final L&M
high-level L&M task L&M motion integrate . motion
common Locom. and Manip.
N . planner .
Manip. task formulation components
B ————

(b) The proposed non-decoupled approach. The L&M abbreviation stands for Locomotion-

and-Manipulation

—  Ry:alocomotion robot
—  R»: a manipulation robot
—  R3: alocomotion-and-manipulation (L & M) robot

We have chosen these robots for they have the lowest-
dimensional possible configuration spaces but yet can
capture higher dimensional locomotion and manipulation
related concepts. This low dimensionality allows visualiz-
ing the configuration spaces in 3D at the expense of simple
projections and homeomorphisms. The other purpose of
these low-dimensional planar systems is to have explicit
analytical expressions for our problems and their solutions.

For all these systems, C denotes the configuration space,
also known as the “C-space”. A configuration is denoted
q € C, q is the generalized coordinates vector of the system
[38]. An important mathematical property in our study is the
fact that C is a smooth manifold. This makes it suited for
being described inside the framework of differential geom-
etry theory [26]. Velocities g are as such elements of the
tangent spaces and generalized forces are elements of the
cotangent spaces.

We can classify all the possible forms that the C-space
can take for systems commonly considered in robotics. A
free-flyer yields the manifold SE(3) = SO(3) x R? (semi-
direct product). Let S" be the n-dimensional sphere. A
revolute joint yields the manifold S', a spherical joint yields
S3. Let T" = (S')" be the n-dimensional torus. A pris-
matic joint yields the manifold R. In most robotics systems
the configuration space C is a Cartesian product of a given
number of these elementary smooth manifolds, thus it is a
smooth manifold.

Let O be the obstacle region in the Euclidean workspace.
O is a compact subset of R2. Let Cyps be the image of O
in the configuration space, consisting of all configurations

where the robot collides with O. Cops is a compact subset of
C [33]. Let Cree be the subspace of C consisting of all con-
figurations that are not in collision with obstacles, within the
joint limits, and not in self-collision. Cgee is an open subset
of C [33]. Studies such as [4] are concerned with the com-
putation of explicit representation of the frontier of Cops in
particular cases, for instance polygonal robots and obstacles
in planar world.

We now detail the models and notations for each of the
three robotic systems.

2.1 Locomotion Robot

The robot R is made of a sliding base along the x-axis and a
two-link planar manipulator linked with two revolute joints,
see Fig. 2. Two actuators control the two revolute joints; the
sliding joint is passive, i.e. not actuated and frictionless. The
sliding of the base along the x-axis can be performed by
using friction of end-effector’s rubber on the ground.

The configuration space of the system is

C=RxT? 1)

(z,v)

/77

Fig. 2 R; and its configuration variables. Rectangles symbolize a
prismatic joint while circles represent a revolute joint
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Fig. 3 Embedding the C-space
in R3. The blue part represents
Ciree, the red part is C \ Cree.
Left: T? embedded in R3.
Middle: Free part of T2
embedded in R?. Right: Adding
the & dimension

On the manifold C we use the following coordinates chart
(€, 01, 6,) € R3. We denote by (x(g), y(g)) the end effec-
tor coordinates in the (x, y)-plane. We do not take into
account self-collision of the robot. There are no joints lim-
its. [ denotes the length of the two links. The robot is not
allowed to traverse the ground, thus:

Cfree = C\Cobs
={geC|ln>60>0andm >26;+6, >0} (2)

The 2-dimensional torus T? is naturally embedded in
R3, which means that C is embedded in R4, thus Chree 1S
also embedded in R*. However, a projection trick makes it
embedded in R3. We simply notice that the projection of
Ciree ONto T2 is a 2D manifold which is homeomorphic to a
subspace of (0, ) x S! and thus Cpree is homeomorphic to
a subspace of R x (0, ) x S! which is naturally embedded
in R3. See Fig. 3.

The 3D representation of the C-space of R allows for
an explicit representation of Cops for any obstacle O for
which the frontier is a parameterized 2D curve 00 : p +—
(xo0(p), yo(p))). This parameterized curve would be for
example the circle that represents the frontier of the circular
obstacle in Fig. 11a.

First let us consider a point obstacle O located at the
(x0, yo) coordinates. The configurations g that make the
robot in collision with O can be computed by giving the
inverse kinematics solution for the end-effector of a copy

Fig. 4 Components of Cops for
a point obstacle for the robot R

robot of Ry, but with the second link having a parameter
length A. Then we make A vary in [0, /], and we get all
the configurations ¢ that make the second link of the robot
collide with O. We use the same method by removing the
second link, vary the length of the first link, and compute
inverse kinematics for this robot, which gives us the second
component of Cops. See Fig. 4.

Now for the full obstacle represented by a parameterized
curve 00 : p — (xo(p), yo(p))) we apply the method we
have just described by varying the parameter p.

2.2 Manipulation Robot

The robot R is a standard two-link planar manipulator fixed
to the ground, manipulating a sliding object. See Fig. 5. The
manipulated object is pictured in red; it consists of a the-
oretically infinitely long sliding platform. The manipulator
has to put its rubber end-effector on the platform and use
friction force to push or pull the object.

The configuration space of R; is the same as R;

C =R xT? 3

However we use a different notation for the coordinates
chart («, 61, 62) where o denotes the horizontal position of
any reference point on the red sliding base. Similarly to Ry,
we consider no self-collision, no joint limits, and Fig. 3 pro-
vides a 3D visualization of R,’s C-space (in the caption read

Configurations that bring the first link in collision

Configurations that bring the second link in collision

Projection of the C-space on the £ = 0 plane

@ Springer
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Fig. 5 R; and its configuration variables. Joints symbols are the same
as Fig. 2. In red the infinitely long sliding platform

“adding the o dimension” instead of “adding the & dimen-
sion”). The only difference with R; is the representation of
the obstacle region in the C-space, which is basically the
Cobs Of a standard two-link manipulator, as detailed in the
following paragraph.

To get a parametric representation of Cops We use the
same trick that we introduced in the computation of R;’s
Cobs. For a point obstacle (xp, yo) we compute the inverse
kinematics solution of a robot similar to R, but varying the
length of the second link as a parameter A € [0, /], then we
extrude in the o dimension (given that the obstacle region
does not depend on the position of the sliding base), we thus
get a first component of Cops as a 2D submanifold of C. The
second component comes simply from removing the sec-
ond link and computing the trivial inverse kinematics of a
one-link robot, which reduces to a constant 6;. See Fig. 6.

For an obstacle given by a parameterization of its contour
p = (xo(p), yo(p)), we directly add p as a third parame-
ter of our manifold, and we get the representation depicted
in Fig. 7 for a circular obstacle for example.

2.3 L & M Robot

The robot R3; combines R; and R;. It is made of slid-
ing two-link planar manipulator manipulating an infinitely

(a) Cobs,1, correspond-
ing to the configura-
tions that bring the
second link into colli-
sion with the circle.

2
é
Z
/
.
%
7
7

(b) Cobs,2, correspond-
ing to the configura-
tions that bring the
first link into collision
with the circle.

(a) Cobs,1, correspond-
ing to the configura-
tions that bring the
second link into colli-
sion with the point.

(b) Cobs,2, correspond-
ing to the configura-
tions that bring the
first link into collision
with the point.

Fig. 6 Components of Cops for a point obstacle for the system Ry

Fig. 7 Components of Cops for a circular obstacle for the system R,

long sliding platform. See Fig. 8. Its configuration space
is

C=R>xT? 4)

It is a four-dimensional smooth manifold that cannot be
embedded in R?, this time. We skip the representation of
the C-space and its obstacle region but we come back to
this issue later (Section 3) as we restrain to a special 3D
submanifold of the C-space.

3 Geometric Motion Planning Approach

The systems introduced in the previous section are underac-
tuated systems. We can geometrically visualize this under-
actuation as a foliated stratification structure in the C-space.

3.1 Locomotion Robot

First let us consider the robot R;p. Its configuration space
R x T2 is stratified into two different strata, see Fig. 9. The
first stratum Sy (zero contact) corresponds to the situation
in which the end-effector is not in contact with the ground.

/77

Fig. 8 Rj3 and its configuration variables. Rectangles symbolize pris-
matic joints and circle represent revolute joints. The infinitely long
sliding platform is pictured in red

@ Springer
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(a) So represents the (b) &-foliation of S
interior of the blue re-
gion
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(c) The stratum S; (d) z-foliation of Sy

Fig. 9 The strata Sp, S; and their foliations for the robot R

It is a submanifold of C made of all the corresponding
configurations

So ={(§.01,62) e Rx (0, 7) x [-m, 7] |62 > =261} (5)

The second stratum S; (one contact) is the submanifold cor-
responding to all configurations that bring the end-effector
in contact with the ground. It is a 2-dimensional submani-
fold of C

S1={(§,01,62) € R x (0, 7) x [-7, 7] | = =26} (6)

On this submanifold we use the coordinates chart (&, ;)

§=¢
S1:48 0, =6 @)
6, = =260,

Each of these two strata is foliated into a continuum of
leafs. A leaf is a submanifold of the stratum in which the
robot is fully actuated. A single leaf of Sp corresponds to
a fixed position of the base &, meaning & = constant. We
call this foliation the &-foliation, and for a given & € R we
denote the corresponding leaf Qp ¢

Qo.e =1{(5,01,02) | (01,62) € (0, )
x[—m, ] and 6, > —260,} ®)

@ Springer

On Qo ¢, Ry can move its two links freely in their workspace
but does not slide. A single leaf of S corresponds to fixed
position x of the end-effector on the ground, i.e. x =
constant. We call this foliation the x-foliation. For a given
x € R we denote the corresponding leaf Q;

Qix ={(,61,00) e Rx (0, 7) X [-7, 7] | 62
= —20;and & 42/ cos(0;) = x} 9
or, using the parameter 0 as coordinate chart,

& = x—2lcos(0))
0, = 06,
6 = =20

On such a leaf the robot takes fixed support on the ground
and the applied torques result in the sliding of the base.

The purpose of geometric motion planning is to plan
a continuous path in the C-space from an initial point to
a destination point avoiding the Cops region. However in
our foliated structure the actuators can only make the robot
move smoothly along an isolated leaf of the C-space, so
the only valid paths should be made of a finite succes-
sion of elementary paths along single leafs. This makes
the classical techniques of exploring the C-space [15, 33,
35] not directly applicable to our motion planning prob-
lem. However, authors in [41] provide a way to overcome
this foliation structure and reduce the problem to a classical
motion planning problem in a non-foliated C-space.

In [41], a manipulation path through the C-space is
defined as a sequence of transit paths and transfer paths.
A transit path is a path in which the object lies at rest on
the ground not being manipulated while the manipulator
moves freely in its workspace. A transfer path is a path
in which the manipulator is grasping the object at a fixed
grasp location and the object is “stuck” to the manipulator
end-effector. These two kinds of paths are paths along two
different strata of the configuration space, respectively the
object-stable stratum and the object-grasped stratum. The
uncountable infinite stable positions of the object resting
on the ground define a foliation of the object-stable stra-
tum, and the uncountable infinite positions of grasps of the
end-effector on the object define a foliation on the object-
grasped stratum. As shown above, our robot R; fits directly
inside this problem formulation. Following the manipula-
tion planning terminology, we call a path through a leaf of
So a transit path and a path through a leaf of &) a transfer
path. See Fig. 10.

The planning approach developed in [41] is the follow-
ing: uncover the different connected components of &1 N
cl(Sp) as if there was no foliation structure' (this is done
by building a roadmap and connecting the nodes with linear

Qux: 10)

In the remaining of this paper, we denote by Sy N cl(S;) the stra-
tum S; endowed with both the foliation of S; and the foliation of Sy
extended to its topoligical closure, denoted cl(Sp).
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(a)  Transfer (b)
path in S1

Transit path

Transfer path

Transit (c)
path in Sg sit

Transfer path

(d) Valid path in the operational space

Fig. 10 Types of paths for the robot R

edges thus violating the foliation structure), then try to con-
nect these different components using only transit or trans-
fer paths. In a post-processing step, The reduction property
allows us to transform any collision-free path of S; N cl(Sp)
into a finite sequence of transfer and transit paths. This
reduction property has first been proved in [1]. The fol-
lowing works (e.g. [40, 41]) based on this property usually
assume that the extension of the property is straightforward
in their particular problem. However, we believe that the
property takes a very specific form in each particular prob-
lem and thus needs to be proven on a case-by-case basis,
inspired by the general principles of the initial proof. We
follow this approach in this section. Moreover, only a con-
structive proof is candidate to be used as an actual motion
planning algorithm. For similar reduction-property-based
planning approaches, see [25].

Figures 11 and 12 represent the foliation structure on SpN
S1. The representation of the obstacle region in Fig. 11 uses

the technique presented in Section 2. Fig. 12 illustrates the
application of the reduction property in a simple case.
Problem 1 Given (ginitial, ¢final) € szree find N € N, a
sequence (k;)i=1..n € {0, I}N, a sequence (¢i)i=1..N €
RY, and a sequence of continuous paths p; : [0,1] —
Qk;.¢; N Chree, such that po(0) = Ginitial, Py (1) = Gfinal, and
Vie{0,...,N —1} pi(1) = pi+1(0).

Proposition 1 If there exists for Ry a collision-free path in
unfoliated Sy N cl(Sp) from Ginitial 10 Grinal then there exists a
finite sequence of transfer and transit paths that links ginitial
and dfinal-

Proof The two foliations of S1 N cl(Sp) can be respectively
represented by the two families of functions (fy)yer and
(gp)per (where o and B are formally bound variables),

@ Springer
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Fig. 11 Example of an obstacle
and its mapping in the foliated
spaces

0,6
0,3

-0,1

(a) A circular obstacle in the operational

space.

defined for any real value ¢ € R and any real value 8 € R
as:
Ja:(0,m) > R

b1 > &= fo(0) =«
which represents the horizontal foliation (the &-foliation)
and where « represents the fixed position of the base, and

(1)

gs:(0,7) - R
01 — & =gg(61) = —2 cos(61) + B

which represents the curved inclined foliation (the x-
foliation) and where S represents the fixed position of the
contact tip.

For more convenience in the notations we replace the
(61, &) coordinate chart notation on Sg N S; by the more
usual plane coordinates (x, y). We also denote C = (0, ) x
R as our ambient metric space, and the obstacle region O

12)

Fig. 12 Tllustration of the 129
reduction property. In the first
figure the black vertical linear

————— 6,

(b) The obstacle region in the foliated SoN
&1 in represented in red. The blue foliation
is the &-foliation, the green foliation is the
z-foliation.

which is a non-empty compact (ie. closed and bounded)
subset of C. The complementary set of O that we denote
O¢ = C \ O is an open subset of C. The distance between
two subsets A and B of C is defined as:

d(A,B)= _inf da.b) (13)

The two foliations on C are now represented by the two
families of functions: fy(x) = @, @ € R and gg(x) =
g(x) + B, B € R where g : (0,7) — R is a continuous
strictly increasing function.

In our demonstration we first consider the case of
an initial vertical path. Let p, [0,1] — OF° be a
normal parametrization of our vertical path (arc-length
parametrization) from the bottom extremity, i.e. p,(t) =
(x0, o + t - I) where [ is the length of the path. Let
Tr(py) = {pu(t) | t € [0, 1]}. Since Tr(p,) and O are two

path in the left of the figure

violates the foliation. In the

second figure the path is 8

deformed in order to comply

with the foliation

(a) Original path (black vertical path on

the left)

@ Springer
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non-empty compact subsets of C, their distance is finite:
d(Tr(py), O) < 4o00. Since they are closed sets with empty
intersection Tr(p,) N O = & their distance is strictly
positive d(Tr(py), O) > 0. Lete = d(Tr(pT”)’O).

We now give a recursive construction of a finite sequence
of collision-free transit paths and transfer paths that links
(x0, yo) to (xo, yo +1).

From the foliation definition, we know that 38y €
R | gg,(x0) = yo. Let By be the closed ball of center
(x0, yo) and of radius e. From the construction of ¢ we
have By C OF¢. Let y = a(x) be the equation of the
closed upper right quarter circle boundary of By. We have
a(xo) = gp,(xo0)+¢& > gp,(x0) and gg, (xo+&) > gg,(x0) =
a(xo + ¢). The intermediate value theorem applied to the
continuous strictly increasing function gg, —a (a being con-
tinuous strictly decreasing function) gives us a unique point
(x(, y1) of intersection between the graphs of gg, and a such
that (x;, y1) € (x0, X0 4 &) x (Yo, yo + &). Because of By
being strictly convex, the horizontal line segment between
the points (x;, y1) and (xo, y1) is inside By. Let g = y1.
Finally we have constructed a sequence of two paths

Transfery : [xo, xy] — O°

x > (6, g (1) 14

and

Transity : [—x;, —xo] — O°

x 5 (=, fuy (=) (15

that link (xg, yo) to (xo, y1). Letd = y; — yo. d > 0 from
the above definition of y;. Let N = Léj. Repeating the
previous procedure from the point (xg, y1), we recursively
define a sequence of points along Tr(py), (X0, Yn)o<n<n
where y, = yg + nd and the corresponding sequences
of paths (Transfer,, Transit,)o<,<ny—1 that link (xg, y,) to
(x0, Yn+1). To end the recursion, Let yy4+1 = yo + [ and
Xy = &g, ]\} (yN+1)- The last transit and transfer paths of the
sequence are defined as:

Transfery : [xy, x)] = O°

x o (x, gy (1) (16)

and

Transity : [—x}, —xy] — O°

Xt (= fuy (=) a7

Finally, the sequence (Transfer,, Transit,)o<,<n link the
initial and final point of our vertical path p,, which ends the
first part of the demonstration.

Let us now consider a given non-necessarily vertical path
from (xo, yo) to (xr,ys), p : [0,1] — O°. We suppose
that p is a normal (arc-length) parametrization, otherwise
we can re-parametrize under the condition that p is regular,
meaning that V¢ € [0, 1], p(z) # (0, 0). Let [ be the length
of the path.

We first show that we can find a finite sequence of
collision-free vertical and horizontal paths that link (xq, yo)
to (x 7, yr). Once again we define ¢ = M. Let N =
min {n e N| % < 8}. We define the sequence of points
along Tr(p), (xn, Yn)o<n<n such that (x,, y,) = p(%), for
0 <n < N.Now foreach0 < n < N — 1, we define the
following sequence of horizontal and vertical paths:

Horizontal,, : [x,, xXpq1] = O°

x o (5, ) (18)

and
Vertical, : [yu, yut1] = O°
y = (Xn+1,y)

(the notations of the intervals above depends on the rela-
tive ordering of x, and x,41, and of y, and y,+1). Note
that [(x, ¥n), (Xn+1, Yu+1)] is the hypotenuse of the tri-
angle (xp, yn), (Xn+1, Yn)s (Xn+1, Ynt+1), so the length of
the two paths above are less than the length of the chord
[(xns Yn)s (Xn+1, Yn+1)], which is less than the arc-length
from (x,, yu) t0 (Xp+1, Yn+1), Which is by construction
equal to % < ¢. This means that the two sequences of paths
Horizontal,, and Vertical,, are effectively included in O°¢, ie.
are collision-free.

All in all, we constructed a finite sequence of collision-
free vertical and horizontal paths from ginitial t0 gfinal- Each
horizontal path is already a transit path. Each vertical path
can be decomposed using the first part of this demonstration
in a finite sequence of transfer and transit paths. This means
that we constructed a finite sequence of transfer and transit
paths that link gipiia1 and gfinal- O

19)

3.2 Manipulation Robot

All the development provided in the previous section for
R; is strictly valid for R, modulo some slight changes of
referential and notations. The system being a manipulation
system, the terminology in [41] applies now directly to R».

To adapt the development of the previous section from
R1 to Ry we first need to replace all the occurrences of &
by «. For example, we call a-foliation instead of &-foliation
for Sp. For a fixed « € R, aleaf Q , of this foliation corre-
sponds to a fixed location of the sliding platform while the
manipulator moves freely in its workspace.

For the stratum &) the foliation should correspond to
the different possible locations of the contact point which
be fixed in the inertial frame of the sliding platform. So
we introduce a new variable 8 = « — x (see Fig. 13a)
which becomes the new co-parameter of Sy foliation, that
we call the B-foliation (instead of the x-foliation for Rp).
See Fig. 14. For B € R, aleaf Q; g is written as

Ql,ﬂ = {(a791792) € R X (0,7T) X [—7T,7T] | 92
= —2601and 2/ cos(01) + B = «} (20)

@ Springer
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Fig. 13 The B variable o | a 1
1 1
T ! 2,1 ad : s !
— ' o
) 1 _6) | 1 !
1 : | | :
1 | 1 ! )
7777 7777
(a) R2 (b) R3

or, using the parameter 6; as coordinate chart,

o = B+ 2Ilcos(0r)
Qip:3 01 =0
6 = —26;

@1

Proposition 2 [f there exists for R a collision-free path in
unfoliated S| N cl(So) from Ginitial 10 Gfinal then there exists a
finite sequence of transfer and transit paths that links ginigal
and gfinal.

Proof For R;, the two foliations of S| N cl(Sp) can be
respectively represented by the two families of functions:

Su:O,m) =R

01 — a = f,(61) = constant = p, (22)

uneR
which represents the horizontal foliation (the «-foliation),
and

gU:(Ova) _)R

01 — o =g,(01) =2cos(@1) + v, (23)

velR
which represents the curved inclined foliation (the S-
foliation).

The argument used in the proof of Proposition 1 was
that the function g is a strictly increasing function which

)

S~
‘/ NN\

/
%
/
¢
/
//
/
/
g‘
/

(a) The stratum Sy of
Ry

Fig. 14 The stratum S and its foliation for the system R;

(b) B-foliation of Sy

@ Springer

allowed us to apply the intermediate value theorem. Actu-
ally, we only need strict monotony to reach the same
conclusion. In our present case the corresponding function
g is strictly decreasing, so the proof of Proposition 1 is valid
for Proposition 2. O

3.3 L & M Robot

We now consider the robot R3. Similarly to R, we define
the variable 8 = o — x as pictured in Fig. 13b.

The configuration space of the robot is 4-dimensional
R2 x T2 parametrized by (£, 01, 62, o). We still have only
two actuators at the revolute joints, therefore the degree of
underactuation is 4 — 2 = 2. However, we also still have
only one possible contact force to resolve the underactuation
and reduce its degree by one. One possible way of resolving
the last remaining degree of underactuation is to add a dis-
crete switching control variable uy € {0, 1} which allow us
to either block the manipulator’s base and release the slid-
ing platform (case u; = 0) or release the manipulator’s base
and block the sliding platform (case ug = 1).

Using the terminology of hybrid control theory, we con-
sider the following discrete “states” of the robot:

—  The free mode. The manipulator’s base and the sliding
platform are fixed, i.e. £ = constant and @ = constant.
This defines a first state in which the manipulator’s
links (61, 82) move freely in their workspace.

—  The manipulation mode. The manipulator’s base is fixed
and the end-effector is in contact with the sliding platform at
fixed position in the platform’s frame, i.e. £ = constant
and B = constant. This defines a second state in which
the manipulator pushes or pulls the platform.

—  The locomotion mode. The sliding platform is fixed and
the end-effector is in contact with the sliding platform at
fixed position in the platform’s frame, i.e. « = constant
and B = constant. This defines a last state in which the
manipulator pushes or pulls itself.

We still have two strata: So = C and S : 6, =
—20;. However, S is now a three dimensional submanifold
on which we use the coordinate chart (&, «, 61). The two
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theta[1]

alpha

Fig. 15 The foliations of the three strata for the system R3. In blue
(thick dots) the (B, &)-foliation, in red (thin dots) the (o, B)-foliation,
in green (vertical solid lines) the («, &)-foliation

states—Ilocomotion and manipulation—are both defined in
the stratum S; and represent two cross foliations of the same
stratum at the same time.

We thus get three foliations, one on Sy and two on Sy,
that we can visualize in Sop N S as represented in Fig. 15:

— On &y we define the (o, £)-foliation and the leafs Qp o ¢
in green (vertical lines) on Fig. 15. A path along one of
these leaves called a free path.

— On &1 we define the (B8, &)-foliation and the leafs
Q1 p,¢ in blue (thick dots) on Fig. 15. A path along one
of these leaves called a manipulation path.

— On S| we define the (o, B)-foliation and the leafs
Q> o p in red (thin dots) on Fig. 15. A path along one of
these leaves called a locomotion path.

Proposition 3 If there exists for R3 a collision-free path in
unfoliated S1 N cl(Sp) from Ginitial 10 gfinal then there exists
a collision-free finite sequence of free, manipulation, and
locomotion paths that links qinitia1 and gfinal-

Proof Let us consider the 3D Cartesian space R2 x (0, 7)
provided with the system of coordinates («, &, 1) in which
we consider a compact subset O and the families of func-
tions

fup:(0,m) - R3

o
0 — 3 B—2cos(0;) o,BeR 24
01
which represents the red (thin dots) foliation,
gpe:0,m) — R3
B + 2 cos(6y)
o | & peer &
01

which represents the blue (thick dots) foliation,

hes:(0,m) — R3
[07

O~ 1§
01

o,EeR (26)

which represents the green (vertical lines) foliation.

First, we prove that any collision-free path parallel to
the o axis can be decomposed into a finite sequence of
collision-free paths along the foliations. Let that a-parallel
path be defined by 6; = 61, and § = &p. The foliations
(88,50)p and (hq g,)o represent two foliations in the affine
plan & = &, one strictly decreasing and one constant, for
which we can directly apply Proposition 2. Thus, in that
affine plan £ = &j, we can decompose the a-parallel path
into a finite sequence of blue and green paths.

Similarly we prove that any collision-free path parallel
to the £ axis can be decomposed into a finite sequence of
collision-free paths along the foliations. Let that £-parallel
path be defined by 6; = 6y, and o = «g. The foliations
(fao,8)p and (hy,¢)e represent two foliations in the affine
plan ¢ = «g, one strictly increasing and one constant, for
which we can directly apply Proposition 1. Thus in that
affine plan ¢ = «g we can decompose the &-parallel path
into a finite sequence of red and green paths.

Any collision-free path parallel to the 6 axis is already a
green path in the foliation.

Now extending the same method that we used in the
proof of Proposition 1, we can prove that any collision-free
path in Sy N S; can be decomposed in a finite sequence of
collision-free paths parallel to the axes ¢, & and 6;. O

One important remark has to be made at this point. The
motion that we get by this planning is a succession of iso-
lated locomotion and manipulation motions, with either ¢ =
constant or & = constant. However, we can plan a motion
in which both « and & are varying simultaneously, which
would be equivalent to a locomotion-while-manipulating
conceptual motion. This can be done simply by replacing
one of the two foliations on S; with a new foliation. Let
us call it the (A1, Ap)-foliation, A1 + A, = 1, for which
we write a condition Ajo + A6 = constant replacing
one of the conditions ¢ = constant or & = constant.
The (A1, A2)-foliation replacing one of the previous two on
S1 makes it still possible to explore all the foliated space
using the reduction property. Moreover, adding the (A1, A2)-
foliation to the set of the previous three adds redundancy
in the system and gives multiple solutions for the motion
planning problem. Thus, it is also possible to synthesize a
locomotion-while-manipulating motion.

Let us call a path through the (A1, Ap)-foliation a
locomotion-while-manipulation path. The previous remark
translates into the following corollary:

@ Springer
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Corollary 1 If there exists for Rz a collision-free path in
unfoliated S1 N cl(Sop) from ginitial 10 gfinal then there exists

— a collision-free finite sequence of free, manipulation,
and locomotion-while-manipulation paths that links
Ginitial and qfinal.

— a collision-free finite sequence of free, locomotion, and
locomotion-while-manipulation paths that links ginitial
and gfinal-

— a collision-free finite sequence of free, locomotion,
manipulation, and locomotion-while-manipulation
paths that links Ginitial and qfinal-

4 Kinematic Control-Theoretic Approach

In the previous section we have seen the underactuation
of the robots as foliations in the C-space along which we
need to cruise in order to reach our goal. In this section,
we rather see this underactuation as a non-spanning distri-
bution of control vector fields, our robots being considered
as driftless stratified kinematic control systems. We strongly
advise the reader to refer to the two main references [21] and
[22] since all what follows builds on their result. The refer-
ences [ 14, 32] can also prove useful for the reader unfamiliar
with mathematical tools for nonholonomic motion planning
(especially, the notions of Lie Brackets, distributions asso-
ciated with control fields, Philip Hall basis of a Lie Algebra,
formal exponential).

4.1 Locomotion Robot

First let us consider the robot R;.

The aim here is to generate a trajectory (time and space)
(as opposed to path, i.e. only space, produced in the previ-
ous approach) using nonholonomic control techniques but
without explicitly taking the obstacles into account. How-
ever, the philosophy remains the same: planning a sequence
of transfer and transit trajectories in S; N cl(Sp).

For this, we first need to model R; as a kinematic control
system. Our kinematic control inputs are | = 91 and up, =
6. No control input directly controls &.

The system is stratified in the sense defined in [21]. If we
denote by & € ¥°°(C) the function that maps every config-
uration g € C to the height of the end effector h = ®(g) =
v(q), then we can redefine So = C as the top stratum and
S = ¢! ({0}) as the bottom stratum. We have the trivial
inclusion chain §§ C Sy .

Two different equations of motion are acting on the two
strata:

@ Springer

— On &y, the base is fixed and we can write

d & 0 0
o O =11 ur+1]0|up 27
"\ o, 0 1

— On 8y, the end effector is fixed as we consider a non-
sliding contact, and thus the equation of motion is

written
d & 21 sin(07)
T 0 | = 1 uj (28)
! 6> -2

We can rewrite those two equations using the formalism
of driftless control theory [36]. Let x = (&, 61, 0:)T denote
the state of our kinematic system (Note: for the remaining of
this section x denotes the state of the system as usual in con-
trol theory and not the x-coordinate of the end-effector). Let
go.1(x) = %, g0.2(x) = % be the two control fields act-
ingon &y and g1,1(x) = 21 sin(@l)% + % —23372. Then our
stratified driftless system is modeled by the two equations:
X = go,1()ur + go2(x)uz , x €Sp 29)
X =gr1(x)u , X €S

Let us study the controllability of our system.

Proposition 4 The underactuated kinematic control system
Ry is small time locally controllable in int(Cyee)

Proof We consider xo € S| an element from the bottom
stratum. Let

As,lxy = span{go,1(x0), 0,2(x0)} 30)
As, |xy = span{gy,1(x0)}

be the distributions associated with the control fields of each
stratum and Ag, |y, and Ag, |y, be their involutive closure
under Lie Bracketting. Since [go,1, g§0.2] = 0 we have

A:So|xo = span{go,1(xo0), go,2(x0)} 31

A, |xy = span{g1,1(x0)}

Therefore, for each xo € Sy such that 6; # kx

Asylxo + As, lxo = span{go,1(x0), g0,2(x0), g1,1(x0)} = T,C (32)

and thus following the controllability theorem of [21] the

system is small time locally controllable from x. O
Now let us address the issue of gait controllability. We

consider the cyclic gait

g = (S1, S0, S1) (33)

in which the robot alternatively lifts its end-effector off the
ground and then put it back on the ground.
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Proposition 5 R, is gait-controllable with the gait G.

Proof We construct the gait distribution as follows:

Dl = A_S1 |X()_
Dy =Di1+ Asylxy = TxoC (34
D3 = (D2 N Ty S1) + Asylxg

We can parametrize S; by the equations

§ =§
Sl . 91 = 91 (35)
6, = =26

which allows us to write

o 0 0
T S1 = —— —2— 36
xO1 = Span { 08 96, 392} (36)
We can see that g1,1(xg) € Tx,S1 and thus D3 = Ty, Sy
meaning that dim(D3) = dim(7,S1), which proves, fol-
lowing [21]’s result, the gait controllability of G. O

We want now to plan a motion from an initial state
Ginitia = (&, 01,, —201,)7 € S) to a goal state gfina =
&y, Hlf, —26’1f)T € 8. To do so, we first construct a strat-
ified extended system on S by constructing a vector field
from Ag, that is tangent to ;. The vector field we consider
hereis g1.2 = 80,1 — 2802 = 2.9 5o that our system

30, 30,°
becomes, on the bottom stratum Sy :

X =gr1(®)u1 + gr2(x)uz (37)

We then extend the system by adding a vector field from the
Lie Algebra of the two control fields we now have on S; to
better condition the system. We get the following stratified
system on Sy:

X = byvy + byvy + b33 (38)
where

b1 =g11

by =g12€ As5,NTS (39

by = b1, ba] = 2 cos(601) 3

We then solve this system for the fictitious inputs vy, va, v3
given a straight line trajectory linking ginitia1 and gfina:

y (@) = (ve (), vo, (1), =20, ()" (40)
where

ve(t) =& + Aé.t
Vo, (1) =01, + Aby.t

A§ =&f — &
Aby =61, — 6y

(4D

i

meaning that we solve

y(@) = bi(y @)vi + ba(y (1)va + b3(y (1))v3 (42)
which requires pseudo inverting a matrix

as 2sin(ye, (1)) 0 2l cos(yo, (1) /vy
< A6, >= i 1 0 (vz)(43)
—2A6; -2 -2 0 U3

One solution for this system is

v1 (1) 0
n) | = A6, (44)
vi(t) T cos(re )

given these inputs we solve the formal ordinary differential
equation in a backward Philip Hall? basis of the Lie Algebra
generated by by, b>, b3 (which happens to be (b1, by, b3))

S(t) = S(t)(brvi + byva + b3v3) (45)
for which we search for a solution of the form
S(t) = 13 (0b3 Jha (b2 1 (1)by (46)

by expanding the formal exponentials to second order (e.g.
2

eMOby = [ 4+ hy(t)by + hTI(t)b% + - - -, where the terms of

the form bf‘ are partial derivative operators (and not vector

fields), and by equating the resulting coefficients of the b;’s
in (45), we get the set of equations for the /; functions:

hi(1) = vy
ho(t) = v @7)
h3(t) = hi(t)v2 + v3
with the initial conditions 4; (0) =0 fori =1, 2, 3.
Integrating those equations gives us the “durations” for
following each flow of the control field:

hi(1)=0

ha(1) = A6, (48)
_ _4A¢ 1

h3(1) = A6 In '—Cos(glf) —i—tan(@lf)

if AB; #£ 0, or

hi(1)=0

hy(1) =0 49)

FOES

if A6; = 0.

Let’s consider the case A6 # 0.

If we denote ¢f " as the flow associated with the field
b;, the solution should thus be: follow d),b ' for t = Os,
then follow ¢”* for t = A@s, then follow ¢* for 1 =

Zhttp://planning.cs.uiuc.edu/node834.html
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21AA$91 In |W +tan(0; ,)|s. However, the flow associated
with b3 = [bl, b>] starting from xo could be rewritten, for
t>0:

1621 3 :¢—t ¢—b' o¢” o¢ _(x0) + O(1)  (50)

Finally, let us denote cu; the command consisting in let-
ting u; = 1 for o seconds if « > 0 and u; = —1 for
—a seconds if ¢ < 0, and denote two successive controls
by the overloaded concatenation operator o as in [22]. We
denote control laws as functions s mapping time to the con-
trols s : t — (u1(t), uz(t)). More formally, the notation
s = aquq o apun will denote the control law

(1), u20) = (sen@), 0), 0= 1 < e

(51
(10, u200) = (0,5gn(@)), | < 1 < Jau| + faz|

st
where sgn denotes the sign function.

Hence, using these notations for our motion planning
problem, we get our final sequence of commands (suppos-
ing for example that A > 0):

A
=0 A 1 tan(0 ,
$ = 0moatune e ™ coser,y TN
X (11 oupo—uyo—up) (52)
applied to the flows
2 (%0 + cos(0y,) — cos(t + 910))
7' (x) = (53)
r \A0) = t + 6,
—2(t + 61,)
and
) )
;o (x0) = r+0y, (54)
—2(t + 61,)

In the case A9; = 0 the solution is simply

_ |Ag 55
§ = 7(ulouzo—ulo—u2) (55)

The solution is pictured in Fig. 16 in which the red curve
represents the final output for an initial trajectory that is the
black vertical line from O to 10.

Note that we do not reach the goal exactly, but with a
bounded error [22, 32]. The bound on the error allows us
to reiterate this algorithm from the reached state as a new
initial state until we reach the goal with a desired precision.

4.2 Manipulation Robot
For R, we have similar properties to R;. We just need to
replace the variable £ by the variable «. So let us consider

the coordinate chart (¢, 81, 82) in our configuration space
manifold.
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Fig. 16 Solution in the (¢, 01) plan. The horizontal axis is the & axis
and the vertical axis is the The initial trajectory is the 0; axis. the thick
black vertical segment drawn on & axis. The resulting solution is the
red trajectory. In blue the g 2 control field, with its integral curves in
yellow. In purple the g;,1 control field, with its integral curves in green.

The equations of motion that are acting on the two strata
are as follows:

— On &y, the platform is fixed and we can write

d ¢ 0 0
T O l=11ur+1]0|up (56)
"\ 6, 0 I

— On &y, the end-effector is fixed in the platform’s inertial
frame as we consider a non-sliding contact, and thus the
equation of motion is written

g (@ —2Isin(6y)
—16 | = 1 uj (57)
dt 0, )

The stratified driftless system is modeled by the two
equations:

X =go1(X)uy + go2(X)uz , x € Sp

X =g 1(x)u; ,x €S (58)
where

80,1(x) = 3371

£02(x) = 55 (59)
g1.1(x) = =2 sin01) 3z + 357 — 25,

Proposition 6 The underactuated kinematic control system
Ry is small time locally controllable in int(Cyree)

Proof The proof follows the same pattern as the proof of
Proposition 4. O

Let’s consider the gait G = (S1, So, S1)
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Proposition 7 R; is gait-controllable with the gait G.

Proof The proof follows the same pattern as the proof of
Proposition 5. O

We want now to plan a motion from a given ginital =
(ai, 61;, —2601,)" to a given ggna = (af.61,,—261,) in
Cfree~

Using the exact same method as for Ry, for Af; # 0 and
supposing for example that Aa > 0, we get the solution:

A
=0 AfQ 1 tan(0
s e stz e 21 A6, ! cos(01) + tan(é,)
X(Up ouy o—uyo—uy) (60)

applied to the flows
2 (% 4 cos(r + 61,) — cos(61,))

7! (x0) = 1+ 61, (61)
—2(t + 04,)
and
i =)
2 (x0) = t+ 6y (62)
—2(t + 6y,)

For A6; = 0 we get:

[ Ac
s = 2—l(u20ulo—u20—u1) (63)

4.3 L & M Robot

The robot R3, with the switching modes control strategy
introduced in Section 3, can also be modeled as a stratified
system.

Let us first see why R3 cannot be directly modeled as a
driftless stratified system if we do not consider this switch-
ing strategy. In this case, when the rubber end-effector
is in contact at a fixed location in the platform’s frame
B = constant, then the system evolves in the submanifold
defined by the implicit equation:

£4+2lcos() +B8 =0 (64)
Taking the derivative with respect to time ¢ leads:
£ —2Isin(0))6) = & (65)
ie.
100 —1 g 21 sin(0;)
0100 9-1 = 1 6, (66)
001 0 ; -2

Writing 6] = u; we get a system of the form

Ai =Y gi(X)u; (67)

100 -1
0100
001 0
matrix and thus the system cannot be written in the desired
form

X = Zgi(X)bti (63)

where A = is a non invertible (non square)

Now back to the switching control strategy. The equa-
tions of motions acting on the two strata are:

— onSp:
& 0 0
d | 6 1 0
zlel=1o ur+ | | ue (69)
o 0 0
— on 8y, in manipulation state:
& 0
d | 6 1
7lel= 5 uj (70)
o —21sin(61)
— on &y, in locomotion state:
& 21 sin(0;)
d | 6 1
lel=l = |« (71
o 0

As we can see, two different equations of motion are
acting on the bottom stratum Sj. They correspond to two
control vector fields defined on Sj. Since the solution pro-
duced by the method of [22] consists in following the vector
fields sequentially and never a linear combination of the
vector fields, we can use it for R3 to produce the con-
trol sequence with the state-switching control nested in the
solution.

We want to steer the system from a given
Ginital = (&6, =201, )" to a given gfpa =
(57,61, =261, a7)". We first derive equation the
stratified driftless system on the bottom stratum:

*=g1(x)ur + g2(x)uz + g3(x)us (72)
with
0 21 sin(0y)
1 1
i) =1 _,| 8x= 5
0 0
1
g3(x) = 5 (73)
—2lsin(8))
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We then extend the system by adding vector fields from
Lie(g1, 82, 83):

Note: we stop at second order and we do not need to add
[g2, g3] = bs — bs. We then we solve this system for the fic-
titious inputs vy, v2, v3, V4, U5 given a straight line trajectory

X = byvy + bavy + b3vz 4 bgvg + b5v5 (74) o
linking ginitia1 and gfinal:
where T
(@) = (ve (@), vo, (1), —2vp, (1), Ya (1)) (76)
by = gi
5 where
2 = 82
¢ ye(t) = & + AE.1
by = g3 Yo(t) = a; + Aant
21 cos(0y) Vo, (1) = 01, + Ab;.t a7
0 — _ £
by = [g1, 821 = Af =§f —§
0 Aa =ay — a;
0 Al =61, — 0y,
0 We solve
0 .
bs = [g1,83] = 0 (75 y(@) = bity®)v1 + ba(y (1))v2 + b3(y (1))v3
—2l cos(6y) +b4(y (£))va + bs(y (1)) vs (73)
which requires pseudo inverting the matrix
AE 0 2Isin(ys,) 0 21 cos(vs,) 0 z‘
a0, | |1 1 1 0 0 . 79
2460, | |2 -2 -2 0 0 v3
Aa 0 0  —2Isin(ys) 0 —21 cos(ys,) U“
5
One solution for this system Integrating those equations gives us the “durations” for
A0 following each flow of the control field:
vy (7) !
0 hi(1) = A6,
v2(1) Iy (1) = 0
ol ol I B0 s = o
v4 (1) 2 cos(vg, (1) = 84)
A
vs (1) % cos(;;l ) ha(1) = 21A91 In cos(9| y +tan(6 ;)
given these inputs we solve the formal ordinary differ- hs(l) = — Aoé In — (91 ) + tan(6; f)
ential equation in a backward Philip Hall basis of the
Lie Algebra generated by by, by, b3, by, bs which is also  if A0 # 0, or
. ha(1) =0
S(t) = S()(b1vy 4 byvy 4 b3vsy + byvg + bsvs) (81) ha(l) = 0 (85)
for which we search for a solution of the form ha(1) = 21
hs(1) = 2[
— Lhs()bs ,ha(t)bs ,h3(1)b3 ,ha(1)by ,h(1)b)
S@)=e e e ¢ e (82) if AG; = 0.

by developing the formal exponentials to second order, we
get the set of equations for the /; functions:

hi =

I:lZ =2

hs = v3 (83)
—flzhl + /:l3h2 + h4 = V4

—fl3h1 — /:l3h2 + h5 = vs

with the initial conditions 4; (0) =0 fori =1, 2, 3,4, 5.

@ Springer

Finally, for A6; # 0 and supposing for example that
A& > 0 and Ax > 0, we get the solution:

s = AB1uq o Ouy o Ous

AE 1
1 tan(6 — —
o\/ZZAQI HICOS(Qlf) + tan(6 ;)| (u1 o uz o —uy o —uz)

Aa
o In
\/21A91

|COS(91f) +tan(91f)|(u3 ouU| O —U30—U)

(86)
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applied to the flows
)
by _ t+ 910
FE = 646y,
Qg
2 (i—“ —cos(t + 0y,) + cos(@lo))
72 (x0) = [+ 61, (87)
—2(t + 010)
oo
&o
by, N _ 1+ 06,
F0) = 2t +61,)

2 (% + cos(r + 61,) — cos(61,))

For A6; = 0 we get:

A& Aa
s = 5(ulouzo—ulo—u2)o 5(u3oulo—u3o—u1) (88)

The solution is pictured in Figs. 17 and 18.

Fig. 17 Trajectory planning for R3 in the (§, 61, o) space. The bot-
tom left horizontal axis is the & axis, the bottom right horizontal axis
is the 0; axis, the vertical axis is the « axis. The initial trajectory,
which violates the foliation, is the black (point/big-dashed) diagonal
segment on the left-back face of the cube, the resulting trajectory is the
red(line)-blue(point-dashed)—green(dashed) trajectory that follows the
foliations. The startpoint of the motion is the intersection of the green
segment and black diagonal segment in the bottom left, the endpoint is
the intersection of the green segment and black black segment in the
top right. The green segments are motions along the (c, &)-foliation,
the blue segments along the (8, &)-foliation, and finally the red seg-
ments along the («, B)-foliation (the colors used for the three foliations
are the same as in Fig. 15)

5 Dynamic Trajectory Planning Approach

In the previous sections, we were primarily concerned by
geometric path planning, even though Section 4 tackled the
problem from a kinematic trajectory planning perspective.
In this section, the objective is to generate torque-driven
dynamically valid trajectories in the state space 7C (the
tangent bundle of the smooth manifold C).

5.1 Locomotion Robot

First let us study the case of the robot R;. We would like to
generate dynamically valid trajectories (open-loop control
laws) for both the transfer and the transit paths.

Problem 2 Given (Ginitial, Ginitial)> (@final> ¢final) € T Cree
and a geometric path p [0,1] — Cgee such that
P(0) = Ginitial and p(1) = gfinal, find 7y € R and a re-
parametrization of Tr(p) y : [0,#7] — Cpee such that y
realizes the dynamics equations of motion of R; along the
path, under a Coulomb friction model hypothesis.

The efforts applied on R; in each of the two strata
representing the two contact modes are portrayed in Fig. 19.

Using the Lagrangian approach, the dynamics of the
system can be written as

0

M@QG+Cq.9qd+Nqg.—J@ fe=|n | 89
1%}

which is in S (contact mode) when f,. # 0 and in Sy (free
mode) when f. = 0; M, C, N, J denote respectively the
inertia matrix, the Coriolis and centrifugal effects, the exter-
nal efforts (gravity, joint friction) vector, and the Jacobian
matrix of the robot.

In the free mode, we can notice that £ # 0 provided that
the inertial effects of moving the links cause a dynamic reac-
tion on the base. In the following we consider these links
dynamics effects as perturbations and neglect them, which
means that on the free mode £ = 0.3

Let us now focus on the contact mode, which is our main
concern in this study; f, is the Lagrange multiplier asso-
ciated with the Lagrangian model of the system under the
Pfaffian constraint J(g)g = 0. Solving the dynamic and the

3This is an ideal pure mathematical assumption that amounts to con-
sidering a relative inertia of the base link much bigger than that of
the the two links. However, considering such an assumption on a real
physical system implementing the model R3 may have severe effects
on the system dynamics. In that case a separate control loop (a stabi-
lizer module) can be provided for ensuring that £ = constant in the
free mode without affecting the physical consistency and stability of
the system.
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Fig. 18 Solution of the
trajectory planning for the R3
system. The sliding of the black
rectangle and the red rectangle
along the horizontal axis
illustrate respectively the
locomotion and the
manipulation components of the
motion. The first column
displays snapshots of the motion
taken at times of change of
control fields (points where the
curve in Fig. 17 changes color).
The second column represents
the transition motions between
two successive snapshots
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Fig. 19 Forces and torques in
the two modes . 7_2
N N
fC
1 ol
/- -
/7777 7777
(a) Free mode, stratum Sp (b) Contact mode, stratum S
Pfaffian constraint equations for f, and g leads where
1 K 2
fo=—(UM YIUDHTTUM ' e =C§g—-N)Y+J§) (90 = fu g
- 2 & _
where T = (0, 11, ‘L’2)T. Ae — 412_ iz 41(2) & (96)
To avoid sliding, f. has to lie within the Coulomb friction § 7 1 0
cone J: 0 .
feeF 91) 0 1
and
and (0, 0,0, Tmax, Tmaxs Tmax)T ,§>0
) b6 =1(0.0. Tiax. 0. Tomax. Tona)” £<0 7
F=A{(fx. fy) €eR7| fy = Oand | fx| = nfy} 92) R

Now, we derive an open-loop control law ¢ >
(71(2), T2(2)) which steers the system from an initial contact
state (g;, g;) to a final state (g, qy) maintaining a non-
sliding contact with the ground. To do so we adapt some of
the ideas that were introduced in [42].

To make the derivations easier we neglect the masses of
the links and consider only the mass of the sliding base m.*
The dynamics equations become:

O TainlB1)-+15in(B1-+62)— fy.(cos(@y) +cos(6 +62)) =1 /1 (93)
fr.sin(01+62)— fy.cos(01+6h) =12/

In a given contact mode, the system evolves in a one-
dimensional submanifold of the configuration space, a leaf
of the stratum Sy, that we parametrize with &. For example,
if the contact is fixed at the abscissa O then & = —2[ cos(61)
and 6, = —26,. Solving Eq. 93 for f; and f, gives us

{fxz
fy:

and the friction cone condition f,. € F, together with the
maximum torques conditions |71| < Tmax and |72] < Tpax
yields the following torque cone condition

As(@)sbs ©95)

7121

422 (94)

i

4Same remark as footnote 3 above.

Finally, the open-loop dynamic trajectory planning
reduces to

= fenm= 20
= T, ) = ——F/————
mo+/ 412 — §2
under the constraint  Ag (;1) < bg 98)
’ 2

or, putting C¢ the line matrix Cg¢ = — (1 —2),
mo~/412—£2

E=Ct <?> under the constraint  Ag <?> < b (99)
2 2

projecting in the dynamics and the constraints onto the
space of task freedom as the term is defined in [42], using

the change of control input u = C¢ (z]), we get the
2

simple double integrator & = u where the torque cone
condition translates into bounds on acceleration umi, (§) <
U < umax(£). The time-optimal solution for this problem
is known as the “bang-bang” control law [7], which con-
sists in applying maximal acceleration forward from the
initial state, maximal deceleration (i.e. minimal accelera-
tion) backward from the final state, and switching between
those two commands at the intersection point of the two
trajectories obtained, see Fig. 20.

5.2 Manipulation Robot
Similarly to R, we now consider the robot R; in the contact
stratum Sj. Let mo denote the mass of the sliding platform.

Let fo = (fx, fy) € RR? be the contact force applied by
the sliding platform on the end-effector of the manipulator.
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Fig. 20 Bang-bang control law
synthesis
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Instead of writing Newton’s second law of motion
applied to the platform and concatenating it with the
Lagrangian dynamics of the manipulator coupled with the
non-sliding contact point kinematic condition, we exhibit
the equivalence with R by directly writing the constrained
Lagrangian problem for the whole system defined by its
generalized coordinates ¢ = («, 61, )T . We get a similar
equation to Eq. 89 where f. must be seen as the Lagrangian
multiplier associated with J(g)g = 0, that we derived by
differentiating the holonomic contact constraint

h(g) = a — 2cos(f) + constant = 0 (100)

Thus, the following derivations follow the exact same
scheme as for Ry, and we can control the variable o using
the bang-bang control law.

5.3 L & M Robot

The dynamics and control of R3 with the switching states
control strategy considered in Section 3 simply reduce to
the dynamics and control of R; and R; separately in each
of the states of the system, respectively the locomotion and
manipulation mode.

Instead, here we derive the dynamics of R3 in contact
mode (stratum S}) without the switching control input strat-
egy. This can be seen as the dynamics of motion realized
by taking a contact support on a mobile piece of the envi-
ronment by the robot R;, performing manipulation and
locomotion at the same time.

Once again, instead of writing separately the dynam-
ics of the subsystems made of the locomotor/manipulator
and coupling them with the non-sliding contact point kine-
matic constraint, we directly consider the whole system
q = (§,01,06,, a)T and write its Lagrangian equation of
motion under the Pfaffian constraint which derives from the
holonomic constraint

_ (E+1cos(01)+! cos(01+62) —a+constant)
h(‘I)—( I'sin(8))+1 sin(8; +62) =0 )-0 (101)
So we get the following equation
0
.. .\ . T
M@i+Ca,Di+Na. =@ fe=| | 102
0

Let us now generate a control law for R3 in contact mode
under Coulomb friction hypothesis. For the sake of clarity
and without loss of generality we suppose that the end effec-
tor is fixed at the location 8 = 0. Neglecting the masses of
the link gives us the following dynamics equation:

mg 0 - 0

)/ 0 Oé 0
0o 0 . |l «“- HY_[n
. 8 I VI (fy)_(fz) (103)
0 0 & _1 0 0
0 -+ 0 mgy
If we introduce the new variable § = & — «a which

expresses the displacement of the locomotor in the plat-
form’s inertial frame, we can rewrite the equation as

TS+ fr =0

=3fy =1 (104)
82 8
I-Zh—a3fh=n
which are the same equations as the ones we got respectively
for £ and « in Ry and R, with a virtual mass mg = @

We can thus control the variable § with the same control law
as in Section 5.1 which is not any more valid for £ and «
separately, that is, the bang-bang control law for the double
integrator § = u with the solution ¢ +— u(r) depicted in
Fig. 20.

Table 1 provides the numerical values of the parameters
used in the simulations throughout the paper.

6 Discussion

6.1 Perspectives for High-Dimensional Systems

Our work paves the way toward addressing high-dimensional
systems, from both a conceptual and a methodological point-
of-view.

Indeed, this study gives a precise definition and formulation
to the desired paradigm of non-decoupled locomotion-and-

Table 1 Parameter values for the simulations

Parameter Value Unit
l 1 m
mo 2 kg
mi 0 kg
my 0 kg
Tmax 1 N.m
I 172 -
mg 8 kg
Mg 4 kg

@ Springer



J Intell Robot Syst

manipulation planning and control, and what we mean
exactly by that terminology. It concretely illustrates what
kind of results we would be expecting from the imple-
mentation of such a paradigm. The expected form of
results (locomotion-while-manipulation) readily extends to
higher-dimensional systems. Hence we know what kind of
motion to aim for when considering the extension to the latter
systems.

More specifically, we can see that the achieved results are
conceptually distinct from the existing ones coordinating
locomotion and manipulation, where the robot uses loco-
motion to move to a spot that enables manipulation [17,
28, 29, 39, 46]. Instead, we proposed a novel locomotion-
and-manipulation paradigm that consists in 1) specifying a
task to the locomotion-and-manipulation system in the form
of only the final position/configuration of the robot and/or
the manipulated object, and 2) letting the planner and the
controller figur‘e out autonomously by themselves how to
decompose the motion in as many pure locomotion, pure
manipulation, or locomotion-while-manipulation elemen-
tary motion fragments as necessary to realize the task, solv-
ing implicitly the underactuation of the system. The decom-
position happens at whichever instants deemed necessary
in the overall motion. It does not restrict to a locomotion
block followed by a manipulation block or vice-versa. We
successfully illustrated the paradigm and we exhibited what
class of resulting locomotion-while-manipulation motion
emerges from it, e.g. the motion illustrated in Fig. 18.

Armed with that particular paradigm instantiation, that
we proved was analytically tractable in minimal systems, it
becomes possible to directly specify the same requirements
and formulation (the same paradigm) for higher dimen-
sional systems such as humanoids. For those however, we
need, in a first approach, to use alternative solutions that are
not exact solutions or closed-form solutions as presented in
this work. We rather resort to more heuristics-based ones,
due to the general non-tractability of the analytical methods
in high-dimensional spaces.

Hence, following the same logic that we detailed in
this paper, but using alternative particular methods of res-
olution based on heuristics, we were able to design a
non-decoupled planning algorithm that answers the same
paradigm for locomotion, manipulation, or locomotion-
while-manipulation of high-dimensional humanoid systems
in [10] (building on a high-dimensional posture genera-
tor written as non-linear optimization problem [8, 9, 37]
and a general dynamics algorithm for high-dimensional
systems [11]). The algorithm is applicable to even higher-
dimensional systems by considering systems made of two or
more humanoid robots collaborating to manipulate objects
or mechanisms. We followed that planner with a dynam-
ics controller that is able to realize high-level locomotion,
manipulation, or locomotion-while-manipulation tasks in a
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dynamically consistent way in [43]. This is a first step
toward fully extending the methods presented in this paper
to the high-dimensional systems. Other strategies for dimen-
sionality reduction of the high-dimensional systems of this
framework have been explored in [12, 13].

As an example, Fig. 21 illustrates a resulting motion of
the paradigm introduced in this paper for a humanoid robot,
as instantiated in the works [10, 43] higher-dimensional sys-
tems. The objective in Fig. 21 is specified as a final position
for the humanoid robot (2 meters forward) and a final orien-
tation of the manipulated box (purple face facing upwards).
Each frame of the motion has to be physically consistent
(equation of dynamics satisfied for both the robot and the
box, forces applied by the robot on the box opposite to the
forces applied by the box on the robot, contact forces inside
the friction cones, etc.). The motion planner figures out by
itself how to manipulate the box while walking, fitting in
the paradigm we defined in the analytical case.

Furthermore, results from the present works can be
used to assess theoretical consistency of the latter high-
dimensional heuristics. As a concrete example for this, take
the generalization of Corollary 1, which can be reached
in future work for example by a recursive reasoning to
go from a configuration space of dimension n to a con-
figuration space of dimension n — 1. The generalization
can be used to theoretically prove the completeness of the
high-dimensional heuristics-based algorithm of [10], i.e. to
formally prove that the algorithm find a solution whenever
one exists when using randomized (RRT, PRM) planners
that do not account for the stratification/foliation of the con-
figuration space. This is another example of a step toward
the extension of the present work to the high-dimensional
systems as future work.

6.2 Limitations

The R3 robot uses the same means of locomotion and
manipulation, which results in autonomously decomposing
the motion in elementary motion fragments that consist in
either pure locomotion fragment, pure manipulation frag-
ment, or pure contact repositioning fragment. However, by
the remark of Section 3, and by Corollary 1, either the pure
locomotion fragments or pure manipulation fragments can
be replaced with locomotion-while-manipulation elemen-
tary fragments by setting an arbitrary value of (A1, Ap) =
(A1, 1 — A1) and using the corresponding (11, Ap)-foliation
of the bottom stratum, instead of either the «-foliation or the
&-foliation. This remark extends also to the control part of
Section 4.3 in which one of the vector fields g2 or g3 can
be replaced with a linear combination A1 g2 + A2 g3 which
would result in elementary motion fragments in which both
the base of the manipulator and the manipulated object
translate simultaneously.
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Fig. 21 The objective is for the
HRP-2 robot to advance 2 m
forward while simultaneously
performing half rotation of the
5 kg box, bringing the purple
face up. Friction coefficients
between the hands and the box
are set to ;# = 1. The robot
autonomously re-grasps and
rotates the box while walking

Yet, One of the assumption (and limitation) of the
approach presented in Section 4 is that the solutions con-
sist in following the vector fields sequentially and never a
linear combination of these vector fields. Hence, for sys-
tems in which the locomotion and manipulation mechanical
components are decoupled, this would result in non-optimal
motions. In that case, a parallelization of the kinematic

model of the system could be implemented to optimally
use the mechanical ressources of the system. For example,
one possible approach is to decompose the system in ele-
mentary minimal locomotion, manipulation, or locomotion-
and-manipulation systems in a complementary way and to
implement the presented framework in parallel on each of
these subsystems. Such an automatic decomposition of the
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kinematic model, parallelization, and framework adaptation
can be the subject of a future study.

7 Conclusion

The motion planning and control problems for the sys-
tems R; (locomotion-only), R, (manipulation-only), and
R3 (simultaneous locomotion and manipulation) are solv-
able with the same tools. We proved the reduction property
for all three systems. This property reduces the path plan-
ning problem in a foliated configuration space to a classical
path planning problem in a non-foliated space. The for-
mulation of the motion planning problem as a BVP was
written for the three systems, and non-holonomic trajectory
planning techniques were used for solving this problem.
Dynamics derivations also appeared to be equivalent for
the three robots. The Lagrangian approach acting on one
global system with generalized coordinates instead of dif-
ferent subsystems as traditionally considered turned out to
be a powerful unification tool for making these derivations.

We thus successfully applied a set of three motion
planning methods for the three systems R;, Rz, and Rj3.
By doing so, we showed that our initial paradigm, the
simultaneous non-decoupled locomotion and manipulation
planning, holds using any of these methods.

Though being theory-oriented, our study was primarily
motivated by the practical humanoid robot motion plan-
ning issues, given that a humanoid robot is a platform with
both locomotion and manipulation capabilities. The targeted
objective was to integrate and fuse works done on humanoid
locomotion planning [18, 23] and dexterous manipulation
planning [40, 45, 48], or any other type of whole-body
manipulation planning [20, 47], within one non-decoupled
planning framework. In this work, we precisely defined the
desired paradigm of locomotion-while-manipulation and we
laid down the theoretical foundations that would justify the
same paradigm in higher-dimensional locomotion-while-
manipulation systems such as humanoids. We achieved that
in [10, 43], using an alternative instantiation of the paradigm
more adapted to high-dimensional spaces, and more based
on heuristics. The next step of the work will be to gene-
ralize some of the fundamental results of this paper (e.g. Coro-
llary 1) to prove the completeness of the algorithms in e.g. [10].
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