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Manipulation

On Autonomous Humanoid Robots: Contact Planning for
Locomotion and Manipulation

Soutenue le 22 novembre 2011 devant le jury composé de :
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Abstract. We propose a unified planning approach for autonomous humanoid robots
that perform dexterous locomotion and manipulation tasks. These tasks are based on
contact transitions; for instance between the locomotion limbs of the robot and the en-
vironment, or between the manipulation end-effector of the robot and the manipulated
object. We plan these contact transitions for general abstract systems made of arbi-
trary numbers of robots, manipulated objects, and environment supports. This approach
allows us to erase distinction between the locomotion and manipulation nature of the
tasks and to extend the method to various other planning problems such as collaborative
manipulation and locomotion between multiple agents. We introduce our non-decoupled
locomotion-and-manipulation planning paradigm by exhibiting the induced stratification
of the configuration space of example simplified systems for which we analytically solve
the problem comparing geometric path planning, kinematic non-holonomic planning, and
dynamic trajectory planning methods. We then present the contact planning algorithm
based on best-first search. The algorithm relies on an inverse kinematics solver that
handles general robot-robot, robot-object, robot-environment, object-environment, non-
horizontal, non-coplanar, friction-based, multi-contact configurations, under static equi-
librium and physical limitation constraints. The continuous dynamics-consistent motion
is generated in the locomotion case using a quadratic programming formulation. We
finally envision the extension to deformable environment contact support by considering
linear elasticity behaviours solved using the finite element method.

Keywords. Contact Planning; Motion Generation; Humanoid Robots; Autonomous Robots;

Locomotion; Manipulation.

Résumé. Nous proposons une approche de planification unifiée pour robots humanöıdes
réalisant des tâches de locomotion et de manipulation nécessitant une dextérité propre
aux systèmes anthropomorphes. Ces tâches sont basées sur des transitions de contacts ;
contacts entre les extrémités des membres locomoteurs et l’environnement dans le cas
du problème de locomotion par exemple, ou entre les extrémités de l’organe préhensible
effecteur et l’objet manipulé dans le cas du problème de manipulation. Nous planifions
ces transitions de contacts pour des systèmes abstraits constitués d’autant de robots,
d’objets, et de supports dans l’environnement que désiré/nécessaire pour la modélisation
du problème. Cette approche permet de s’affranchir de la distinction de nature entre
tâches de locomotion et de manipulation et s’étend à une variété d’autres problèmes tels
que la coopération entre plusieurs agents. Nous introduisons notre paradigme de planifi-
cation non-découplée de locomotion et de manipulation en exhibant la stratification in-
duite dans l’espace des configurations de systèmes simplifiés pour lesquels nous résolvons
analytiquement le problème en comparant des méthodes de planification géométrique,
non-holonome, et dynamique. Nous présentons ensuite l’algorithme de planification de
contacts basé sur une recherche best-first. Cet algorithme fait appel à un solveur de
cinématique inverse qui prend en compte des configurations de contacts générales dans
l’espace pouvant être établis entre robots, objets, et environnement dans toutes les combi-
naisons possibles, le tout sous contraintes d’équilibre statique et de respect des limitations
mécaniques des robots. La génération de mouvement respectant l’équation de dynamique
Lagrangienne est obtenue par une formulation en programme quadratique. Enfin nous
envisageons une extension à des supports de contact déformables en considérant des com-
portements linéaires-élastiques résolus par éléments finis.

Mots-Clés. Planification de Contacts ; Génération de Mouvement ; Robot Humanöıde ;

Robot Autonome ; Locomotion ; Manipulation.
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Introduction

A humanoid robot can be defined as an anthropomorphic controlled mechanical sys-
tem. See Fig. 0.1.

The anthropomorphic design is an intuitive choice that stems from a desire of the
human being to re-create an avatar of themselves. We can call it the artificial human
quest. This innate desire is sufficient to make us perform research on the subject. But this
choice has also been tried to be rationally justified by a number of arguments, necessary
for the research endeavour to survive within the economic structure of the society.

First, building a humanoid robot allows us to study human motion by trying to re-
produce it. Reproducing the motion is a demonstration that we have understood it.
Another possible justification is that one of the objectives of building robots is to make
them replace humans in performing tasks that are too hazardous or fastidious for them.
In that case the humanoid design is the most suitable to move around and operate in
an environment that was originally designed and optimized to withstand human oper-
ators/operations. One last argument is that humanoid robots are aimed at evolving
and interacting together with other real humans, who are assumed not to necessarily
have neither the scientific background to understand technical limitations nor the precise
knowledge of robot mechanical and cognitive capabilities. Thus making a human interact
with a human-like mechanical avatar greatly simplifies this latter task.

However-though, the humanoid-design constraint of a mechanical system makes it
particularly complex to control. For the purposes listed above, direct low-level joint
control by human operator is inadequate given the complexity of the tasks at stake.
Tele-operation, playback of pre-recorded motion, imitation, would all obviously be failing
options in that context. This is why autonomy is the most desirable control strategy to
achieve. However, full autonomy is a tremendously ambitious goal to attain just as well.
Many layers are involved and the complexity of the resulting control architectures grows
exponentially relative to the targeted level of autonomy. Reducing this complexity and
making simple, thus elegant, intelligence emulators is a challenging, but not impossible,

Mechanical systems

Anthropomorphic systems

Controlled systems

Humanoid robots

Figure 0.1. Classification of systems
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2 INTRODUCTION

task. One idea towards this is to build autonomy around some unifying concept and
concentrate the development efforts around this concept.

This brings us to the thesis that we try to establish in the present dissertation. Multi-
contact planning can be one of these unifying autonomy-enhancing concepts, contributing
to providing humanoids with some level of autonomy to achieve tasks in a human-like
manner (for the sake of interactivity) within a human-mechanical-capability optimized
operation environment (for the sake of replacement). To abide by the above-stated sim-
plicity requirement, we taxonomically identify two main tasks: locomotion and manipu-
lation, both of which are made of successive contact making and breaking in order to get
from an initial configuration to a goal. Generality is ensured by not restricting ourselves
to cyclic sequences, to “gaits”, and by using all possible contact spots and configurations.
Achieving autonomy can thus be broken-down to planning these sequences of contacts for
locomotion and manipulation in the simplest, thus the most-unified possible, way. This
is our thesis, and our contribution.

Fig 0.2 shows a quick overview of the organization of the dissertation. Chapter 1
lays down the fundamentals behind unifying locomotion and manipulation that have sys-
tematically been treated separately in the planning and control literature. The problem
is analytically solved for low-dimensional planar systems. Chapter 2 then tackles the
problem for the full-scale humanoid robots presenting the algorithm, but most impor-
tantly the conceptual modelling framework, for multi-contact planning applied to general
systems and situations. One essential component of this algorithm, a particular inverse
kinematics solver, deserved more detailed development, that can be found in Chapter 3.
At that point of the dissertation, a sequence of static postures is planned. In Chapter 4
we propose an approach to generate the full motion in-between these static postures.
Finally Chapter 5 goes one step farther towards generality by considering deformable en-
vironment when planning a static posture, as an extended version of the problem solved
in Chapter 3. We then conclude the dissertation.

Chapters 2 to 5 have been published in the proceedings of scientific conferences related
to humanoids. See Table 0.1 for the corresponding references.

Chapter 1 Chapter 2

Chapter 3

Chapter 4

Chapter 5

Planning Algorithm

IK Solver

Motion Generation

Extension to

Low-Dimensional
Analysis

Deformable Models

Figure 0.2. Structure of the dissertation
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Chapter 2 [BK11b]
Chapter 3 [BK10]
Chapter 4 [BK11c]
Chapter 5 [BK11a]
Appendix A [BELK09]

Table 0.1. References of the publications of the chapters





CHAPTER 1

Fundamentals for Non-Decoupled Locomotion and

Manipulation Planning for Low-Dimensional Systems

This opening chapter demonstrates the possibility of solving planning prob-

lems interleaving locomotion and manipulation in a non-decoupled way. We

choose three low-dimensional minimalistic robotic systems and use them to

illustrate our paradigm: a basic one-legged locomotor, a two-link manipulator

with manipulated object, and a simultaneous locomotion-and-manipulation

system. The approach followed in the chapter is 1) to depart from existing

motion planning and control methods initially designed for either locomo-

tion or manipulation tasks, 2) see how they apply to both our locomotion-

only and manipulation-only systems through parallel derivations, and finally

3) extend these methods to the simultaneous locomotion-and-manipulation

system. Motion planning is solved for these three systems using two differ-

ent methods, a geometric path-planning-based one and a kinematic control-

theoretic-based one. Motion control is then derived for dynamically realising

the geometric paths or kinematic trajectories under Couloumb friction hy-

pothesis using torques as control inputs. All three methods apply successfully

to all three systems, showing that the non-decoupled planning is possible.

1.1. Introduction

Robots are traditionally categorized into fixed-base manipulators [MLS94, Cra04]
and mobile navigation robots (wheeled [Lau98] or legged [KE08]) (e.g. [SSV08]). Many
of them, however, do not fall strictly into one of these two categories as they feature both
locomotion and manipulation capabilities and are designed for performing indifferently
both kinds of tasks, falling thus into a third locomotion-and-manipulation category. Hu-
manoid robots [KFH+08], which constitute the initial motivation that inspired this work,
are typical examples of such locomotion-and-manipulation integrated systems.

It is well known that, from a motion planning and control point of view, locomotion
and manipulation are conceptually the same problems. Their commonality comes from
their inherent under-actuation that is solved through the contact forces: a locomotion
system is under-actuated in the sense that the position of the mobile base is not controlled
directly through actuators torques, but rather results from both the actuation torques
action and the contact forces with the support environment; a manipulation system (by
manipulation system we mean both the manipulator and the manipulated object) is also
under-actuated in a strictly equivalent way: the degrees of freedom of the manipulated
object are not actuated and its position is an indirect result of the actuation of the
manipulator through the contact forces that it establishes with the manipulated object.
Besides, they both obey Lagrangian dynamics, they both involve friction, and they both
have contact strata of various dimensions.

5



6 1. NON-DECOUPLED LOCOMOTION AND MANIPULATION

Though being equivalent, these two problems have usually been tackled in a decou-
pled way for integrated manipulation-and-locomotion systems ([KL10, KLY11] can be
considered as an exception given that the planned motion display locomotion and ma-
nipulation components that had not been pre-specified, but they choose to model the
under-actuation as the redundancy of a virtual manipulator while we tackle it directly
as the core problem). A decoupled approach might be pertinent for classes of systems in
which the initial design imposes totally unrelated locomotion and manipulation compo-
nents, consider for example a particular wheeled mobile robot equipped with a manipu-
lator arm, in which the wheeled base is entirely dedicated to the navigation task and the
manipulator arm is solely devoted to the manipulation task. In that case the decoupled
strategy is arguably the most adequate one. However, for systems such as humanoid
robots, the frontier between the two kinds of tasks is more blurred, and it is restrictive
to exclusively assign upper-body limbs to manipulation and lower-body limbs to locomo-
tion. For instance, a humanoid robot might be required to use its arms to climb a ladder
or to crawl under a table, it might also need to use its legs to push an object on the
floor while walking. In such situations, decoupled approaches using an upper-body joint-
space or task-space controller for manipulation and an independent lower-body walking
subsystem controller for locomotion [HNTHGB07, YLE+08] can be restrictive and
not use the full potential of the human-inspired design. Of course this is not a property
of humanoid robots exclusively, and, as an example among others, [BTGZ08, BT08]
nicely demonstrate non-decoupled locomotion and manipulation capabilities of a tracked
mobile robot equipped with a manipulator arm.

Our driving objective is to erase high-level distinction between manipulation and lo-
comotion objectives, both in terms of specification of the task and of the planning method
to plan the motion to realise the task. In the resulting motion, interleaved manipula-
tion and locomotion should emerge with no prior high-level distinctive formulation. See
Fig. 1.1.

Locom. task

Manip. task

Locom. planner

Manip. planner

Locom. motion

Manip. motion

System

Locom. component

Manip. component

final L&M motion

dedicated

dedicated

(a) The existing decoupled approach.

Locom. task

Manip. task

common
formulation

high-level L&M task L&M
planner

L&M

System

integrated
Locom. and Manip.

components

final L&M
motionmotion

(b) The proposed non-decoupled approach. The L&M abbreviation stands for Locomotion-and-
Manipulation

Figure 1.1. Overview of the approaches.
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The methodology chosen is to capture the locomotion and manipulation problems into
the lowest-dimensional possible systems. The systems are only theoretical planar “toy”
systems but we believe they are still pertinent enough to illustrate our point. As such,
this chapter is primarily focused on this theoretic and conceptual level and the extension
to the above-mentioned humanoid problems is beyond its scope. The three systems we
chose are representative of the three categories of robots we mentioned earlier:

• one exclusively locomotion-oriented system,
• one exclusively manipulation-oriented system,
• one hybrid locomotion-and-manipulation (L&M) system.

We then investigate two main existing motion planning methods from the literature
applicable to our systems:

• a geometric path planning approach based on a reduction property proved ini-
tially in [ALS95] and used in a randomized planning algorithm in [SLCS04].
• a control-theoretic BVP (Boundary Value Problem) approach for kinematics sys-
tems based on a controllability theorem proved in [GB01] and a BVP resolution
algorithm developed in [GB02].

The first approach deals directly with the obstacle avoidance problem. The second is
more adequate for dealing with the velocity constraints and nonholonomy which may not
translate directly into geometric terms. To make our study complete and self-contained we
also tackle the dynamic trajectory generation problem along the geometric paths resulting
from these motion planning algorithms, using the works of [SEM05] and [BDG85] as a
basis. We derive time-optimal open-loop torques control law that realizes a given contact
motion.

Taking each one of these three motion planning and control techniques, we first apply
it the the locomotion system, then we show formal equivalence with the manipulation
system, before finally extending it to the locomotion-and-manipulation system, which is
the main contribution of this work.

Following this methodology, the rest of the chapter is structured as follows: Section
1.2 introduces the three robots we will study with their configuration spaces, Section 1.3
applies the geometric path planning approach to our motion planning problem, Section
1.4 uses control theory for solving the motion planning problem seen as a BVP, finally
Section 1.5 synthesizes time-optimal control law that realizes the geometric paths pro-
vided in previous sections. Each of these sections is divided into three subsections: one
for the locomotion robot, one for the manipulation robot, and one for the locomotion-
and-manipulation robot.

1.2. Systems

Throughout this chapter we will thoroughly study three low-dimensional planar me-
chanical systems:

• R1: a locomotion robot
• R2: a manipulation robot
• R3: a locomotion-and-manipulation (L & M) robot

We have chosen these robots for they have the lowest-dimensional possible configuration
spaces but yet can capture higher dimensional locomotion and manipulation related con-
cepts. This low dimensionality allows visualizing the configuration spaces in 3D at the
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expense of simple projections and homeomorphisms. The other purpose of these low-
dimensional planar systems is to have explicit analytical expressions for our problems
and their solutions.

For all these systems C denotes the configuration space, also known as the “C-space”.
A configuration is denoted q ∈ C, q is the generalized coordinates vector of the sys-
tem [MLS94]. An important mathematical property in our study is the fact that C is
a smooth manifold. This makes it suited for being described inside the framework of
differential geometry theory [Ish99]. Velocities q̇ are as such elements of the tangent
spaces and generalized forces are elements of the cotangent spaces.

We can classify all the possible forms that the C-space can take for systems commonly
considered in robotics. A free-flyer yields the manifold SE(3) = SO(3)⋊R3 (semi-direct
product). Let Sn be the n-dimensional sphere. A revolute joint yields the manifold S1, a
spherical joint yields S3. Let Tn = (S1)n be the n-dimensional torus. A prismatic joint
yields the manifold R. In most robotics systems the configuration space C is a Cartesian
product of a given number of these elementary smooth manifolds, thus it is a smooth
manifold.

Let O be the obstacle region in the Euclidean workspace. O is a compact subset of
R

2. Let Cobs be the image of O in the configuration space, consisting of all configurations
where the robot collides with O. Cobs is a compact subset of C [Lat91]. Let Cfree be
the subspace of C consisting of all configurations that are not in collision with obstacles,
within the joint limits, and not in self-collision. Cfree is an open subset of C [Lat91].
Studies such as [AB88] are concerned with the computation of explicit representation
of the frontier of Cobs in particular cases, for instance polygonal robots and obstacles in
planar world.

We detail now the models and notations for each of the three robotic systems.

1.2.1. Locomotion robot. The robot R1 is made of a sliding base along the x-axis
and a two-link planar manipulator linked with two revolute joints, see Fig. 1.2. Two
actuators control the two revolute joints; the sliding joint is passive, i.e. not actuated
and frictionless. The sliding of the base along the x-axis can be performed by using
friction of end-effector’s rubber on the ground.

ξ

θ1

θ2

(x, y)

Figure 1.2. R1 and its configuration variables. Rectangles symbolize a
prismatic joint while circles represent a revolute joint.

The configuration space of the system is

(1.1) C = R× T
2

On the manifold C we use the following coordinates chart (ξ, θ1, θ2) ∈ R3. We denote by
(x(q), y(q)) the end effector coordinates in the (x, y)-plane. We do not take into account
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self-collision of the robot. There are no joints limits. l denotes the length of the two
links. The robot is not allowed to traverse the ground, thus:

(1.2) Cfree = C \ Cobs = {q ∈ C | θ1 > 0 and 2 θ1 + θ2 > 0}
T2, the 2-dimensional torus, is naturally embedded in R3 which means that C is

embedded in R4, thus Cfree is also embedded in R4. However a projection trick will make
it embedded in R3. We simply notice that the projection of Cfree onto T2 is a 2D manifold
which is homeomorphic to a subspace of (0, π)× S1 and thus Cfree is homeomorphic to a
subspace of R× (0, π)× S1 which is naturally embedded in R3, see Fig. 1.3.

(a) T2 embedded in
R3

(b) Free part of T2

embedded in R2
(c) Adding the ξ dimension

θ2

θ1 ξ

Figure 1.3. Embedding the C-space in R3. The blue part represents Cfree,
the red part is C \ Cfree.

The 3D representation of the C-space of R1 allows for an explicit representation of
Cobs for any obstacle O for which the frontier is a parametrized 2D curve ∂O : s 7→
(xO(s), yO(s))).

First let us consider a point obstacle O located at the (xO, yO) coordinates. The
configurations q that make the robot in collision with O can be computed by giving
the inverse kinematics solution for the end-effector of a copy robot of R1, but with the
second link having a parameter length λ. Then we make λ vary in [0, l], and we get all the
configurations q that make the second link of the robot collide with O. We use the same
method by removing the second link, vary the length of the first link, and compute inverse
kinematics for this robot, which gives us the second component of Cobs. See Fig. 1.4.

Now for the full obstacle ∂O : s 7→ (xO(s), yO(s))) we apply the method we have just
described by varying the parameter s.

1.2.2. Manipulation robot. The robot R2 is a standard two-link planar manipu-
lator fixed to the ground, manipulating a sliding object. See Fig. 1.5. The manipulated
object is pictured in red; it consists of a theoretically infinitely long sliding platform. The
manipulator has to put its rubber end-effector on the platform and use friction force to
push or pull the object.

The configuration space of R2 is the same as R1

(1.3) C = R× T
2

However we use a different notation for the coordinates chart (α, θ1, θ2) where α denotes
the horizontal position of any reference point on the red sliding base. Similarly to R1,
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(a) Cobs,1, corre-
sponding to the
configurations that
bring the second
link into collision
with the point.

(b) Cobs,2, corre-
sponding to the
configurations that
bring the first link
into collision with
the point.

Figure 1.4. Components of Cobs for a point obstacle for the robot R1.

α

θ1

θ2

(x, y)

Figure 1.5. R2 and its configuration variables. Joints symbols are the
same as Fig. 1.2. In red the infinitely long sliding platform.

we consider no self-collision, no joint limits, and Fig. 1.3 provides a 3D visualization of
R2’s C-space (in the caption read “adding the α dimension” instead of “adding the ξ
dimension”). The only difference with R1 is the representation of the obstacle region in
the C-space, which is basically the Cobs of a standard two-link manipulator, as detailed
in the following paragraph.

To get a parametric representation of Cobs we use the same trick that we introduced
in the computation of R1’s Cobs. For a point obstacle (xO, yO) we compute the inverse
kinematics solution of a robot similar to R2 but varying the length of the second link
as a parameter λ ∈ [0, l], then we extrude in the α dimension (given that the obstacle
region does not depend on the position of the sliding base), we thus get a first component
of Cobs as a 2D submanifold of C. The second component comes simply from removing
the second link and computing the trivial inverse kinematics of a one-link robot, which
reduces to a constant θ1. See Fig. 1.6.

For an obstacle given by a parametrization of its contour s 7→ (xO(s), yO(s)), we
directly add s as a third parameter of our manifold, and we get the representation depicted
in Fig. 1.7 for a circular obstacle for example.

1.2.3. L & M robot. The robot R3 combines R1 and R2. It is made of sliding
two-link planar manipulator manipulating a infinitely long sliding platform. See Fig. 1.8.
Its configuration space is

(1.4) C = R
2 × T

2
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(a) Cobs,1, corre-
sponding to the
configurations that
bring the second
link into collision
with the point.

(b) Cobs,2, corre-
sponding to the
configurations that
bring the first link
into collision with
the point.

Figure 1.6. Components of Cobs for a point obstacle for the system R2.

(a) Cobs,1, corre-
sponding to the
configurations that
bring the second
link into collision
with the circle.

(b) Cobs,2, corre-
sponding to the
configurations that
bring the first link
into collision with
the circle.

Figure 1.7. Components of Cobs for a circular obstacle for the system R2.

It is a four-dimensional smooth manifold that cannot this time be embedded in R3. We
skip the representation of the C-space and its obstacle region but we will come back to
this issue later (section 1.3) as we will restrain to a special 3D submanifold of the C-space.

α

θ1

θ2

(x, y)

ξ

Figure 1.8. R3 and its configuration variables. Rectangles symbolize
prismatic joints and circle represent revolute joints. The infinitely long
sliding platform is pictured in red.
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1.3. Geometric Motion Planning Approach

The systems introduced in the previous section are underactuated systems. We can
geometrically visualize this underactuation as a foliated stratification structure in the
C-space.

1.3.1. Locomotion robot. First let us consider the robot R1. Its configuration
space R×T2 is stratified into two different strata, see Fig. 1.9. The first stratum S0 (zero
contact) corresponds to the situation in which the end-effector is not in contact with the
ground. It is a submanifold of C made of all the corresponding configurations

(1.5) S0 = {(ξ, θ1, θ2) ∈ R× (0, π)× [−π, π] | θ2 > −2 θ1}
The second stratum S1 (one contact) is the submanifold corresponding to all configu-
rations that bring the end-effector in contact with the ground. It is a 2-dimensional
submanifold of C
(1.6) S1 = {(ξ, θ1, θ2) ∈ R× (0, π)× [−π, π] | θ2 = −2 θ1}
On this submanifold we use the coordinates chart (ξ, θ1)

(1.7) S1 :











ξ = ξ

θ1 = θ1

θ2 = −2 θ1
Each of these two strata is foliated into a continuum of leafs. A leaf is a submanifold

of the stratum in which the robot is fully actuated. A single leaf of S0 corresponds to a
fixed position of the base ξ, meaning ξ = constant. We call this foliation the ξ-foliation,
and for a given ξ ∈ R we denote the corresponding leaf Q0,ξ

(1.8) Q0,ξ = {(ξ, θ1, θ2) | (θ1, θ2) ∈ (0, π)× [−π, π] and θ2 > −2 θ1}
On Q0,ξ, R1 can move its two links freely in their workspace but does not slide. A
single leaf of S1 corresponds to fixed position x of the end-effector on the ground, i.e.
x = constant. We call this foliation the x-foliation. For a given x ∈ R we denote the
corresponding leaf Q1,x

(1.9) Q1,x = {(ξ, θ1, θ2) ∈ R× (0, π)× [−π, π] | θ2 = −2 θ1 and ξ + 2 l cos(θ1) = x}
or, using the parameter θ1 as coordinate chart,

(1.10) Q1,x :











ξ = x− 2 l cos(θ1)

θ1 = θ1

θ2 = −2 θ1
On such a leaf the robot takes fixed support on the ground and the applied torques result
in the sliding of the base.

The purpose of geometric motion planning is to plan a continuous path in the C-
space from an initial point to a destination point avoiding the Cobs region. However in
our foliated structure the actuators can only make the robot move smoothly along an
isolated leaf of the C-space, so the only valid paths should be made of a finite succession
of elementary paths along single leafs. This makes the classical techniques of exploring
the C-space [Lat91, CLH+05, LaV06] not directly applicable to our motion planning
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(a) S0 represents
the interior of the
blue region

(b) ξ-foliation of S0

(c) The stratum S1 (d) x-foliation of S1

Figure 1.9. The strata S0, S1 and their foliations for the robot R1.

problem. However, authors in [SLCS04] provide a way to overcome this foliation struc-
ture and reduce the problem to a classical motion planning problem in a non-foliated
C-space.

In [SLCS04], a manipulation path through the C-space is defined as a sequence of
transit paths and transfer paths. A transit path is a path in which the object lies at
rest on the ground not being manipulated while the manipulator moves freely in its
workspace, a transfer path is a path in which the manipulator is grasping the object at a
fixed grasp location and the object is “stuck” to the manipulator end-effector. These two
kinds of paths are paths along two different strata of the configuration space, respectively
the object-stable stratum and the object-grasped stratum. The uncountable infinite stable
positions of the object resting on the ground define a foliation of the object-stable stratum,
and the uncountable infinite positions of grasps of the end-effector on the object define a
foliation on the object-grasped stratum. As shown above, our robot R1 fits directly inside
this problem formulation. Following the manipulation planning terminology, we will call
a path through a leaf of S0 a transit path and a path through a leaf of S1 a transfer path.
See Fig. 1.10.

The planning approach developed in [SLCS04] is the following: uncover the different
connected components of S0 ∩ S1 as if there was no foliation structure1 (this is done
by building a roadmap and connecting the nodes with linear edges thus violating the
foliation structure), then try to connect these different components using only transit or
transfer paths. In a post-processing step, The reduction property allows to transform any
collision-free path of S0 ∩ S1 into a finite sequence of transfer and transit paths. This
reduction property has first been proved in [ALS95]. The following works (e.g. [SLCS04,

SSEKP07]) based on this property usually assume that the extension of the property

1In the remaining of this chapter, we will denote by S0 ∩ S1 the stratum S1 endowed with both S0
and S1 foliation (S1 is seen as a subset of the topological closure of S0).
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(a) Transfer
path in S1

(b) Transit
path in S0

(c) Transit
path in
S0 ∩ S1

(d) Valid path in
the operational
space

(e) Valid path in
the C-space (in yel-
low)

Figure 1.10. Types of paths for the robot R1.

is straightforward in their particular problem. However, we believe that the property
takes a very specific form in each particular problem and thus needs to be proven on a
case-by-case basis, inspired by the general principles of the initial proof. We follow this
approach in this section. Moreover, only a constructive proof is candidate to be used
as an actual motion planning algorithm. For similar reduction-property-based planning
approaches, see [HW86].

Fig. 1.11 and Fig. 1.12 represent the foliation structure on S0∩S1. The representation
of the obstacle region in Fig. 1.11 uses the technique presented in section 1.2. Fig. 1.12
illustrates the application of the reduction property in a simple case.

Problem 1.3.1. Given (qinitial, qfinal) ∈ C2free find N ∈ N, a sequence (ki)i=1..N ∈
{0, 1}N , a sequence (ζi)i=1..N ∈ RN , and a sequence of continuous paths pi : [0, 1] →
Qki,ζi ∩ Cfree, such that p0(0) = qinitial, pN(1) = qfinal, and ∀i ∈ {0, . . . , N − 1} pi(1) =
pi+1(0).

Proposition 1.3.2. If there exists for R1 a collision-free path in unfoliated S0 ∩ S1
from qinitial to qfinal then there exists a finite sequence of transfer and transit paths that
links qinitial and qfinal.

Proof. The two foliations of S0 ∩ S1 can be respectively represented by the two
families of functions:

(1.11)
fα : (0, π) → R

θ1 7→ ξ = fα(θ1) = cste = α , α ∈ R

which represents the horizontal foliation (the ξ-foliation), and

(1.12)
gβ : (0, π) → R

θ1 7→ ξ = gβ(θ1) = −2 cos(θ1) + β , β ∈ R

which represents the curved inclined foliation (the x-foliation).
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(a) A circular obstacle in the opera-
tional space.

(b) The obstacle region in the foliated
S0∩S1 in represented in red. The blue
foliation is the ξ-foliation, the green fo-
liation is the x-foliation.

Figure 1.11. Example of an obstacle and its mapping in the foliated spaces.

(a) Original path (black vertical path
on the left)

(b) Valid path

Figure 1.12. Illustration of the reduction property. In the first figure the
black vertical linear path in the left of the figure violates the foliation. In
the second figure the path is deformed in order to comply with the foliation.

For more convenience in the notations we replace the (θ1, ξ) coordinate chart notation
on S0 ∩ S1 by the more usual plane coordinates (x, y). We also denote C = (0, π) × R

our ambient metric space, and the obstacle region O which is a non-empty compact (ie.
closed and bounded) subset of C. The complementary set of O that we denote Oc = C \O
is an open subset of C. The distance between two subsets A and B of C is defined as:

(1.13) d(A,B) = inf
a∈A,b∈B

d(a, b)
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The two foliations on C are now represented by the two families of functions: fα(x) =
α, α ∈ R and gβ(x) = g(x) + β, β ∈ R where g : (0, π) → R is a continuous strictly
increasing function.

In our demonstration we first consider the case of an initial vertical path. Let pv :
[0, 1]→ Oc be a normal parametrization of our vertical path (arc-length parametrization)
from the bottom extremity, ie. pv(t) = (x0, y0 + t · l) where l is the length of the path.
Let Tr(pv) = {pv(t) | t ∈ [0, 1]}. Since Tr(pv) and O are two non-empty compact subsets
of C, their distance is finite d(Tr(pv),O) < +∞. Since they are closed sets with empty
intersection Tr(pv) ∩ O = ∅ their distance is strictly positive d(Tr(pv),O) > 0. Let

ε = d(Tr(pv),O)
2

.
We will now give a recursive construction of a finite sequence of collision-free transit

paths and transfer paths that links (x0, y0) to (x0, y0 + l).
From the foliation definition we know that ∃!β0 ∈ R, gβ0(x0) = y0. Let B0 be the

closed ball of center (x0, y0) and of radius ε. From the construction of ε we have B0 ⊂ Oc.
Let y = a(x) be the equation of the closed upper right quarter circle boundary of B0. We
have a(x0) = gβ0(x0)+ε > gβ0(x0) and gβ0(x0+ε) > gβ0(x0) = a(x0+ε). The intermediate
value theorem applied to the continuous strictly increasing function gβ0 − a (a being
continuous strictly decreasing function) gives us a unique point (x′0, y1) of intersection
between the graphs of gβ0 and a such that (x′0, y1) ∈ (x0, x0 + ε)× (y0, y0 + ε). B0 being
strictly convex, the horizontal line segment between the points (x′0, y1) and (x0, y1) is
inside B0. Let α0 = y1. Finally we have constructed a sequence of two paths

(1.14)
Transfer0 : [x0, x

′
0] → Oc
x 7→ (x, gβ0(x))

and

(1.15)
Transit0 : [−x′0,−x0] → Oc

x 7→ (−x, fα0
(−x))

that link (x0, y0) to (x0, y1). Let d = y1 − y0. d > 0 from the above definition of y1. let
N = ⌊ l

d
⌋. Repeating the previous procedure from the point (x0, y1) we define recursively a

sequence of points along Tr(pv), (x0, yn)0≤n≤N where yn = y0+nd and the corresponding
sequences of paths (Transfern,Transitn)0≤n≤N−1 that link (x0, yn) to (x0, yn+1). To end
the recursion, Let yN+1 = y0+ l and x

′
N = g−1

βN
(yN+1). The last transit and transfer paths

of the sequence are defined as:

(1.16)
TransferN : [xN , x

′
N ] → Oc
x 7→ (x, gβN (x))

and

(1.17)
TransitN : [−x′N ,−xN ] → Oc

x 7→ (−x, fαN
(−x))

Finally, the sequence (Transfern,Transitn)0≤n≤N link the initial and final point of our
vertical path pv, which ends the first part of the demonstration.

Let us now consider a given non-necessarily vertical path from (x0, y0) to (xf , yf),
p : [0, 1]→ Oc. We suppose that p is a normal (arc-length) parametrization, otherwise we
can re-parametrize under the condition that p is regular, meaning that ∀t ∈ [0, 1], ṗ(t) 6=
(0, 0). Let l be the length of the path.
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We will first show that we can find a finite sequence of collision-free vertical and

horizontal paths that link (x0, y0) to (xf , yf). Once again we define ε = d(Tr(p),O)
2

. Let

N = min
{

n ∈ N | l
n
< ε
}

. We define the sequence of points along Tr(p), (xn, yn)0≤n≤N
such that (xn, yn) = p( n

N
), for 0 ≤ n ≤ N . Now for each 0 ≤ n ≤ N − 1 We define the

following sequence of horizontal and vertical paths:

(1.18)
Horizontaln : [xn, xn+1] → Oc

x 7→ (x, yn)

and

(1.19)
Verticaln : [yn, yn+1] → Oc

y 7→ (xn+1, y)

(the notations of the intervals above depends on the relative ordering of xn and xn+1,
and of yn and yn+1). [(xn, yn), (xn+1, yn+1)] is the hypotenuse of the triangle (xn, yn),
(xn+1, yn), (xn+1, yn+1) so the length of the two paths above are less than the length of the
chord [(xn, yn), (xn+1, yn+1)] which is less than the arc-length from (xn, yn) to (xn+1, yn+1)
which is by construction equal to l

N
< ε. This means that the two sequences of paths

Horizontaln and Verticaln are effectively included in Oc, ie. are collision-free.
All in all we constructed a finite sequence of collision-free vertical and horizontal

paths from qinitial to qfinal. Each horizontal path is already a transit path. Each vertical
path can be decomposed using the first part of this demonstration in a finite sequence of
transfer and transit path. This means that we constructed a finite sequence of transfer
and transit paths that link qinitial and qfinal.

�

1.3.2. Manipulation robot. All the development provided in the previous section
for R1 is strictly valid for R2 modulo some slight changes of referential and notations. The
system being a manipulation system, the terminology in [SLCS04] applies now directly
to R2.

To adapt the development of the previous section from R1 to R2 we first need to
replace all the occurrences of ξ by α, so for example we call α-foliation instead of ξ-
foliation for S0. For a fixed α ∈ R, a leaf Q0,α of this foliation corresponds to a fixed
location of the sliding platform while the manipulator moves freely in its workspace.

For the stratum S1 the foliation should correspond to the different possible locations
of the contact point which will be fixed in the inertial frame of the sliding platform. So we
introduce a new variable β = α−x (see Fig. 1.13a) which becomes the new co-parameter
of S1 foliation, that we will call the β-foliation (instead of the x-foliation for R1). See
Fig. 1.14. For β ∈ R, a leaf Q1,β is written as

(1.20) Q1,β = {(α, θ1, θ2) ∈ R× (0, π)× [−π, π] | θ2 = −2 θ1 and 2 l cos(θ1) + β = α}

or, using the parameter θ1 as coordinate chart,

(1.21) Q1,β :











α = β + 2 l cos(θ1)

θ1 = θ1

θ2 = −2 θ1
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α

x β

(a) R2

α

ξ

x β

(b) R3

Figure 1.13. The β variable.

(a) The stratum S1
of R2

(b) β-foliation of
S1

Figure 1.14. The stratum S1 and its foliation for the system R2.

Proposition 1.3.3. If there exists for R2 a collision-free path in unfoliated S0 ∩ S1
from qinitial to qfinal then there exists a finite sequence of transfer and transit paths that
links qinitial and qfinal.

Proof. For R2, the two foliations of S0 ∩ S1 can be respectively represented by the
two families of functions:

(1.22)
fµ : (0, π) → R

θ1 7→ α = fµ(θ1) = constant = µ, µ ∈ R

which represents the horizontal foliation (the α-foliation), and

(1.23)
gν : (0, π) → R

θ1 7→ α = gν(θ1) = 2 cos(θ1) + ν, ν ∈ R

which represents the curved inclined foliation (the β-foliation).
The argument used in the proof of proposition 1.3.2 was that the function g is a

strictly increasing function which allowed us to apply the intermediate value theorem.
Actually, we only need strict monotony to reach the same conclusion. In our present case
the corresponding function g is strictly decreasing. So the proof of proposition 1.3.2 is
valid for proposition 1.3.3.

�

1.3.3. L & M robot. We now consider the robot R3. Similarly to R2 we define the
variable β = α− x as pictured in Fig. 1.13b.

The configuration space of the robot is 4-dimensional R2×T2 parametrized by (ξ, θ1, θ2, α).
We still have only two actuators at the revolute joints, therefore the degree of underac-
tuation is 4 − 2 = 2. However, we also still have only one possible contact force to
resolve the underactuation and reduce its degree by one. One possible way of resolving
the last remaining degree of underactuation is to add a discrete switching control variable
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ud ∈ {0, 1} which will allow us to either block the manipulator’s base and release the
sliding platform (case ud = 0) or release the manipulator’s base and block the sliding
platform (case ud = 1).

Using the terminology of hybrid control theory, we will consider the following discrete
“states” of the robot:

• The free mode. The manipulator’s base and the sliding platform are fixed, i.e.
ξ = constant and α = constant. This defines a first state in which the manipu-
lator’s links (θ1, θ2) move freely in their workspace.
• The manipulation mode. The manipulator’s base is fixed and the end-effector
is in contact with the sliding platform at fixed position in the platform’s frame,
i.e. ξ = constant and β = constant. This defines a second state in which the
manipulator pushes or pulls the platform.
• The locomotion mode. The sliding platform is fixed and the end-effector is in
contact with the sliding platform at fixed position in the platform’s frame, i.e.
α = constant and β = constant. This defines a last state in which the manipu-
lator pushes or pulls itself.

.
We still have two strata: S0 = C and S1 : θ2 = −2θ1. However, S1 is now a three

dimensional submanifold on which we use the coordinate chart (ξ, α, θ1). The two states
locomotion and manipulation are both defined in the stratum S1 and represent two cross
foliations of the same stratum at the same time.

We thus get three foliations, one on S0 and two on S1, that we can visualize in S0∩S1
as represented in Fig. 1.15:

• On S0 we define the (α, ξ)-foliation and the leafs Q0,α,ξ in green on Fig. 1.15. A
path along one of these leaves will be called a free path.
• On S1 we define the (β, ξ)-foliation and the leafs Q1,β,ξ in blue on Fig. 1.15. A
path along one of these leaves will be called a manipulation path.
• On S1 we define the (α, β)-foliation and the leafs Q2,α,β in red on Fig. 1.15. A
path along one of these leaves will be called a locomotion path.

Proposition 1.3.4. If there exists for R3 a collision-free path in unfoliated S0 ∩ S1
from qinitial to qfinal then there exists a collision-free finite sequence of free, manipulation,
and locomotion paths that links qinitial and qfinal.

Proof. Let us consider the 3D Cartesian space R2× (0, π) provided with the system
of coordinates (α, ξ, θ1) in which we consider a compact subset O and the families of
functions

(1.24)

fα,β : (0, π) → R3

θ1 7→











α

β − 2 cos(θ1)

θ1

α, β ∈ R
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αξ

θ1

Figure 1.15. The foliations of the three strata for the system R3. In blue
the (β, ξ)-foliation, in red the (α, β)-foliation, in green the (α, ξ)-foliation.

which represents the red foliation,

(1.25)

gβ,ξ : (0, π) → R
3

θ1 7→











β + 2 cos(θ1)

ξ

θ1

β, ξ ∈ R

which represents the blue foliation,

(1.26)

hα,ξ : (0, π) → R3

θ1 7→











α

ξ

θ1

α, ξ ∈ R

which represents the green foliation.
First we will prove that any collision-free path parallel to the α axis can be decomposed

in a finite sequence of collision-free paths along the foliations. Let that α-parallel path
be defined by θ1 = θ10 and ξ = ξ0. The foliations (gβ,ξ0)β and (hα,ξ0)α represent two
foliations in the affine plan ξ = ξ0, one strictly decreasing and one constant, for which we
can directly apply proposition 1.3.3. Thus in that affine plan ξ = ξ0 we can decompose
the α-parallel path into a finite sequence of blue and green paths.

Similarly we prove that any collision-free path parallel to the ξ axis can be decomposed
in a finite sequence of collision-free paths along the foliations. Let that ξ-parallel path
be defined by θ1 = θ10 and α = α0. The foliations (fα0,β)β and (hα0,ξ)ξ represent two
foliations in the affine plan α = α0, one strictly increasing and one constant, for which we
can directly apply proposition 1.3.2. Thus in that affine plan α = α0 we can decompose
the ξ-parallel path into a finite sequence of red and green paths.

Any collision-free path parallel to the θ1 axis is already a green path in the foliation.
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Now extending the same method that we used in the proof of proposition 1.3.2 we
can prove that any collision-free path in S0 ∩ S1 can be decomposed in a finite sequence
of collision-free paths parallel to the axes α, ξ and θ1. �

One important remark has to be made at this point. The motion that we get by this
planning is a succession of isolated locomotion and manipulation motions, with either
α = constant or ξ = constant. However, we can plan a motion in which both α and ξ are
varying simultaneously, which would be equivalent to a locomotion-while-manipulating
conceptual motion. This can be done simply by replacing one of the two foliations on
S1 with a new foliation, let us call it the (λ1, λ2)-foliation, λ1 + λ2 = 1, for which we
write a condition λ1α + λ2ξ = constant replacing one of the conditions α = constant or
ξ = constant. The (λ1, λ2)-foliation replacing one of the previous two on S1 makes it still
possible to explore all the foliated space using the reduction property. Moreover, adding
the (λ1, λ2)-foliation to the set of the previous three adds redundancy in the system and
gives multiple solutions for the motion planning problem. Thus it is also possible to
synthesize a locomotion-while-manipulating motion.

Let us call a path through the (λ1, λ2)-foliation a locomotion-while-manipulation path.
The previous remark translates into the following corollary

Corollary 1.3.5. If there exists for R3 a collision-free path in unfoliated S0 ∩ S1
from qinitial to qfinal then there exists

• a collision-free finite sequence of free, manipulation, and locomotion-while-manipulation
paths that links qinitial and qfinal.
• a collision-free finite sequence of free, locomotion, and locomotion-while-manipulation
paths that links qinitial and qfinal.
• a collision-free finite sequence of free, locomotion, manipulation, and locomotion-
while-manipulation paths that links qinitial and qfinal.

1.4. Kinematic Control-Theoretic Approach

In the previous section we have seen the underactuation of the robots as foliations
in the C-space along which we need to cruise in order to reach our goal. In this section
we will rather see this underactuation as a non-spanning distribution of control vector
fields, our robots being considered as driftless stratified kinematic control systems. We
strongly advice the reader to get to the two main references [GB01] and [GB02] since
all what follows builds on their result. The references [LS93, Lau98, BL00] can also
prove useful for the reader unfamiliar with nonholonomic motion planning.

1.4.1. Locomotion robot. First let us consider the robot R1.
The aim here is to generate a trajectory (as opposed to path produced in the previ-

ous approach) using nonholonomic control techniques but without explicitly taking into
account the obstacles. However, the philosophy remains the same: planning a sequence
of transfer and transit trajectories in S0 ∩ S1.

For this we first need to model R1 as a kinematic control system. Our kinematic
control inputs are u1 = θ̇1 and u2 = θ̇2. No control input controls directly ξ.

The system is stratified in the sense defined in [GB01]. If we denote by Φ ∈ C ∞(C)
the function that maps every configuration q ∈ C to the height of the end effector h =
Φ(q) = y(q), then we can redefine S0 = C as the top stratum and S1 = Φ−1({0}) as the
bottom stratum. We have the trivial inclusion chain S1 ⊂ S0 .
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Two different equations of motion are acting on the two strata:

• On S0, the base is fixed and we can write

(1.27)
d

dt







ξ

θ1

θ2






=







0

1

0






u1 +







0

0

1






u2

• On S1, the end effector is fixed as we consider a non-sliding contact, and thus
the equation of motion is written

(1.28)
d

dt







ξ

θ1

θ2






=







2l sin(θ1)

1

−2






u1

We can rewrite those two equations using the formalism of driftless control theory.
Let x = (ξ, θ1, θ2)

T denote the state of our kinematic system (Note: for the remaining
of this section x denotes the state of the system as usual in control theory and not the
x-coordinate of the end-effector). Let g0,1(x) =

∂
∂θ1

, g0,2(x) =
∂
∂θ2

be the two control fields

acting on S0 and g1,1(x) = 2l sin(θ1)
∂
∂ξ

+ ∂
∂θ1
− 2 ∂

∂θ2
. Then our stratified driftless system

is modelled by the two equations:

(1.29)
ẋ = g0,1(x)u1 + g0,2(x)u2 , x ∈ S0
ẋ = g1,1(x)u1 , x ∈ S1

Let us study the controllability of our system.

Proposition 1.4.1. The underactuated kinematic control system R1 is small time
locally controllable in int(Cfree)

Proof. We consider x0 ∈ S1 an element from the bottom stratum. Let

(1.30)
∆S0
|x0 = span{g0,1(x0), g0,2(x0)}

∆S1
|x0 = span{g1,1(x0)}

be the distributions associated with the control fields of each stratum and ∆̄S0
|x0 and

∆̄S1
|x0 be their involutive closure under Lie Bracketting. Since [g0,1, g0,2] = 0 we have

(1.31)
∆̄S0
|x0 = span{g0,1(x0), g0,2(x0)}

∆̄S1
|x0 = span{g1,1(x0)}

we clearly have, for each x0 ∈ S1 such that θ1 6= kπ

(1.32) ∆̄S0
|x0 + ∆̄S1

|x0 = span{g0,1(x0), g0,2(x0), g1,1(x0)} = Tx0C
and thus following the controllability theorem of [GB01] the system is small time locally
controllable from x0. �

Now let us address the issue of gait controllability. We consider the cyclic gait

(1.33) G = (S1,S0,S1)
in which the robot alternatively lifts its end-effector off the ground and then put it back
on the ground.

Proposition 1.4.2. R1 is gait-controllable with the gait G.
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Proof. We construct the gait distribution as follows:

(1.34)

D1 = ∆̄S1
|x0

D2 = D1 + ∆̄S0
|x0 = Tx0C

D3 = (D2 ∩ Tx0S1) + ∆̄S1
|x0

we can parametrize S1 by the equations

(1.35) S1 :











ξ = ξ

θ1 = θ1

θ2 = −2θ1
which allows us to write

(1.36) Tx0S1 = span

{

∂

∂ξ
,
∂

∂θ1
− 2

∂

∂θ2

}

we can see that g1,1(x0) ∈ Tx0S1 and thusD3 = Tx0S1 meaning that dim(D3) = dim(Tx0S1),
which proves, following [GB01]’s result, the gait controllability of G. �

We want now to plan a motion from an initial state qinitial = (ξi, θ1i ,−2θ1i)T ∈ S1 to a
goal state qfinal = (ξf , θ1f ,−2θ1f )T ∈ S1. To do so we first construct a stratified extended
system on S1 by constructing a vector field from ∆S0

that is tangent to S1. The vector
field we consider here is g1,2 = g0,1 − 2g0,2 =

∂
∂θ1
− 2 ∂

∂θ2
, so that our system becomes, on

the bottom stratum S1:
(1.37) ẋ = g1,1(x)u1 + g1,2(x)u2

then we extend the system by adding a vector field from the Lie Algebra of the two
control fields we now have on S1 to better condition the system. We get the following
stratified system on S1:
(1.38) ẋ = b1v1 + b2v2 + b3v3

where

(1.39)

b1 = g1,1

b2 = g1,2 ∈ ∆S0
∩ TS1

b3 = [b1, b2] = 2l cos(θ1)
∂
∂ξ

then we solve this system for the fictitious inputs v1, v2, v3 given a straight line trajectory
linking qinitial and qfinal:

(1.40) γ(t) = (γξ(t), γθ1(t),−2γθ1(t))T

where

(1.41)

γξ(t) = ξi +∆ξ.t

γθ1(t) = θ1i +∆θ1.t

∆ξ = ξf − ξi
∆θ1 = θ1f − θ1i

meaning that we solve

(1.42) γ̇(t) = b1(γ(t))v1 + b2(γ(t))v2 + b3(γ(t))v3
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which requires pseudo inverting a matrix

(1.43)







∆ξ

∆θ1

−2∆θ1






=







2l sin(γθ1(t)) 0 2l cos(γθ1(t))

1 1 0

−2 −2 0













v1

v2

v3







we choose the simplest solution of this system

(1.44)







v1(t)

v2(t)

v3(t)






=







0

∆θ1
∆ξ

2l cos(γθ1 (t))







given these inputs we solve the formal ordinary differential equation in a backward Philipp
Hall basis of the Lie Algebra generated by b1, b2, b3 (which happens to be (b1, b2, b3))

(1.45) Ṡ(t) = S(t)(b1v1 + b2v2 + b3v3)

for which we search for a solution of the form

(1.46) S(t) = eh3(t)b3eh2(t)b2eh1(t)b1

by developing the formal exponentials to second order, we get the set of equations for the
hi functions:

(1.47)











ḣ1(t) = v1

ḣ2(t) = v2

ḣ3(t) = h1(t)v2 + v3

with the initial conditions hi(0) = 0 for i = 1, 2, 3.
Integrating those equations gives us the “durations” for following each flow of the

control field:

(1.48)

h1(1) = 0

h2(1) = ∆θ1

h3(1) =
∆ξ

2l∆θ1
ln
∣

∣

∣

1
cos(θ1f )

+ tan(θ1f )
∣

∣

∣

if ∆θ1 6= 0, or

(1.49)

h1(1) = 0

h2(1) = 0

h3(1) =
∆ξ
2l

if ∆θ1 = 0.
Let’s consider the case ∆θ1 6= 0.
If we denote φbit the flow associated with the field bi, the solution should thus be: follow

φb1t for t = 0s, then follow φb2t for t = ∆θ1s, then follow φb3t for t = ∆ξ
2l∆θ1

ln | 1
cos(θ1f )

+

tan(θ1f )|s. However, the flow associated with b3 = [b1, b2] starting from x0 could be
rewritten, for t > 0,

(1.50) φ
[b1,b2]
t (x0) = φ−b2√

t
◦ φ−b1√

t
◦ φb2√

t
◦ φb1√

t
(x0) +O(t)

Finally, denoting αui the command consisting in letting ui = 1 for α seconds if α > 0
and ui = −1 for −α seconds if α < 0 and denoting two successive controls by the
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concatenation operation ♯ we get our final sequence of commands (supposing for example
that ∆ξ ≥ 0):

(1.51) 0u1♯∆θ1u2♯

√

∆ξ

2l∆θ1
ln

∣

∣

∣

∣

1

cos(θ1f )
+ tan(θ1f )

∣

∣

∣

∣

(u1♯u2♯− u1♯− u2)

applied to the flows

(1.52) φb1t (x0) =







2( ξ0
2
+ cos(θ10)− cos(t+ θ10))

t + θ10
−2(t + θ10)







and

(1.53) φb2t (x0) =







ξ0

t + θ10
−2(t + θ10)







In the case ∆θ1 = 0 the solution is simply

(1.54)

√

∆ξ

2l
(u1♯u2♯− u1♯− u2)

The solution is pictured in Fig. 1.16 in which the red curve represents the final output
for an initial trajectory that is the black vertical line from 0 to 10.

Note that we do not reach the goal exactly, but with a bounded error [LS93, GB02].
The bound on the error allows us to reiterate this algorithm from the reached state as a
new initial state until we reach the goal with a desired precision.

ξ

θ1

Figure 1.16. Solution in the (ξ, θ1) plan. The initial trajectory is the
thick black vertical segment drawn on ξ axis. The resulting solution is
the red trajectory. In blue the g1,2 control field, with its integral curves in
yellow. In purple the g1,1 control field, with its integral curves in green.
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1.4.2. Manipulation robot. For R2 we have similar properties to R1. We just
need to replace the variable ξ by the variable α. So let us consider the coordinate chart
(α, θ1, θ2) in our configuration space manifold.

The equations of motion that are acting on the two strata are:

• On S0, the platform is fixed and we can write

(1.55)
d

dt







α

θ1

θ2






=







0

1

0






u1 +







0

0

1






u2

• On S1, the end-effector is fixed in the platform’s inertial frame as we consider a
non-sliding contact, and thus the equation of motion is written

(1.56)
d

dt







α

θ1

θ2






=







−2l sin(θ1)
1

−2






u1

The stratified driftless system is modelled by the two equations:

(1.57)
ẋ = g0,1(x)u1 + g0,2(x)u2 , x ∈ S0
ẋ = g1,1(x)u1 , x ∈ S1

where

(1.58)

g0,1(x) =
∂
∂θ1

g0,2(x) =
∂
∂θ2

g1,1(x) = −2l sin(θ1) ∂∂ξ + ∂
∂θ1
− 2 ∂

∂θ2

Proposition 1.4.3. The underactuated kinematic control system R2 is small time
locally controllable in int(Cfree)

Proof. See proof of proposition 1.4.1. �

Let’s consider the gait G = (S1,S0,S1)
Proposition 1.4.4. R2 is gait-controllable with the gait G.
Proof. See proof of proposition 1.4.2. �

We want now to plan a motion from a given qinitial = (αi, θ1i ,−2θ1i)T to a given
qfinal = (αf , θ1f ,−2θ1f ) in Cfree.

Using the exact same method as for R1, for ∆θ1 6= 0 and supposing for example that
∆α ≥ 0, we get the solution:

(1.59) 0u1♯∆θ1u2♯

√

∆α

2l∆θ1
ln

∣

∣

∣

∣

1

cos(θ1f )
+ tan(θ1f )

∣

∣

∣

∣

(u2♯u1♯− u2♯− u1)

applied to the flows

(1.60) φb1t (x0) =







2(α0

2
+ cos(t+ θ10)− cos(θ10))

t + θ10
−2(t + θ10)
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and

(1.61) φb2t (x0) =







ξ0

t + θ10
−2(t + θ10)







For ∆θ1 = 0 we get:

(1.62)

√

∆α

2l
(u2♯u1♯− u2♯− u1)

1.4.3. L & M robot. R3, with the switching modes control strategy introduced in
section 1.3, can also be modelled as a stratified system.

Let us first see why R3 cannot be directly modelled as a driftless stratified system if
we do not consider this switching strategy. In this case when the rubber end-effector is
in contact at fixed location in the platform’s frame β = constant then the system evolves
in the submanifold defined by the implicit equation:

(1.63) ξ + 2l cos(θ1) + β = α

the derivation with respect to time t leads:

(1.64) ξ̇ − 2l sin(θ1)θ̇1 = α̇

writing θ̇1 = u1 we get a system of the form

(1.65) Aẋ =
∑

i

gi(x)ui

where A is a non invertible matrix and thus cannot be written in the desired form

(1.66) ẋ =
∑

i

gi(x)ui

Now back to the switching control strategy. The equations of motions acting on the
two strata are:

• on S0:

(1.67)
d

dt











ξ

θ1

θ2

α











=











0

1

0

0











u1 +











0

0

1

0











u2

• on S1, in manipulation state:

(1.68)
d

dt











ξ

θ1

θ2

α











=











0

1

−2
−2l sin(θ1)











u1

• on S1, in locomotion state:

(1.69)
d

dt











ξ

θ1

θ2

α











=











2l sin(θ1)

1

−2
0











u1
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As we can see, two different equations of motion are acting on the bottom stratum S1.
They correspond to two control vector fields defined on S1. Since the solution produced
by the method of [GB02] consists in following the vector fields sequentially and never
a linear combination of the vector fields, we can use it for R3 to produce the control
sequence with the state-switching control nested in the solution.

So we want to steer the system from a given qinitial = (ξi, θ1i ,−2θ1i , αi)T to a given
qfinal = (ξf , θ1f ,−2θ1f , αf )T . We first derive equation the stratified driftless system on
the bottom stratum:

(1.70) ẋ = g1(x)u1 + g2(x)u2 + g3(x)u3

with

(1.71)

g1(x) =











0

1

−2
0











, g2(x) =











2l sin(θ1)

1

−2
0











g3(x) =











0

1

−2
−2l sin(θ1)











we then extend the system by adding vector fields from Lie(g1, g2, g3):

(1.72) ẋ = b1v1 + b2v2 + b3v3 + b4v4 + b5v5

where

(1.73)

b1 = g1

b2 = g2

b3 = g3

b4 = [g1, g2] =











2l cos(θ1)

0

0

0











b5 = [g1, g3] =











0

0

0

−2l cos(θ1)











(Note: we stop to second order and we do not need to add [g2, g3] = b5 − b4), then we
solve this system for the fictitious inputs v1, v2, v3, v4, v5 given a straight line trajectory
linking qinitial and qfinal:

(1.74) γ(t) = (γξ(t), γθ1(t),−2γθ1(t), γα(t))T
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where

(1.75)

γξ(t) = ξi +∆ξ.t

γα(t) = αi +∆α.t

γθ1(t) = θ1i +∆θ1.t

∆ξ = ξf − ξi
∆α = αf − αi
∆θ1 = θ1f − θ1i

so we solve

(1.76) γ̇(t) = b1(γ(t))v1 + b2(γ(t))v2 + b3(γ(t))v3 + b4(γ(t))v4 + b5(γ(t))v5

which requires pseudo inverting the matrix

(1.77)











∆ξ

∆θ1

−2∆θ1
∆α











=











0 2l sin(γθ1) 0 2l cos(γθ1) 0

1 1 1 0 0

−2 −2 −2 0 0

0 0 −2l sin(γθ1) 0 −2l cos(γθ1)

























v1

v2

v3

v4

v5















once again we choose the simplest solution of this system

(1.78)















v1(t)

v2(t)

v3(t)

v4(t)

v5(t)















=

















∆θ1

0

0
∆ξ

2l cos(γθ1 (t))

− ∆α
2l cos(γθ1 (t))

















given these inputs we solve the formal ordinary differential equation in a backward Philipp
Hall basis of the Lie Algebra generated by b1, b2, b3, b4, b5 which is also (b1, b2, b3, b4, b5)

(1.79) Ṡ(t) = S(t)(b1v1 + b2v2 + b3v3 + b4v4 + b5v5)

for which we search for a solution of the form

(1.80) S(t) = eh5(t)b5eh4(t)b4eh3(t)b3eh2(t)b2eh1(t)b1

by developing the formal exponentials to second order, we get the set of equations for the
hi functions:

(1.81)































ḣ1 = v1

ḣ2 = v2

ḣ3 = v3

−ḣ2h1 + ḣ3h2 + ḣ4 = v4

−ḣ3h1 − ḣ3h2 + ḣ5 = v5

with the initial conditions hi(0) = 0 for i = 1, 2, 3, 4, 5.
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Integrating those equations gives us the “durations” for following each flow of the
control field:

(1.82)

h1(1) = ∆θ1

h2(1) = 0

h3(1) = 0

h4(1) =
∆ξ

2l∆θ1
ln
∣

∣

∣

1
cos(θ1f )

+ tan(θ1f )
∣

∣

∣

h5(1) = − ∆α
2l∆θ1

ln
∣

∣

∣

1
cos(θ1f )

+ tan(θ1f )
∣

∣

∣

if ∆θ1 6= 0, or

(1.83)

h1(1) = 0

h2(1) = 0

h3(1) = 0

h4(1) =
∆ξ
2l

h5(1) =
∆α
2l

if ∆θ1 = 0.
Finally, for ∆θ1 6= 0 and supposing for example that ∆ξ ≥ 0 and ∆α ≥ 0, we get the

solution:

(1.84) ∆θ1u1♯0u2♯0u3

♯

√

∆ξ

2l∆θ1
ln | 1

cos(θ1f )
+ tan(θ1f )|(u1♯u2♯− u1♯− u2)

♯

√

∆α

2l∆θ1
ln | 1

cos(θ1f )
+ tan(θ1f )|(u3♯u1♯− u3♯− u1)

applied to the flows

(1.85)

φb1t (x0) =











ξ0

t+ θ10
−2(t+ θ10)

α0











φb2t (x0) =











2( ξ0
2
− cos(t + θ10) + cos(θ10))

t+ θ10
−2(t + θ10)

α0











φb3t (x0) =











ξ0

t + θ10
−2(t + θ10)

2(α0

2
+ cos(t+ θ10)− cos(θ10))
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For ∆θ1 = 0 we get:

(1.86)

√

∆ξ

2l
(u1♯u2♯− u1♯− u2)♯

√

∆α

2l
(u3♯u1♯− u3♯− u1)

The solution is pictured in Figs. 1.17 and 1.18.

α

ξ

θ1

Figure 1.17. Trajectory planning for R3. The colors used are the same as
in Fig.1.15. The initial trajectory, which violates the foliation, is the black
diagonal segment on the left-back face of the cube, the resulting trajectory
is the red-blue-green trajectory that follows the foliations.

1.5. Dynamic Trajectory Planning Approach

In the previous sections we were primarily concerned by geometric path planning, even
though section 1.4 tackled the problem from a kinematic trajectory planning perspective.
In this section the objective is to generate torque-driven dynamically valid trajectories in
the state space TC (the tangent bundle of the smooth manifold C).

1.5.1. Locomotion robot. First let us study the case of the robot R1. We would
like to generate dynamically valid trajectories (open-loop control laws) for both the trans-
fer and the transit paths.

Problem 1.5.1. Given (qinitial, q̇initial), (qfinal, q̇final) ∈ TCfree and a geometric path p :
[0, 1]→ Cfree such that p(0) = qinitial and p(1) = qfinal, find tf ∈ R and a re-parametrization
of Tr(p) γ : [0, tf ] → Cfree such that γ realizes the dynamics equations of motion of R1

along the path, under a Coulomb friction model hypothesis.

The efforts applied on R1 in each of the two strata representing the two contact modes
are portrayed in Fig. 1.19.
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Figure 1.18. Solution of the trajectory planning for the R3 system. The
sliding of the black rectangle and the red rectangle along the horizontal axis
illustrate respectively the locomotion and the manipulation components of
the motion. The first column displays snapshots of the motion taken at
times of change of control fields (points where the curve in Fig. 1.17 changes
color). The second column represents the transition motions between two
successive snapshots.
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τ2

τ1

(a) Free mode, stratum S0

τ2

τ1
fc

(b) Contact mode, stratum S1

Figure 1.19. Forces and torques in the two modes

Using the Lagrangian approach, the dynamics of the system can be written as

(1.87) M(q)q̈ + C(q, q̇)q̇ +N(q, q̇)− J(q)Tfc =







0

τ1

τ2







which is in S1 (contact mode) when fc 6= 0 and in S0 (free mode) when fc = 0; M , C, N ,
J denote respectively the inertia matrix, the Coriolis and centrifugal effects, the external
efforts (gravity, joint friction) vector, and the Jacobian matrix of the robot.

In the free mode, we can notice that ξ̈ 6= 0 provided that the inertial effects of moving
the links will cause a dynamic reaction on the base. In the following we will consider
these links dynamics effects as perturbations and neglect them, which means that on the
free mode ξ̈ = 0.

Let us now focus on the contact mode, which is our main concern in this study; fc is
the Lagrange multiplier associated with the Lagrangian model of the system under the
Pfaffian constraint J(q)q̇ = 0. Solving the dynamic and the Pfaffian constraint equations
for fc and q̈ leads

(1.88) fc = −(JM−1JT )−1(JM−1(τ − Cq̇ −N) + J̇ q̇)

where τ = (0, τ1, τ2)
T .

To avoid sliding, fc has to lie within the Coulomb friction cone F :
(1.89) fc ∈ F
and

(1.90) F = {(fx, fy) ∈ R
2 | fy ≥ 0 and |fx| ≤ µfy}

Now, we derive an open-loop control law t 7→ (τ1(t), τ2(t)) which steers the system
from an initial contact state (qi, q̇i) to a final state (qf , q̇f ) maintaining a non-sliding
contact with the ground. To do so we will adapt some of the ideas that were introduced
in [SEM05].

To make the derivations easier we will neglect the masses of the links and consider
only the mass of the sliding base m0. The dynamics equations become:

(1.91)











m0ξ̈ = fx

fx.(sin(θ1) + l sin(θ1 + θ2))− fy.(cos(θ1) + cos(θ1 + θ2)) = τ1/l

fx. sin(θ1 + θ2)− fy. cos(θ1 + θ2) = τ2/l

In a given contact mode, the system evolves in a one-dimensional submanifold of
the configuration space, a leaf of the stratum S1, that we will parametrize with ξ. For



34 1. NON-DECOUPLED LOCOMOTION AND MANIPULATION

example, if the contact is fixed at the abscissa 0 then ξ = −2l cos(θ1) and θ2 = −2θ1.
Solving equation (1.91) for fx and fy gives us

(1.92)

{

fx =
τ1−2τ2√
4l2−ξ2

fy =
τ1
ξ

and the friction cone condition fc ∈ F , together with the maximum torques conditions
|τ1| ≤ τmax and |τ2| ≤ τmax yields the following torque cone condition

(1.93) Aξ

(

τ1

τ2

)

≤ bξ

where

(1.94) Aξ =























1√
4l2−ξ2

− µ
ξ
− 2√

4l2−ξ2

− 1√
4l2−ξ2

− µ
ξ

2√
4l2−ξ2

−1 0

1 0

0 −1
0 1























and

(1.95) bξ =

{

(0, 0, 0, τmax, τmax, τmax)
T , ξ > 0

(0, 0, τmax, 0, τmax, τmax)
T , ξ < 0

Finally, the open-loop dynamic trajectory planning reduces to

ξ̈ = f(ξ, τ1, τ2) =
τ1 − 2 τ2

m0

√

4l2 − ξ2

under the constraint Aξ

(

τ1

τ2

)

≤ bξ

(1.96)

or, putting Cξ the line matrix Cξ =
1

m0

√
4l2−ξ2

(

1 −2
)

,

ξ̈ = Cξ

(

τ1

τ2

)

under the constraint Aξ

(

τ1

τ2

)

≤ bξ(1.97)

projecting in the space of task freedom [SEM05], using the change of control input

u = Cξ

(

τ1

τ2

)

, we get the simple double integrator ξ̈ = u where the torque cone condition

translates into bounds on acceleration umin(ξ) ≤ u ≤ umax(ξ). The time-optimal solution
for this problem is known as the “bang-bang” control law [BDG85], which consists in
applying maximal acceleration forward from the initial state, maximal deceleration (ie.
minimal acceleration) backward from the final state, and switching between those two
commands at the intersection point of the two trajectories obtained, see Fig. 1.20.
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(a) Projection of torque cone in the ξ̈ space (b) Maximum acceleration and deceleration

(c) Control field associated with umin (d) Control field associated with umax

(e) Numerical integration and final solution

Figure 1.20. Bang-bang control law synthesis
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1.5.2. Manipulation robot. Similarly to R1, we now consider the robot R2 in the
contact stratum S1. Let now m0 denote the mass of the sliding platform.

Let fc = (fx, fy) ∈ R2 be the contact force applied by the sliding platform on the
end-effector of the manipulator.

Instead of writing the Newton’s second law of motion applied to the platform and
concatenate it with the Lagrangian dynamics of the manipulator coupled with the non-
sliding contact point kinematic condition, we exhibit the equivalence with R1 by directly
writing the constrained Lagrangian problem for the whole system defined by its gener-
alized coordinates q = (α, θ1, θ2)

T . We get a similar equation to (1.87) where fc must
be seen as the Lagrangian multiplier associated with J(q)q̇ = 0, that we derived by
differentiating the holonomic contact constraint

(1.98) h(q) = α− 2 cos(θ1) + constant = 0

Thus, the following derivations follow the exact same scheme as for R1, and we can
control the variable α using the bang-bang control law.

1.5.3. L & M robot. The dynamics and control of R3 with the switching states
control strategy considered in section 1.3 simply reduce to the dynamics and control of
R1 and R2 separately in each of the states of the system, respectively the locomotion and
manipulation mode.

Here we will rather derive the dynamics of R3 in contact mode (stratum S1) without
the switching control input strategy. This can be seen as the dynamics of motion realized
by taking a contact support on a mobile piece of the environment by the robot R1,
performing manipulation and locomotion at the same time.

Once again, instead of writing separately the dynamics of the subsystems made of the
locomotor/manipulator coupling them with the non-sliding contact point kinematic con-
straint, we directly consider the whole system q = (ξ, θ1, θ2, α)

T and write its Lagrangian
equation of motion under the Pfaffian constraint which derives from the holonomic con-
straint

(1.99) h(q) =

(

ξ + l cos(θ1) + l cos(θ1 + θ2)− α + constant

l sin(θ1) + l sin(θ1 + θ2) = 0

)

= 0

So we get the following equation

(1.100) M(q)q̈ + C(q, q̇)q̇ +N(q, q̇)− J(q)Tfc =











0

τ1

τ2

0











Let us now generate a control law for R3 in contact mode under Coulomb friction
hypothesis. For the sake of clarity and without loss of generality we suppose that the
end effector is fixed at the location β = 0. Neglecting the masses of the link gives us the
following dynamics equation:

(1.101)
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If we introduce the new variable δ = ξ − α which expresses the displacement of the
locomotor in the platform’s inertial frame, we can rewrite the equation as

(1.102)















mξ−mα

2
δ̈ + fx = 0

−δfy = τ1
√

1− δ2

4
fx − δ

2
fy = τ2

which are the same equations as the ones we got respectively for ξ and α in R1 and R2,
with a virtual mass m0 =

mξ−mα

2
. We can thus control the variable δ with the same

control law, which is not any more valid for ξ and α separately.

1.6. Conclusion

The motion planning and control problems for the systems R1 (locomotion-only), R2

(manipulation-only), and R3 (simultaneous locomotion and manipulation) are solvable
with the same tools. We proved the reduction property for all three systems. This
property reduces the path planning problem in a foliated configuration space to a classical
path planning problem in a non-foliated space. The formulation of the motion planning
problem as a BVP was written for the three systems, and non-holonomic trajectory
planning techniques were used for solving this problem. Dynamics derivations appeared
also to be equivalent for the three robots. The Lagrangian approach acting on one
global system with generalized coordinates instead of different subsystems as traditionally
considered turned out to be a powerful unification tool for making these derivations.

We thus successfully applied a set of three motion planning methods for the three
systems R1, R2, and R3. By doing so, we showed that our initial paradigm, the simul-
taneous non-decoupled locomotion and manipulation planning, holds using any of these
methods.

Though being theory-oriented, the study was primarily motivated by the practical
humanoid robot motion planning issues, given that a humanoid robot is a platform
with both locomotion and manipulation capabilities. However, the particular deriva-
tions presented here require low dimensionality that is not found is such humanoid
systems. Nevertheless, scaling this theoretical paradigm to practical real robots can
be achieved by using adequate complexity-reduction strategies (for example the plan-
ning method of [SLCS04] is applied to multiple-dof manipulators using a sampling-
based strategy). As for humanoids, by adapting our paradigm to the contact-before-
motion strategy [Bre06], it becomes conceivable to integrate and fuse works done on
humanoid locomotion planning [EKM06, HBL+08] and dexterous manipulation plan-
ning [YSY03, SSEKP07, XKL07], or any other type of whole-body manipulation
planning [YKH04, EAPL06], within one non-decoupled planning framework. This is
the purpose of the next chapter (Chapter 2). As an example, Fig. 1.21 illustrates the
non-decoupled locomotion and manipulation planning for a humanoid robot as presented
in this chapter. In this scenario, the goal configuration is specified in terms of a goal
global position of the humanoid robot and a goal orientation for the manipulated box.
Our non-decoupled planner plans a sequence of contacts between the three interacting
entities (humanoid robot, box, environment) in order to reach the goal.
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Figure 1.21. The objective is for the HRP-2 robot to advance 2m forward
while simultaneously performing half rotation of the 5 kg box, bringing the
purple face up. Friction coefficients between the hands and the box are set
to µ = 1. The robot autonomously re-grasps and rotates the box while
walking.



CHAPTER 2

Multi-Contact Stances Planning for Multiple Agents

We move to the full-scale systems from here on, and we propose in this second

chapter a generalized framework together with an algorithm to plan a discrete

sequence of multi-contact stances that brings a set of collaborating robots and

manipulated objects from a specified initial configuration to a desired goal

through non-gaited acyclic contacts with their environment or among each

other. The broad range of applications of this generic algorithm includes

legged locomotion planning, whole-body manipulation planning, dexterous

manipulation planning, as well as any multi-contact-based motion planning

problem that might combine several of these sub-problems, thus bridging the

gap with the non-decoupled planning for low-dimensional systems as intro-

duced in Chapter 1. We demonstrate the versatility of our planner through

example scenarios taken from the aforementioned classes of problems in vir-

tual environments.

2.1. Introduction

Recent works [Esc08, Hau08] started tackling the acyclic motion planning prob-
lem for humanoid and/or legged robots taking a contacts-before-motion planning ap-
proach. As opposed to the footstep planning problem [KNK+01, CKNK03, CLK+05,

TvdP98, KMB95], they target higher level “intelligence” of the robots by erasing
the knowledge-based specification of a bipedal or quadrupedal gait. The approach is
based on planning a feasible sequence of stances from an initial configuration to a goal
configuration, before planning the subsequent continuous motion that goes through this
planned sequence of stances. This chapter is concerned only with the first part of the
problem, i.e. the discrete stances sequence planning sub-problem. Such a decoupling
scheme of the two components of the problem, though less theoretically founded in
terms of completeness than the interleaved approach of multi-modal planning [HL08],
enables us to reduce the complexity of the problem and yet still manages to solve highly
constrained situations as demonstrated on practical real-life humanoid robot experi-
ments [EKM06, EKMG08, EK09].

The core algorithm we are using here was first introduced in the works of Escande
et al. [EKM06]. In its most reduced form, it is a Best-First Planning (BFP) algo-
rithm [Lat91, LaV06] that explores the continuum of the workspace for finding best
contact locations, as opposed to the main other method first introduced in the works of
Hauser et al. [HBL05] requiring prior discretization of possible contact locations on the
environment. A major drawback of this latter approach resides in the difficult trade-off be-
tween the possible combinatorial issues that would be raised by too many pre-discretized
locations, versus the possible misses of solutions induced by too few pre-discretized loca-
tions (The “continuous modes” problem as raised in [HL10] and [HNTH11]).

39



40 2. MULTI-CONTACT PLANNING

In this chapter we build on this BFP-based algorithm and propose a novel framework
that makes it possible, with one unique planner, to solve different classes of robotics
contacts planning problems, beyond the initially targeted “legged locomotion for a sin-
gle robot” problem. Such a planner can solve, for example, the non-gaited dexterous
manipulation problem, some example approaches of which can be found in the past
few years’ literature [SSEKP07, XKL07, YSY03, MA04]. A more original contri-
bution is to solve the contacts planning problem for collaborative robots manipulating
objects [EAPL06]. The needed synchronization of contacts planning for the cooperative
carrying of a heavy object by two humanoid robots is one example of the results of the
planner. Additionally, by unifying locomotion and manipulation, the planner can also
solve contact planning problems for situations interleaving both, which can prove useful
for platforms such as humanoid robots that are designed to execute both locomotion and
manipulation tasks.

These contributions (extension to multiple agents, generalization to any robotic plat-
form, and non-decoupling of locomotion and manipulation) are made possible thanks to
a formulation of the problem that reaches a higher level of abstraction, necessary in order
to achieve the desired generalization. It allows us to make the extensions listed above
with little rewriting effort of the existing algorithms. In other words, the algorithms here
are the same as their original form [Esc08, Hau08]; by generalizing the formalism and
the framework, we extend their capabilities to a wider range of applications. This is our
main contribution. The approach retained for the multi-robot systems is a centralized
one. Decentralized strategies such as prioritized planning [ELP87, vdBO05] or fixed-
path coordination [SLL02] are not directly applicable since the nature of our planning
is different and does not occur in the configuration space but rather in a different-nature
stances set.

The rest of this chapter is organized as follows. We first propose a formulation of the
problem using the language and formalism of basic set theory (Section 2.2). We then
write our algorithm in this synthetic language and compare it with the other existing
method (Section 2.3). Last we demonstrate some results obtained by our planner on
different classes of problems (Section 2.4).

2.2. Preliminary Notations and Definitions

In this section we will introduce the set-theoretic formalism that will make the ex-
tensions and the locomotion-manipulation unification process easier to write. The ab-
straction effort invested in this section will later be rewarded in the algorithms writing
section (Section 2.3). It will allow us to write the algorithms in a very generic, synthetic,
and rigorous style. It might be useful to recall beforehand that, within this formalism,
for any two sets A and B, p : A → B denotes a mapping from A to B, P(A) denotes
the power set of A (set of subsets of A), card(A) the cardinality of A, and for any two
subsets A′ ∈ P(A) and B′ ∈ P(B), p(A′) and p−1(B′) denote respectively the direct
and inverse images of A′ and B′ under the mapping p. We use the symbol A1 \ A2 to
denote the difference of two subsets A1, A2 ∈P(A).

So let us suppose we have a system of N robots indexed in the set {1, . . . , N}. A
“robot” here is either a fully- or under-actuated articulated mechanism or a non-actuated
manipulated object. The environment can also be considered as a special case of “robot”,
indexed with 0. Thus the index set {0, . . . , N} contains all the articulated mechanisms,
the manipulated objects, and the environment.
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Figure 2.1. Examples of the 4 types of kinematic trees yielding confi-
guration space. Top left: a humanoid robot. Top right: a dexterous hand.
Bottom left: the environment. Bottom right: a manipulated object. In
red: fixed base. In green: free-flying base. A system of robots consists of
an arbitrary number of any of those 4 types of kinematics trees.

Each robot r ∈ {0, . . . , N} can be represented as a kinematic tree made of br bodies
(nodes of the tree) indexed in {0, . . . , br − 1}, linked by jr actuated joints (edges of the
tree) indexed in {1, . . . , jr} (or ∅ if jr = 0). See Fig. 2.1.

• br = 1 and jr = 0 if r refers to the environment or to a manipulated object.
• The index 0 in the set {0, . . . , br − 1} refers to the root body of the kinematic
tree representing the robot r.

The configuration q of the system is an element of C =
∏N

r=1 Cr, the Cartesian product
of the configuration spaces of the individual robots of the system. Hence

(2.1) q = (q1, . . . , qN) ,

where, for r ∈ {1, . . . , N},
• qr = (xr, yr, zr, αr, βr, γr, δr, θr,1, . . . , θr,jr), if r refers to a free-base articulated
mechanism such as a humanoid robot for example, the first seven components
representing the 3D position and the unit quaternion-parametrized orientation
of its root body indexed by 0.
• qr = (xr, yr, zr, αr, βr, γr, δr), if r refers to a rigid non-articulated manipulated
object.
• qr = (θr,1, . . . , θr,jr), if r refers to a fixed-base manipulator such as the finger of
a multi-fingered dexterous hand for example.
• qr is not defined for r = 0 (the environment). It could be if we were considering
deformable environment for example.

On each robot r ∈ {0, . . . , N} we further specify a set of mr planar surface patches
indexed in {1, . . . , mr}. A pair (r, s) ∈ {0, . . . , N}× {1, . . . , mr}, which characterizes the
surface, refers to an element (b′r,s, Tr,s) of {0, . . . , br − 1} × SE(3), where b′r,s denotes the
body to which the surface (r, s) is rigidly attached and Tr,s = (or,s, ~xr,s, ~yr,s, ~zr,s) denotes a
frame attached to the body b′r,s, such that the point or,s belongs to the surface, the vector
~zr,s is the inwards normal to the surface, and the vectors ~xr,s, ~yr,s are tangential to the
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Figure 2.2. Geometric illustration of a contact (r1, s1, r2, s2, x, y, θ).

surface. More general (i.e. non-planar) surface patches can be handled by considering
normalized Gauss frames [Mon88].

A contact is given by the specification of the two surfaces in contact (r1, s1) and
(r2, s2) (i.e. a 4-tuple (r1, s1, r2, s2)) as well as their relative position/orientation (x, y, θ).
More precision is found in the following definition:

Definition 2.2.1 (contact, set of contacts E). A contact is a 7-tuple (r1, s1, r2, s2, x, y, θ),
such that r1 ∈ {1, . . . , N}, r2 ∈ {0, . . . , N}, r2 ≤ r1, s1 ∈ {1, . . . , mr1}, s2 ∈ {1, . . . , mr2},
s2 < s1 if r1 = r2, b

′
r1,s1
6= b′r2,s2 if r1 = r2, and (x, y, θ) ∈ R2 × S1. We define the set of

contacts E as the subset of N4 × R2 × S1 made of such 7-tuples.

Remark 2.2.2. We can notice that this very generic definition only excludes environment-
environment contacts (r1 6= 0), all other contact situations are possible, including a con-
tact between two different bodies of the same robot (case r1 = r2). The ordering imposed
on (r1, r2) and on (s1, s2) if r1 = r2 is required to avoid representing twice the same
contact situation.

A contact (r1, s1, r2, s2, x, y, θ) geometrically corresponds to setting

~zr1,s1(q) = −~zr2,s2(q) ,(2.2)

~xr1,s1(q) = cos(θ)~xr2,s2(q) + sin(θ)~yr2,s2(q) ,(2.3)

~yr1,s1(q) = sin(θ)~xr2,s2(q)− cos(θ)~yr2,s2(q) ,(2.4)

or1,s1(q) = or2,s2(q) + x~xr2,s2(q) + y ~yr2,s2(q) .(2.5)

We call these equations the contact equations. They are illustrated in Fig. 2.2. Once
again, for simplicity these are restricted to the planar surfaces case; for surfaces modeled
as manifolds, the more general contact equations [Mon88] should be considered (see
Section 2.4 for our practical handling of non-planar surfaces).

On N4 × R2 × S1 we consider the projection map pN4 : (r1, s1, r2, s2, x, y, θ) 7→
(r1, s1, r2, s2) which keeps only the first 4 components of the 7-tuple. pN4 maps a contact
to the pair of surfaces that constitute that contact.
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Definition 2.2.3 (stance, set of stances Σ). A stance σ is a subset of the set of
contacts E such that every pair of surfaces appears at most once. The set of all stances
is denoted Σ ,

(2.6) Σ =
{

σ ∈P(E) | ∀c1, c2 ∈ σ : c1 6= c2 ⇒ pN4(c1) 6= pN4(c2)
}

.

Remark 2.2.4. A stance σ is necessarily a finite subset of E, given that

(2.7) card(σ) ≤ card(pN4(E)) ≤ N (N + 1) ( max
r∈{0,...,N}

mr)
2 .

Every configuration of the system of robots defines a unique stance made of all the
contacts for the robots in that configuration. Let us then denote pΣ : C → Σ the
“forward kinematics” mapping that maps every configuration q to its stance σ. Inversely,
each stance σ defines an “inverse kinematics” submanifold Qσ of the configuration space
containing all the configurations that satisfy the contact equations (2.2), (2.3), (2.4), and
(2.5) for all the contacts in the stance,

(2.8) Qσ = p−1
Σ ({σ}) .

On this submanifold we isolate a special subspace of same dimensionality but less volume
Fσ in which the configurations are physically valid static configurations (i.e. configura-
tions that are in static equilibrium, collision-free, for which the joint angles and torques
are within their prescribed bounds).

The planning we will perform will be made on the set of stances Σ, rather than on
the configuration space C as it is the case in usual motion planning. We thus need to
define an adjacency relation between stances. Two stances will be considered adjacent if
they differ by exactly one contact. To formalize this we define the binary relation “have
one contact less than”, that we denote ⊏, as

(2.9) σ1 ⊏ σ2 if σ1 ⊂ σ2 and card(σ2) = card(σ1) + 1 .

Definition 2.2.5 (adjacency). Two stances σ1 and σ2 are said to be adjacent if
σ1 ⊏ σ2 or σ2 ⊏ σ1. Given a stance σ we define the three following adjacency sets:
Adj+(σ) the set of stances that add one contact to σ, Adj−(σ) the set of stances that
remove one contact from σ, and Adj(σ) the set of stances that are adjacent to σ (add or
remove one contact). Formally:

Adj+(σ) = {σ′ ∈ Σ | σ ⊏ σ′} ,(2.10)

Adj−(σ) = {σ′ ∈ Σ | σ′
⊏ σ} ,(2.11)

Adj(σ) = Adj+(σ) ∪Adj−(σ) .(2.12)

A step in the plan will be a transition from one stance to an adjacent stance. Such a
step will be feasible if there exists a common transition configuration that realizes both
stances at the same time, i.e. if the intersection of the respective feasible spaces of the
two stances is non-empty. This motivates the following definition:
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Figure 2.3. Venn diagrams illustrating Proposition 2.2.9.

Definition 2.2.6 (feasible sequence of stances). A sequence of stances (σ1, . . . , σn) ∈
Σn, n ≥ 2, is said to be feasible if it is made of a succession of adjacent stances with
common transition configurations between two successive stances

(2.13) ∀ i ∈ {1, . . . , n− 1} σi+1 ∈ Adj(σi) and Fσi ∩Fσi+1
6= ∅ .

We can now formulate the problem we want to solve:

Problem 2.2.7 (non-gaited stances planning problem). Given two stances σstart and
σgoal in Σ, find a feasible sequence of stances (σ1, . . . , σn) such that σ1 = σstart and
σn = σgoal.

The ability to solve Problem 2.2.7 rather than cyclic gaited steps planning problems
makes the robots more autonomous in handling unexpectedly structured environment.
Note, however, that in many simple cases, gaited sequences emerge automatically (“nat-
urally”) in our results from solving Problem 2.2.7 (cf. Section 2.4).

Remark 2.2.8. We can also specify the goal to reach in terms of a configuration qgoal
rather than a stance σgoal. In this case we get the same formulation as Problem 2.2.7 where
σgoal simply denotes pΣ(qgoal). These are actually the kind of queries we are addressing
in Section 2.4.

Solving Problem 2.2.7 in a greedy algorithmic way amounts to exploring Adj(σ) for
a given σ, choosing σ′ ∈ Adj(σ), finding a configuration q in Fσ ∩Fσ′ to validate the
choice of σ′, and iterating on σ′. Let us then analyse more closely the structure of Adj(σ)
for a given σ ∈ Σ. First, we should rewrite constructive expressions of the adjacency sets.
From Definition 2.2.5 it follows that

Adj+(σ) =
{

σ ∪ {c} | c ∈ p−1
N4

(

pN4(E) \ pN4(σ)
)}

,(2.14)

Adj−(σ) =
{

σ \ {c} | c ∈ σ
}

.(2.15)

The removing-one-contact set Adj−(σ) is thereby a finite set, with card
(

Adj−(σ)
)

=

card(σ). The adding-one-contact set Adj+(σ), however, needs to be more finely struc-
tured. When adding a contact (r1, s1, r2, s2, x, y, θ), we first choose the two surfaces
(r1, s1) and (r2, s2) that we want to add as a contact, then we decide what their relative
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position/orientation (x, y, θ) will be. A nice way to formalize this is through equivalence
classes. Let us define on Adj+(σ) the following equivalence relation

(2.16) σ1 ∼σ σ2 if σ1 = σ ∪ {c1} and σ2 = σ ∪ {c2} and pN4(c1) = pN4(c2) .

This equivalence relation only makes distinction between the surface pairs in the added
contacts with no consideration for the positions (x, y, θ). The quotient set Adj+(σ)/∼σ

,
containing all the possible surface pairs that we can add to the stance, is in canonical
bijection with pN4(E) \ pN4(σ), i.e. the set of surface pairs that are not already present in
the stance. So for each 4-tuple (r1, s1, r2, s2) ∈ pN4(E)\pN4(σ) we denote clσ(r1, s1, r2, s2)
the corresponding equivalence class, which contains all the possible positions (x, y, θ)
when we want to add the surface pair (r1, s1, r2, s2) as a contact (this equivalence class
is thus homeomorphic to R

2 × S
1)

(2.17) clσ(r1, s1, r2, s2) =
{

σ ∪
{

(r1, s1, r2, s2, x, y, θ)
}

| (x, y, θ) ∈ R
2 × S

1
}

.

We now have all the ingredients to write an algorithm that tries to solve Problem 2.2.7:
exploring Adj−(σ) is straightforward; for Adj+(σ), the algorithm explores every equiva-
lence class from Adj+(σ)/∼σ

by solving an optimization problem on (x, y, θ).
Before concluding this section, we will state a last useful property related to feasible

transitions between two adjacent stances. For two adjacent stances σ and σ′, a confi-
guration in Fσ ∩Fσ′ is a configuration that realizes the geometric closure condition for
the larger stance of the two (Qσ∪σ′) and the feasibility condition for the smaller stance
of the two (Fσ∩σ′). We can formalize this through the following property, illustrated in
Fig. 2.3:

Proposition 2.2.9. Let σ ∈ Σ and σ′ ∈ Adj(σ) . Then we have

(2.18) Fσ ∩Fσ′ = Qσ∪σ′ ∩Fσ∩σ′ .

Proof. Fσ ∩ Fσ′ ⊂ Qσ∪σ′ ∩ Fσ∩σ′ is trivial. Inversely, let q ∈ Qσ∪σ′ ∩ Fσ∩σ′ .
This implies that q belongs to Qσ∪σ′ and is a physically valid static configuration, hence
q ∈ Fσ∪σ′ and subsequently q ∈ Fσ∩σ′ ∩Fσ∪σ′ = Fσ ∩Fσ′ . �

Corollary 2.2.10. Let σ ∈ Σ and clσ(r1, s1, r2, s2) ∈ Adj+(σ)/∼σ
. Then we have

(2.19) Fσ ∩
(

⋃

(x,y,θ)

Fσ∪{(r1,s1,r2,s2,x,y,θ)}
)

= Fσ ∩
(

⋃

(x,y,θ)

Qσ∪{(r1,s1,r2,s2,x,y,θ)}
)

.

The role of Proposition 2.2.9 is to release redundant constraints in Definition 2.2.6,
while Corollary 2.2.10 will prove useful later in the course of this chapter (Section 2.3.2).

Remark 2.2.11. In some works [ALS95, SSEKP07, SLCS04] a path through Fσ

from q ∈ Fσ to q′ ∈ Fσ ∩ Qσ′ for σ
′ ∈ Adj+(σ) would be called a transit path, and a

path through Fσ from q ∈ Fσ to q′ ∈ Qσ ∩Fσ′ for σ
′ ∈ Adj−(σ) is called a transfer path

(cf. Fig. 2.4).
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Figure 2.4. Transfer and transit paths for a biped feasible sequence of
stances. In green transfer paths, in red transit paths. The top figure
represents the footprints in Σ (right foot in blue, left foot in black), the
bottom figure is a representation in C (for clarity Q{c1} ∩ Q{c4} is not
represented).

2.3. Algorithm

Our objective now is to solve Problem 2.2.7 formulated in Section 2.2.

2.3.1. The Discrete Approach. In this section we discuss the approach proposed
in the works of Hauser et al. and see how it fits in our generalized formalism for multiple
agents. This approach is based on prior discretization of E. Let Efinite be a finite subset
of E containing the start and goal stances,

(2.20) (σstart ∪ σgoal) ⊂ Efinite ⊂ E, card(Efinite) <∞ .

Let Σfinite be the restriction of Σ to Efinite,

(2.21) Σfinite = {σ ∈ Σ | σ ⊂ Efinite} .
Σfinite is a finite set endowed with a finite undirected graph structure defined by the
adjacency relation, as can be seen through the following constructions (“Trans” stands
for transitions [Hau08])

Adjfinite(σ) = Adj(σ) ∩ Σfinite ,(2.22)

Trans(σ) = {σ} ×Adjfinite(σ) ,(2.23)

G =
⋃

σ∈Σfinite

Trans(σ)(2.24)

= {(σ1, σ2) ∈ Σ2
finite | σ1 ⊏ σ2 or σ2 ⊏ σ1} .(2.25)

These constructions give us the finite graph structure that we wanted (Σfinite,G ).
Hauser’s algorithm explores this graph by growing a connected sub-graph (V , E ),

V ⊂ Σfinite, E ⊂ G , and maintaining a priority queue Q ⊂ G × R. Let f : Σfinite → R be
a cost function on the stances, this cost function is based on different heuristics such as
the distance to goal, the distance to reference configurations, and the robustness of the
static equilibrium. Algorithm 1 gives the outline of the planner (the expansion phase of
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the multi-modal planner [Hau08]). pG : G ×R→ G denotes the canonical projection on
G .

Algorithm 1 Find Sequence Of Stances(σstart, σgoal)

1: V ← {σstart}
2: E ← ∅

3: Q← ∅

4: for all (σstart, σ
′) ∈ Trans(σstart) do

5: Q← Q ∪ {(σstart, σ′, f(σ′))}
6: end for

7: repeat

8: (σcurrent, σadjacent, c)← Q.Pop Lowest Cost()
9: qadjacent ← Sample Random(Fσcurrent∩σadjacent ∩Qσcurrent∪σadjacent)
10: if qadjacent 6= Null then

11: V ← V ∪ {σadjacent}
12: E ← E ∪ {(σcurrent, σadjacent)}
13: for all (σadjacent, σ

′) ∈ Trans(σadjacent) \ pG (Q) do
14: Q← Q ∪ {(σadjacent, σ′, f(σ′))}
15: end for

16: else

17: Q← Q ∪ {(σcurrent, σadjacent, c+Cost Increment)}
18: end if

19: until σgoal ∈ V or c.Is Out Of Range()

Starting from σstart the algorithm enqueues all the discretized stances that are adjacent
to σstart (lines 1 to 5), indifferently adding or removing a contact since they are all in
finite number. Then it enters the main search loop (lines 7 to 19): first dequeuing the
“most promising” pair of stances made of the currently explored stance along with one
of its adjacent stances (line 8), and tries to sample a feasible transition configuration
using Proposition 2.2.9 (line 9). In case of success (lines 10 to 15), the adjacent stance is
added to the exploration graph (lines 11 and 12) and all the transitions from this adjacent
stances (i.e. the stances that are adjacent to the adjacent stance) that are not already
present in the queue are enqueued for future exploration (lines 13 to 15). In case of failure
to sample a transition configuration, the considered pair is penalised by augmenting its
cost and re-enqueued into Q (lines 16 and 17). As the exploration progresses and no
solution is found, more time will be allocated to sampling reluctant transitions.

In the worst case, this algorithm will end up exploring all the stances in the connected
component of (Σfinite,G ) containing σstart. However, if no solution is found then this does
not necessarily mean that Problem 2.2.7 does not have a solution, but it could also be
due to the fact that the discretization performed by choosing Efinite might not have been
fine enough. This problem is not encountered in our proposed algorithm that we detail
hereunder.

2.3.2. The Continuous Approach. In this approach we do not need to discretize
Σ. We grow a tree (V , E ), V ⊂ Σ, E ⊂ Σ2, and we maintain on it a priority queue
Q ⊂ Σ × R. Let f : C → R be a cost function on the configuration space. Algorithm 2
gives the outline of the planner, where ε and δ are two positive parameters, andDistance

is a heuristic “metric” on Σ.
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Algorithm 2 Find Sequence Of Stances(σstart, σgoal)

1: qstart ← Find Best Config(Fσstart)
2: V ← {σstart}
3: E ← ∅

4: Q← {(σstart, f(qstart))}
5: repeat

6: (σcurrent, c)← Q.Pop Lowest Cost Stance()
7: for all σadjacent ∈ Adj−(σcurrent) do
8: qadjacent ← Find Best Config

(

Qσcurrent ∩Fσadjacent

)

9: if qadjacent 6= Null and Distance(σadjacent,V ) > ε then
10: V ← V ∪ {σadjacent}
11: E ← E ∪ {(σcurrent, σadjacent)}
12: Q← Q ∪ {(σadjacent, f(qadjacent))}
13: end if

14: end for

15: for all clσcurrent(r1, s1, r2, s2) ∈ Adj+(σcurrent)/∼σcurrent
do

16: qadjacent ← Find Best Config
(

Fσcurrent∩(
⋃

(x,y,θ)∈R2×S1
Qσcurrent∪{(r1,s1,r2,s2,x,y,θ)})

)

17: σadjacent ← pΣ(qadjacent)
18: if qadjacent 6= Null and Distance(σadjacent,V ) > ε then
19: V ← V ∪ {σadjacent}
20: E ← E ∪ {(σcurrent, σadjacent)}
21: Q← Q ∪ {(σadjacent, f(qadjacent))}
22: end if

23: end for

24: until Distance(σgoal,V ) < δ or Q = ∅

First, the algorithm enqueues σstart (lines 1 to 4). Then it enters the main search
loop (lines 5 to 24), which consists once again in dequeuing the “most promising” stance
(line 6), and exploring the adjacent stances. This exploration is split into two stages: the
adjacent stances by removing a contact (lines 7 to 14) and the adjacent stances by adding
a contact (lines 15 to 23). The former adjacent stances are in finite number and for each
of them the algorithm tries to sample a feasible transition configuration (line 8). In case
of success, the adjacent stance, if not already in the exploration graph, is added to this
exploration graph and enqueued (lines 9 to 13). The latter adjacent stances are explored
via their equivalence classes, meaning that the algorithm picks up a pair of surfaces not
already in the currently explored stance (line 15), and for every such pair it tries to find
a transition configuration while simultaneously looking for the best relative position for
the pair of surfaces (line 16), upon sucess the pair of surfaces is completed as a contact
with the found relative position and added to the current stance (line 17) to form the
adjacent stance that will be enqueued and added the exploration graph if not already
present (lines 18 to 22).

The main added value of Algorithm 2 with regard to Algorithm 1 lies in line 16.
Indeed, both Algs. 1 and 2 rely on an inverse stance solver that returns configurations
from 3 types of queries:

• type 1 queries are made on spaces of the form Fσ ,
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• type 2 queries are made on spaces of the form Qσ ∩Fσ′ where σ
′ ∈ Adj−(σ) (cf.

Proposition 2.2.9),
• type 3 queries are made on spaces of the form Fσ ∩ (

⋃

(x,y,θ) Qσ∪{(r1,s1,r2,s2,x,y,θ)})

where clσ(r1, s1, r2, s2) ∈ Adj+(σ)/∼σ
(cf. Corollary 2.2.10).

In Algorithm 1 this inverse stance solver is called through Sample Random and is based
the Iterative Constraint Enforcement method described in [HBL05]. In Algorithm 2 the
solver is called through Find Best Config. It is based on a “black-box” non-linear
optimization solver, detailed in the next chapter (Chapter 3). While type 2 queries are
answered by both solvers, processing type 3 queries is a specificity of our solver, which,
for σ ∈ Σ and clσ(r1, s1, r2, s2) ∈ Adj+(σ)/∼σ

, solves the following optimization problem

min
q,λ,(x,y,θ)

obj(q, λ)

subject to











(x, y, θ) = pR2×S1(q)

q ∈ Fσ

q ∈ Qσ∪(r1,s1,r2,s2,x,y,θ) ,

(2.26)

where pR2×S1 : C → R2×S1 is the “forward kinematics” mapping which inverts for (x, y, θ)
the contact equations (2.3), (2.4), and (2.5). λ is a parametrization of the contact forces.

Let us now write a more detailed expression of obj(q, λ). The guide path that was
computed through collision-free path planning (see Appendix A) is made of a number M
of milestone configurations qref,1, . . . , qref,M (the nodes of the tree or graph structure that
was constructed in the PRM [KScLO96] or RRT [LK01] process and from which the
collision-free path is extracted). Such milestones carry information about major global
change in the configuration of the system q along the guide path. When executing the
search Algorithm 2, we maintain a global integer variable ι that is initialized to 1 and
incremented by 1 whenever qref,ι is reached (ie. when the search tree T contains a confi-
guration close enough to qref,ι). The search succeeds and Algorithm 2 stops when reaching
qref,M = qgoal. The objective function of the inverse stance solver will be composed of four
weighted components:

• a global configuration component

(2.27) obj1(q, λ) = ‖q − qref,ι‖2 ,
• a force minimization component

(2.28) obj2(q, λ) = ‖λ‖2 ,
• a torque minimization component

(2.29) obj3(q, λ) = ‖τ(q, λ)‖2 ,
• a last component obj4(q, λ) used when adding a contact and that will steer the
position of the non-fixed contact to the position of the corresponding links in the
currently-targeted milestone qref,ι, this is the component which “pulls” the foot
to advance forward when walking for example.

(2.30) obj4(q, λ) = ‖or1,s1(q)− or1,s1(qref,ι)‖2 + ‖or2,s2(q)− or2,s2(qref,ι)‖2 .
If we denote w1, w2, w3, w4 the respective weights then the objective function is simply

(2.31) obj(q, λ) =

{

∑4
i=1wi obji(q, λ) if adding contact,

∑3
i=1wi obji(q, λ) if removing contact.
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Algorithm 2 is a best-first search algorithm. As such, it is a greedy algorithm that
suffers from the local minima problem. To avoid this, many heuristics can be added to the
algorithmic blueprint defined by Algorithm 2 [Esc08, EKM06, EKMG08]. However,
anecdotally, such problems were not encountered in the runs of the planner that we made
in the experiments of Section 2.4. Although completeness and global optimality issues are
not tackled in our work, the analysis here being only qualitative, the proposed algorithm
proved to be practically efficient in solving the queries of Section 2.4.

2.4. Results

In this section we show results obtained by applying the generic algorithm Algorithm 2
to different classes of problems, cf. Figs. 2.5, 2.6, 2.7, 2.8, and 2.9. In all these figures, for
the computed solution sequence of stances (σ1, . . . , σn) ∈ Σn of the considered problem,
we display a sequence of configurations (q′1, . . . , q

′
n) ∈ C n such that q′1 ∈ Fσ1 and ∀ i ∈

{2, . . . , n} q′i ∈ Fσi ∩Fσi−1
. It is very important to emphasize here that the pictures are

not snapshots of a continuous motion. They are not merely representative of the result,
they are the result. So it is important to keep this in mind in order not to over-estimate
the results presented here.

In these scenarios we used three robots models:

• a model of the HRP-2 humanoid robot [KKK+04] appearing in Figs. 2.5, 2.7,
2.8, and 2.9,
• rigid objects: the ball of Fig. 2.6, the table of Fig. 2.7, and the box of Fig. 2.8,
• fixed-base manipulators: the four fingers of Fig. 2.6.

Surface patches on the robots have been chosen as follows:

• one surface per foot of the HRP-2 robot in all the scenarios, one surface per hand
in Figs. 2.7, 2.8, and 2.9,
• one surface per planar piece of the ground in all the scenarios,
• one surface per face of the cube in Fig. 2.8,
• one surface per handle of the table in Fig. 2.7,
• one surface per monkey bar in Fig. 2.9,
• one surface per fingertip in Fig. 2.6,
• 20 regularly distributed planar surfaces tangent to the ball in Fig. 2.6. Every such
plane approximates the spherical surface around the tangent point. Contacts
yielded on this tangent planes are then projected back onto the spherical surface.

In the modeling of the feasible spaces Fσ we considered the following constraints (see
Chapter 3):

• static equilibrium for all the underactuated free-base robots (including objects)
considered as individual systems, under the action of external contact forces,
gravity force, and actuation torques,
• Newton’s third law for all the internal contact forces on the system of robots and
objects considered as a whole,
• Coulomb friction model for the unilateral contact forces (all the forces except
the ones listed in the next item),
• fixed grasp model for the bilateral contact forces: the contacts between the hands
of the robots and the handles of the table in Fig. 2.7, and between the hands of
the robot and the monkey bars in Fig. 2.9,
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Figure 2.5. Biped locomotion over irregular terrain. Coulomb friction
allows the robot not to slip. The friction coefficient is set to µ = 1.

• joint angles limits for all the joints of the poly-articulated mechanisms (HRP-2
and the multi-fingered hand),
• bounds on the torques of all the actuators in HRP-2, except for the wrist actu-
ators.

Note that, when applicable, the scenarios were chosen to demonstrate the performance
of the planner in situations in which friction is specifically required to solve the problem,
as highlighted by a relatively high coefficient of friction (µ = 1). Such a high friction
coefficient is required for example to cross the steepest part of the hill in Fig. 2.5 (as
opposed to standing on horizontal planar surface in which low friction is enough), or to
manipulate the box using only planar unilateral contact in Fig. 2.8 without resorting
to bilateral grasps. Lower coefficient of friction would be sufficient for less constraining
problems.
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Figure 2.6. Dexterous manipulation. The objective is to rotate the 3 kg
ball upside down. The fingers are 6-DOF elbow-like manipulators with
wrist-like end-effectors. The friction coefficients between the end-effectors
of the fingers and the ball are set to µ = 1. No limits are considered on the
torques delivered by the actuators in the fingers.

Table 2.1. Experimental results

Fig. 2.5 Fig. 2.6 Fig. 2.7 Fig. 2.8 Fig. 2.9

N (robots) 1 5 3 2 1
dim(C ) 46 30 98 52 46

Num. of steps 32 17 26 24 33
Size of the tree 51 846 47 144 91
Comp. time (s) 133 830 318 230 750

Tab. 2.1 gives some experimental figures concerning these scenarios made on a 3.06
GHz computer running under Windows XP. The program is compiled from a C++ im-
plementation of the framework.

2.5. Conclusion

We wrote a multi-contact stances planning algorithm for multiple robots having to
make use of contacts to perform locomotion or manipulation tasks. The autonomy of the
robots is enhanced as little domain knowledge is required to plan an acyclic non-gaited
sequence of stances. This autonomy is further increased by not specifying pre-discretized
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Figure 2.7. Collaborative manipulation. Here we use an improved ver-
sion of Algorithm 2 as contacts between the hands of the robots and the
handles of the table are required not to be broken during the planning, as
specified at problem-instantiation-time by the user.

candidate contact locations on the environment, the continuity of which is totally ex-
plored by the planner. Along with autonomy, the other key driving concept in this
chapter was the generality. Our planner was not targeted for any specific model of robot
or system of robots. The planner successfully performed on a set of problems taken from
different sub-fields of motion planning in robotics, namely, the legged locomotion, dexter-
ous manipulation, combined whole-body locomotion and manipulation, and collaborative
manipulation problems. All these locomotion and manipulation problems were unified
within the same framework.

The next step is to take the output of this algorithm as an input of a motion planning
algorithm that would plan the continuous motion going through these stances. Although
static criteria were considered in the stances planning stage, the continuous motion plan-
ner can use them, along with the generated configurations that correspond to each stance
of the plan, as milestones to plan a dynamic trajectory. This is the purpose of Chapter 4.

Before that we will detail the inverse stance solver used to generate each single confi-
guration (and eventually to complete the missing contact in the corresponding stance) in
the next chapter (Chapter 3).
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Figure 2.8. Combined whole-body manipulation and locomotion. The
objective is for the HRP-2 robot to advance 2m forward while simultane-
ously performing half rotation of the 5 kg box, bringing the purple face up.
Friction coefficients between the hands and the box are set to µ = 1.

2.6. Appendix: Additional Examples

Figs. 2.10 to 2.13 show some additional possible applications of the planner.
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Figure 2.9. Bilateral contacts on monkey bars. This example illustrates
the necessity of use of bilateral contacts to solve the planning problem.
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Figure 2.10. Locomotion. The objective is to sit down at the desk. The
initial stance is the robot standing about 2m away from the desk. The final
stance is the robot sitting with contacts of its tights with the chair, its feet
with the floor, and its forearms with the desk. The motion comprises a
first phase in which the robot bipedly walks towards the desk followed by
a phase that makes the robot properly sit down.
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Figure 2.11. Dexterous manipulation. The objective is to hold the pen
from the red end.

Figure 2.12. Dual arm manipulation. The objective is to bring the cylin-
der from the first platform to the second platform. The second platform
is outside the workspace of the first arm. The planner finds a solution in
which it needs to transfer the cylinder to the second arm. The initial stance
is made of a contact between one of the plane surfaces of the cylinder and
the first platform. The final stance is made of a contact between the same
plane surface of the cylinder and the other platform. Along the sequence
contacts are made and broken between the surfaces of the end-effectors of
the grippers and the cylindrical surface of the cylinder
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Figure 2.13. Toy scenario. The objective is for the robot to get from
the first platform to the second platform. This cannot be achieved without
using the other robot as a support. The planner finds such a solution.
Contacts are created and broken between the hands of the supporting robot
and the feet of the supported robot, in addition to contacts of the feet of
the supported robot with the platforms and the feet of the supporting robot
with the floor.



CHAPTER 3

Static Multi-Contact Inverse Problem for Multiple Humanoid

Robots and Manipulated Objects

In this chapter, as required by the algorithm presented in the previous chapter

(Chapter 2), we solve the static-equilibrium constrained inverse kinematics

problem for a system made of multiple humanoid robots and manipulated

objects given a set of contacts between any surfaces of the robots, any sur-

faces of the manipulated objects, and any surfaces of the environment. In

particular, inter-robots contacts are possible. The contacts considered here

are neither necessarily coplanar, nor necessarily horizontal, frictional, might

be unilateral (support) or bilateral (grasp). We solve both the geometric

variables (configurations) and the statics variables (contact forces) simulta-

neously within one optimization query. In the resulting configurations all the

robots and the manipulated objects are in static equilibrium under the ac-

tion of gravity and actuator torques that are constrained to stay within their

bounds. The main focus of the chapter is on the formulation of the problem

rather than the optimization algorithm, as we consider the latter as a black

box that only requires a mathematical model providing algorithms to com-

pute the values of the objective function, the constraints functions, and their

derivatives. We apply this work to quasi-static multi-contact legged loco-

motion planning on irregular terrain, multi-fingered dexterous manipulation

planning, and collaborative manipulation planning.

3.1. Introduction

Solving the static multi-contact inverse problem is a core issue in acyclic multi-contact
motion planning. The algorithms introduced in the previous chapter (Chapter 2) explore
the workspace environment by growing a stances tree; a stance being a set of contacts
between surfaces of the robot’s cover and surfaces of the environment. To validate a
stance and add it to the exploration tree, the algorithms need to test the feasibility of the
stance by finding a configuration of the robot that realizes the stance. This is what we call
here the stance inverse problem. For a given stance σ, let us denote Qσ the solution set of
this inverse problem, i.e. the set of all configurations that geometrically realize the stance.
Qσ is a sub-manifold of the configuration space of strictly lower dimension. Let us denote
Fσ the subset of Qσ made of all the configurations that realize the stance while being
in static equilibrium. Fσ is a closed subset of Qσ provided with its subspace topology.
For q ∈ Fσ, let us denote Λσ(q) the set of all admissible contact forces that maintain
the configuration in static equilibrium. If the stance is made of n surface contacts, each
surface i ∈ {1, . . . , n} being modeled by a polygon with Vi vertices, then Λσ(q) is a subset

of R3
∑

i Vi .

59
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The fundamental problem we would like to solve is to test the feasibility of a given
stance σ, i.e. to test whether

(3.1) Fσ 6= ∅ ?

Then if (3.1) is true, it would also be convenient to exhibit one solution, i.e. to solve

(3.2) find q ∈ Fσ and λ ∈ Λσ(q).

Last, we would like a more refined version of (3.2), which is to minimize a criterion
over all the feasible stances and associated forces, i.e. to solve the following non-linear
constrained optimization problem

min
(q,λ)

obj(q, λ)

subject to

{

q ∈ Fσ

λ ∈ Λσ(q).

(3.3)

3.2. Related Work

A lot of effort has been dedicated to solving inverse geometric queries on closed kine-
matic chains in the field of randomized path planning, e.g. [LYK99][HA00][CSL02].
Using the notations introduced in the previous section, these works solve the query

(3.4) find a random q ∈ Qσ

with no other constraints, thus without considering static equilibrium (fixed-base robots).
Then, given a particular q0 ∈ Qσ, for example as returned by solving the problem (3.4),
works like [BL08][RMBO08] are concerned with testing the static equilibrium of q0, i.e.
solving the problem

(3.5) q0 ∈ Fσ ?

If the answer to the problem (3.5) is true, other methods, e.g. [BW07], allow to compute
optimal contact forces, and thus solve the following problem

(3.6) min
λ∈Λσ(q0)

obj(λ).

Sequentially solving problems (3.4) then (3.5) then (3.6) gives a rejection scheme for
solving the problem (3.2). We propose here another scheme that does not rely on random
configuration rejection sampling which might be costly especially in the case of stances
made of low number of contacts where very few geometrically valid configurations are in
static equilibrium. So we decide to solve problem (3.2) directly through the problem (3.3).
Both [EKM06] and [HBL+08] have chosen this approach. Our contributions with regard
to these two works is in the modeling of the conditions that define Fσ as we try to remain
as general as possible and avoid any strong hypotheses that could have allowed us to use
approximations on the static equilibrium constraint, by reducing it for example to the
belonging of the ground projection of the CoM to the support polygon. We also avoid
hypotheses on the rigidity of the robots as we consider the specified limits on the actuators
torques needed in holding the static configuration. The Iterative Constraint Enforcement
method proposed in [HBL+08] considers torques limits only in a post processing rejection
test once the rigid version of the problem has been solved. Once again we want to avoid
this rejection scheme and input the torques limits constraint directly into the initial
problem. A last and original contribution of this chapter is that it solves the inverse
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stance problem for a system made of multiple robots and objects, which is not the case
in any of the previous works.

Note that our problem (3.2), within its static planning context, is different from its
dynamic control counterpart. Precisely, we are not looking for a feasible trajectory, or a
steering method, that takes us from an initial configuration and tries to reach specified
contact locations. As such, optimization-based iterative inverse kinematics techniques
that rely on constraints prioritization, e.g. [KSP08][RB09], are not necessarily suitable
for our particular purpose. Here we are not trying to satisfy constraints at best following
a feasible trajectory, but rather to know whether a constrained solution exists or not.

3.3. Problem Formulation

For the notations used in this section we refer the reader to Fig. 3.1.
We suppose that we have a system of N robots and objects indexed by r ∈ {1, . . . , N}.

To this set we append an additional index 0 referring to the environment. This way
we have a coherent and unified description for robot-robot contacts, robot-environment
contacts, robot-object contacts, and finally object-environment contacts. For convenience
we use the term robot when talking about either an actual robot, or a manipulated object,
or the environment.

3.3.1. Optimization variables. The configuration vector for a robot r ∈ {1, . . . , N}
takes the form

(3.7) qr = (xr, yr, zr, αr, βr, γr, δr, θr,1, θr,2, . . . , θr,jr),

which is the concatenation of the Cartesian position of the root body, the unit quaternion
representing the orientation of the root body, and the vector θr of the jr joint articulations.
jr 6= 0 for an actual robot and jr = 0 for a rigid object. For a body b of the robot r we
denote Or,b(qr) and Rr,b(qr) respectively the origin’s position and the orientation matrix
of the frame Tr,b attached to the body b. The body b = 0 corresponds to the root body
of r.

Let us now start from a stance σ made of n contacts

(3.8) σ = {c1, . . . , cn}.
Each contact ci is defined between the surface Sri1,bi1 rigidly attached to the body bi1 of
the robot ri1 ∈ {1, . . . , N}, and the surface Sri2,bi2 rigidly attached to the body bi2 of the
robot ri2 ∈ {0, . . . , N}. A surface Sr,b is a convex polygon1 with Vr,b vertices

(3.9) Sr,b = conv
(

{pr,b,1, . . . , pr,b,Vr,b}
)

.

For each point pr,b,v fixed in the local frame of the body b we denote Pr,b,v(qr) its position
in the world frame and P 0

r,b,v(θr) its position in the root frame of the robot r. At each
point pr,b,v we specify a polyhedral cone Cr,b,v with finite number Kr,b,v of generators that
approximate the friction cone, the axis of which is the inward normal to the surface Sr,b

(3.10) Cr,b,v = pos
(

{ur,b,v,1, . . . , ur,b,v,Kr,b,v
}
)

.

The case of a bilateral contact is simply handled by setting

(3.11) Cr,b,v = R
3,

1This is one assumption of our work. Non-convex polygonal surfaces of the robot are decomposed
into a finite set of convex polygons. Non-polygonal convex surfaces are conservatively approximated by
polygons.
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pr,v,b

Kr,v,b = 3

r = 1, b = 1, v = 3

r = 1, b = 1

r = 0, b = 1
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r = 0

r = 3r = 1

r = 2

σ = {c1, c2, c3, c4, c5, c6}
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Figure 3.1. Illustration of the different levels of indices used in this chap-
ter for an example made of 3 robots (4 including the environment) and a
6 contacts stance.

and, in this case, the vectors u are simply the three basis vectors of Tr,b with no positivity
constraints on their coefficients. For each unit vector ur,b,v,k fixed in the local frame of
the body b we denote Ur,b,v,k(qr) its coordinates in the global frame.

We can now introduce the statics variables λ. We first suppose without loss of gen-
erality (we can permute the indexes 1 and 2) that the area of the surface Sri1,bi1 is less
than the area of the surface Sri2,bi2 , so that when the contact ci occurs, at the solution,
we can write

(3.12) Sri1,bi1 ⊂ Sri2,bi2 .

The surface contact, at the solution, is thus Sri1,bi1, and the continuous surface force
distribution over this surface can be reduced to a finite force distribution over its vertices.
At each vertex pri1,bi1,v, v ∈ {1, . . . , Vri1,bi1}, The resulting contact force fri1,bi1,v is a non-
negative linear combination of the polyhedral friction cone generators

(3.13) fri1,bi1,v =

Kri1,bi1,v
∑

k=1

λri1,bi1,v,k Uri1,bi1,v,k(qri1).
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bi2

bi2

bi1

bi1

ri2

ri2

ri1

ri1

p
p′

Figure 3.2. In green the minimum area surface’s body, in red the maxi-
mum area surface’s body. The contact forces applied on a body are drawn
in the same color as the body. Before the contact is established at the
solution (top figure), the forces applied on the red body have their applica-
tion points p originally expressed in the local frame of the green body. To
compute the torques resulting from the application of these forces on the
red body we have to consider the virtual point p′ of the red body’s local
frame that instantaneously coincides with p at every configurations qri1 and
qri2 of the robots.

The forces applied on the body bi2 robot ri2 will be, at the solution, equal to −fri1,bi1,v,
applied at the same application points. See Fig. 3.2. For each contact ci we denote λi
the vector of (R+)

Kri1,bi1,v made of all the λri1,bi1,v,k

(3.14) λi = (λri1,bi1,v,1, . . . , λri1,bi1,v,Kri1,bi1,v
).

Finally, the variables of our optimization problem (3.3) can be split into:

• geometric variables q = (qr)r∈{1,...,N}.
• statics variables λ = (λi)i∈{1,...,n}.

3.3.2. Geometric constraints. For each contact ci of the stance σ, a geometric
constraint sets the relative position of the frame Tri1,bi1 in the frame Tri2,bi2. For each
couple (r, b) we choose the frame Tr,b so that its origin is inside the surface Sr,b and its
third basis vector coincides with the inward normal to the surface Sr,b. Let us denote
(~xr,b(qr), ~yr,b(qr), ~zr,b(qr)) the coordinates of the basis vectors of Tr,b in the global frame.
A surface contact ci needs the realization of at least the two following constraints

~zri1,bi1(qri1) + ~zri2,bi2(qri2) = 0(3.15)

Ori1,bi1(qri1)
T~zri2,bi2(qri2) = 0.(3.16)
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This leaves us with three degrees of freedom that we denote (xci , yci, θci), corresponding
to the three following constraints

Ori1,bi1(qri1)
T~xri2,bi2(qri2) = xci(3.17)

Ori1,bi1(qri1)
T~yri2,bi2(qri2) = yci(3.18)

~xri1,bi1(qri1)
T~xri2,bi2(qri2) = cos(θci),(3.19)

which can be fixed as equality constraints if we specify a fixed contact location or left as
inequality constraints if we wish to realize the contact and leave its location to be decided
by the optimization process as a component of the objective cost function.

3.3.3. Collision avoidance constraints. Collision-avoidance constraints are set
between any two links bnc1 and bnc2 that are not connected by a joint in the kinematic-
tree representation of the system. Collision-avoidance between connected link is implic-
itly considered in the joint limit constraint. Let d be a signed distance between two
strictly-convex bounding volumes of the links bnc1 and bnc2, that we denote respectively
Bnc1 and Bnc2. We use as bounding volumes the Sphere-Torus-Patch Bounding Volumes
(STP-BV) [BEMK09]. By specifying the corresponding support functions, the enhanced
GJK [GJK88] collision-detection algorithm allows to compute such a continuous differ-
entiable signed distance. The collision-avoidance constraint is thus simply written

(3.20) d(Bnc1,Bnc2) > 0 .

Fig. 3.3 shows an example of how this constraint generates different resulting configura-
tions corresponding to different local minima.

Figure 3.3. Collision-avoidance constraint. The left figure shows a confi-
guration generated without collision-avoidance constraints. The two right
figures show two possible solutions corresponding to two different local
minima.
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3.3.4. Static equilibrium constraints. We will write N static equilibrium con-
straints, one for each robot r ∈ {1, . . . , N}. Let us denote g the gravity field vector, mr

the total mass of the robot, Cr(qr) the coordinates of the CoM of the robot in the global
frame. We partition the index set I = {1, . . . , n} of the stance contacts σ = {c1, . . . , cn}
into three different subsets. I1(r) is the subset of I made of the contacts in which a
surface from r is involved as the minimum area surface. I2(r) is the subset of I made of
the contacts in which a surface from r is involved as the maximum area surface. I3(r) is
the subset of I made of the contacts in which no surface from the robot r is involved.

(3.21)

I1(r) = {i | ri1 = r}
I2(r) = {i | ri2 = r}
I3(r) = {i | r 6∈ {ri1, ri2}}.

A fundamental remark in our approach is that the forces acting on r = ri2 resulting from
the contacts i indexed in I2 have their application points (pri1,bi1,v)v fixed in the frame
Tri1,bi1 of the other robot ri1. To calculate the torques resulting on the joints of r = ri2 we
thus need to transform the points p in the frame Tri2,bi2. Let us denote the transformed
points p′ such that, for each v,

(3.22) p′ri1,bi1,v(qri1 , qri2) = Rri2,bi2(qri2)
T (Pri1,bi1,v(qri1)− Ori2,bi2(qri2)) .

For p ∈ R
3 let us denote Jr,b(qr, p) the following Jacobian matrix

(3.23) Jr,b(qr, p) =
∂
[

Rr,0(qr)
T
(

(

Or,b(qr) +Rr,b(qr)p
)

−Or,0(qr)
)]

∂θr
.

We can finally write the static stability constraint for r

(3.24)
∑

i∈I1(r)

Vri1,bi1
∑

v=1

fri1,bi1,v −
∑

i∈I2(r)

Vri1,bi1
∑

v=1

fri1,bi1,v +mrg = 0

(3.25)
∑

i∈I1(r)

Vri1,bi1
∑

v=1

Pri1,bi1,v × fri1,bi1,v −
∑

i∈I2(r)

Vri1,bi1
∑

v=1

Pri1,bi1,v × fri1,bi1,v + Cr ×mrg = 0

(3.26) τr +
∑

i∈I1(r)

Vri1,bi1
∑

v=1

Jri1,bi1(qri1 , pri1,bi1,v)
Tfri1,bi1,v

−
∑

i∈I2(r)

Vri1,bi1
∑

v=1

Jri2,bi2(qri2 , p
′
ri1,bi1,v

)Tfri1,bi1,v +

(

∂Cr
∂θr

)T

mrg = 0 ,

where τr ∈ R
jr denotes the actuators torques vector. Equation (3.26) gives us the ex-

pression of τr as a function of the optimization variables q and λ, τr(q, λ), and allows
us to write the inequality constraint on the maximum torques, denoting τr,µ the µ-th
component of τ ,

(3.27) ∀µ ∈ {1, . . . , jr} |τr,µ(q, λ)| ≤ τr,µ,max.
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3.3.5. Objective function. The objective function to minimize in problem (3.3)
obj(q, λ) can be chosen in different ways depending on the application we are targeting.
One typical choice is a quadratic form

(3.28) obj(q, λ) = (q − qref)TA(q − qref) + λTBλ,

if we want to minimize contact forces, or,

(3.29) obj(q, λ) = (q − qref)TA(q − qref) +
∑

r

τr(q, λ)
TC τr(q, λ),

if we want to minimize actuators torques, qref being a reference configuration given man-
ually as an input and used to drive the solution towards a goal as well as to produce
natural-looking solutions, which is a fundamental concern for a humanoid robot. Within
the planning context this reference configuration is taken from a guide path as com-
puted in Appendix A. A,B,C are positive semi-definite matrices. Practically we choose
diagonal matrices, the coefficients of which are tuned to weight the different objectives.

3.4. Gradients Derivations

Both state-of-the-art non-linear constrained optimization algorithms we have used,
feasible sequential quadratic programming [LT96] and interior-point filter line-search [WB06],
require that we provide them with the gradients of the objective and constraints functions.
In this section we give details on these non-trivial gradient derivations. The gradients
of all the functions with respect to λ are straightforward to derive, let us focus on the
gradients with respect to q.

3.4.1. Geometric Jacobians. All the geometric gradients that we need to compute
are down to the expressions of the R3×(7+jr) matrices

(3.30)
∂Or,b(qr)

∂qr
,
∂[Rr,b(qr) u]

∂qr
,
∂[Rr,b(qr)

Tu]

∂qr
,

where u is any fixed vector of R3. The objective here is to derive these expressions
relying only on the kinematic Jacobian of the body b with respect to the root body 0 of
the robot r, for which algorithms can be found in standard textbooks such as [KD05].
Let us denote this kinematic Jacobian Jkr,b ∈ R

3×jr , its µ-th column

(3.31) Jk,µr,b (qr) =

[

ξµr,b(qr)

ωµr,b(qr)

]

is the concatenation of the linear and angular velocities of the frame Tr,b with respect
the the frame Tr,0 expressed in this latter frame, corresponding to a unit velocity of the

joint µ, θ̇r,µ = 1. If ρ denotes the mapping from unit quaternions to rotation matrices,
i.e.

(3.32) ρ(α, β, γ, δ) =







2(α2 + β2)− 1 2(βγ − αδ) 2(βδ + αγ)

2(βγ + αδ) 2(α2 + γ2)− 1 2(γδ − αβ)
2(βδ − αγ) 2(γδ + αβ) 2(α2 + δ2)− 1






,
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then we can write

∂Or,b(qr)

∂[xr , yr, zr]
= 13×3(3.33)

∂Or,b(qr)

∂[αr, βr, γr, δr]
=

(

∂ρ

∂α
O0
r,b,

∂ρ

∂β
O0
r,b,

∂ρ

∂γ
O0
r,b,

∂ρ

∂δ
O0
r,b

)

(3.34)

∂Or,b(qr)

∂θr
= Rr,0 ξr,b(3.35)

∂[Rr,b(qr) u]

∂[xr, yr, zr]
= O3×3(3.36)

∂[Rr,b(qr) u]

∂[αr, βr, γr, δr]
=

(

∂ρ

∂α
R0
r,bu,

∂ρ

∂β
R0
r,bu,

∂ρ

∂γ
R0
r,bu,

∂ρ

∂δ
R0
r,bu

)

(3.37)

∂[Rr,b(qr) u]

∂θr
=
(

Rr,0

[

ωµr,b × (R0
r,b u)

]

)

µ∈{1,...,jr}
(3.38)

∂[Rr,b(qr)
Tu]

∂[xr , yr, zr]
= O3×3(3.39)

∂[Rr,b(qr)
Tu]

∂[αr, βr, γr, δr]
=

(

R0
r,b
T ∂ρ

∂α

T

u,R0
r,b
T ∂ρ

∂β

T

u,R0
r,b
T ∂ρ

∂γ

T

u,R0
r,b
T ∂ρ

∂δ

T

u

)

(3.40)

∂[Rr,b(qr)
Tu]

∂θr
=
(

−R0
r,b
T [
ωµr,b × (RT

r,0u)
]

)

µ∈{1,...,jr}
,(3.41)

where we have used the following notation

(3.42) R0
r,b = RT

r,0Rr,b.

3.4.2. Torques gradients. Let us now derive the gradient of the constraint (3.27)
for which the main difficulty resides in the derivation of

(3.43) J1 =
∂Jµri2,bi2

(

qri2 , p
′
ri1,bi1,v

(qri1 , qri2)
)

∂qri1
,

(3.44) J2 =
∂Jµri2,bi2

(

qri2 , p
′
ri1,bi1,v

(qri1 , qri2)
)

∂qri2
.

where Jµr,b(qr, p) is the µ-th column of the matrix defined in (3.23). Let us denote DqrJ
µ
r,b

and DpJ
µ
r,b respectively the partial derivatives of Jµr,b(qr, p) with respect to qr and to p.

We can write (we temporarily drop the subscripts of p′)

J1 = DpJ
µ
ri2,bi2

(qri2 , p
′)
∂p′(qri1 , qri2)

∂qri1
,(3.45)

J2 = DqrJ
µ
ri2,bi2

(qri2 , p
′) +DpJ

µ
ri2,bi2

(qri2 , p
′)
∂p′(qri1 , qri2)

∂qri2
.(3.46)

In these expressions the derivatives

(3.47)
∂p′(qri1 , qri2)

∂qri1
,
∂p′(qri1 , qri2)

∂qri2
,
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can be obtained directly using the matrices (3.30), denoting temporarily u = Pri1,bi1,v(qri1)−
Ori2,bi2(qri2),

∂p′(qri1 , qri2)

∂qri1
= Rri2,bi2(qri2)

∂Pri1,bi1,v(qri1)

∂qri1
(3.48)

∂p′(qri1 , qri2)

∂qri2
=

∂
[

Rri2,bi2(qri2)
T u
]

∂qri2
− Rri2,bi2(qri2)

T ∂Ori2,li2(qri2)

∂qri2
.(3.49)

We can now concentrate on the derivations of DqrJ
µ
r,b and DpJ

µ
r,b. First, for DqrJ

µ
r,b,

we can write

∂Jµr,b
∂[xr , yr, zr]

= O3×3(3.50)

∂Jµr,b
∂[αr, βr, γr, δr]

=

(

∂ρ

∂α
ξµr,b(p),

∂ρ

∂β
ξµr,b(p),

∂ρ

∂γ
ξµr,b(p),

∂ρ

∂δ
ξµr,b(p)

)

(3.51)

∂Jµr,b
∂θr

= Rr,0

(

∂ξµr,b(p)

∂θr,ν

)

ν∈{1,...,jr}
,(3.52)

where

(3.53) ξµr,b(p) = ξµr,b + ωµr,b ×
[

R0
r,b p
]

is the velocity transported from the origin of the frame Tr,b to the point p, and

(3.54)
∂ξµr,b(p)

∂θr,ν
=















ωνr,b × ξµr,b(p) if ν < µ,

ωµr,b × ξ
µ
r,b(p) if ν = µ,

ωµr,b × ξνr,b(p) if ν > µ.

This latter result is a straightforward generalization of the result published in [BS96]
from serial kinematic chains to kinematic trees such as a humanoid robot. Now that we
have derived DqrJ

µ
r,b let us derive DpJ

µ
r,b. We can simply write

(3.55) DpJ
µ
r,b = Rr,0 ω̃

µ
r,bR

0
r,b

where ω̃µr,b is the skew-symmetric matrix corresponding to the vector product by ωµr,b.
This brings our derivations to an end.

3.4.3. Distance gradient. Let us compute the gradient of the constraint (3.20). Let
P1 and P2 be respectively the closest points on Bnc1 and Bnc2, such that d(Bnc1,Bnc2) =
||P2−P1|| if there is no collision and the farthest points such that d(Bnc1,Bnc2) = −||P2−
P1|| in case of interpenetration. The GJK algorithm applied on the STP-BV allows for
the computation of such so-called witness points. The result in [LLB05] makes the
computation of this gradient straightforward by considering the Jacobians at the points
P1∈Bnc1

and P2∈Bnc2
that are rigidly attached to Bnc1 and Bnc2 respectively and coincide

with P1 and P2 in the configuration q at which we are computing the gradient. So we
can write
(3.56)

∂d(Bnc1,Bnc2)
∂q

=







(P1−P2)
||P1−P2||

T
(

∂P1∈Bnc1

∂qr1
− ∂P2∈Bnc2

∂qr2

)

if there is no collision,

− (P1−P2)
||P1−P2||

T
(

∂P1∈Bnc1

∂qr1
− ∂P2∈Bnc2

∂qr2

)

if there is interpenetration.
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Table 3.1. Some figures

Circus Coll. Ladder
dim(q) 94 101 47
dim(λ) 48 96 48

total dimension 142 197 95
num. of eq. constr. 34 61 27
num. of ineq. const. 80 80 40

num. of iterations 30 42 19
optim. algo. time 0.732s 1.423s 0.280s

func. & grad. eval. time 7.190s 9.515s 1.454s

3.5. Results

We have tested our static stance inverse solver on different theoretic scenarios in
virtual environments involving one or two humanoid robots (for the robot we used a
model of HRP-2 [KKK+04]) conjointly manipulating objects and taking unilateral or
bilateral contacts, see Fig. 3.4. Our implementation being generic and totally transparent
to the robot model, any other robot could have been used with no additional model-
specific implementation effort. Of course some of these scenarios are not meant to be
simulated or executed on real-life robots but we choose them to illustrate the generality
of our approach from the conceptual point-of-view.

Within multi-contact planning queries made with a planner similar to [EKM06], no
local minima problems were encountered. This is mainly due to the fact that during
the stances exploration phase, i.e. when growing the search tree, we use the resulting
configuration from the father stance node as an initial guess for testing a new stance with
our solver and add it to the tree in case of success. Care should thus be taken only when
choosing the very first configuration initializing the search tree.

Table 3.1 gives some figures2 concerning queries on these scenarios made with the
solver [WB06] on a standard 3.06GHz computer. As we can see most of the computation
time is spent on functions and gradients evaluations and can be greatly reduced, given that
our current implementation splits vector constraints into individual scalar constraints and
thus wastes a lot of time in redundant computations that can be factorized when using
vector constraints. However, although computational time appears to be quite heavy
(still being of same order of magnitude as the times reported in [EKM06][HBL+08] for
more complex problems in our case), it allows for solving multi-contact planning queries
in times comparable to those of the aforementioned state-of-the-art planners, i.e. tens of
minutes in average, while being more generic and handling a broader range of contact
situations.

3.6. Conclusion

We provided a formulation for the multiple robots, multiple objects, multiple con-
tacts, static stance inverse problem. The problem has been written as an optimization

2The number of inequality contraints do not include the bounds on joints articulations nor the
positivity conditions on λ for unilateral contacts as these bounds are handled directly as limits on the
optimization variables by the solver.
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problem in the geometric and statics variables conjointly. Analytical gradients based on
the kinematic Jacobian and its derivatives have been derived. We have tested our ap-
proach on very high dimensional challenging scenarios for which solutions were found in
a relatively small number of iterations. A possible extension of this work is considering
deformable bodies of the robots or the environment (Chapter 5). In the longer term,
non-static (kinetic) friction model can also be considered allowing displacement of the
environment objects under the action of contact forces. Finally, coming work should
decrease computational time by a finer implementation of our solver.

Next chapter (Chapter 4) takes into account the dynamics of the robot in tackling
the continuous motion generation problem between the static postures that have been
generated by the solver presented in this chapter.
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(a) Collaborative object manipulation scenarios with bilateral con-
tacts between the hands and the table.

(b) Ladder climbing scenarios with unilateral contacts at the feet and
bilateral contacts at the hands.

(c) Circus scenario involving only unilateral contacts, for different initial guesses.

Figure 3.4. Example scenarios





CHAPTER 4

Using a Multi-Objective Controller to Synthesize Simulated

Humanoid Robot Motion with Changing Contact

Configurations

Our objective in this chapter is to synthesize dynamically consistent motion

for a simulated humanoid robot in acyclic multi-contact locomotion using

multi-objective control. We take as an input the planned sequence of static

postures that represent the contact configuration transitions as computed in

the previous chapters (Chapters 2 and 3); a multi-objective controller then

synthesizes the motion between these postures, the objectives of the con-

troller being decided by a finite-state machine. Results of this approach are

presented in on-line-available video in the form of playback motions generated

through non-real-time constraint-based dynamic simulations.

4.1. Introduction

In Chapter 2 we presented an algorithm that plans a sequence of multi-contact stances
with corresponding static postures that brings a humanoid robot from an initial confi-
guration to a desired stance/configuration. As opposed to the walking pattern generation
problem [KKK+03, APE04], this approach is aimed at generating non-gaited acyclic
motion with arbitrary contact configurations (using hands, forearms, knees, etc.). The
presented algorithm was the first of a two-stage contact-before-motion planning frame-
work. The second stage, which is the main concern of the present chapter, is to synthesize
a continuous motion that goes through the planned sequence of static postures. Previous
approaches of the problem [EKM06, HBL05] used randomized motion planning tech-
niques (RRTs, PRMs) to plan the continuous motion. However, due to the geometric
nature of such techniques, which is not suited for the integration of dynamics motion
constraints in the planning, their motion was restricted to be quasi-static, meaning that
static equilibrium is respected at every time of the motion. Adapting kinodynamic plan-
ning or dynamic filtering techniques [KKN+02, YBEL05] to the output motion of these
works could have been one way to overcome this limitation.

In this chapter we investigate a different approach, that has both its advantages and
drawbacks over the previous one. On the plus side it directly synthesizes dynamically
consistent motion, for which the dynamics equation of motion is satisfied throughout
the motion. The main drawback of this approach is that it does not allow for explicit
formulation of collision-freeness constraint, which induces us to resort to hand-designed
heuristics in order to avoid collisions. However though, the closed-loop nature of our
approach makes it robust to unavoided collision (contact) events that may occur during
the generation of the motion, as these collisions are seen as perturbations “absorbed” by
the feedback motion generation law.

73
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The organization of the chapter is as follows. After discussing related work (Sec-
tion 4.2) and an overview of the approach (Section 4.3), we get to the detailed technical
developments by first presenting the multi-objective controller used for a single step mo-
tion (Section 4.4) followed by the finite-state machine used for multiple steps motion
(Section 4.5). Finally we describe the results that appear in the on-line video (Sec-
tion 4.6).

4.2. Related Work and Contribution

The method we choose is inspired by recent trend in computer graphics community,
synthesizing physics-based motion of simulated characters [AdSP07, dLMH10]. They
formulate the motion generation problem as the control problem of the human character
within simulation. Humanoid robotics [YH10, SBB09] as well as virtual reality com-
munities [Col09] recently started using same/similar formulations in their applications.

[AdSP07, YH10] use motion-capture data to generate the motion, their objective
being precisely to track these data with the simulated human character or humanoid
robot. Our method here does not need such data as it relies only on the information
carried by the first stage of the contact-before-motion planning framework that produces
the sequence of static postures. This sequence of static postures plays the same role the
motion-capture data does in the other works, i.e. solving for redundancies and producing
natural looking motion. Therefore one of the main original features in our method is
increased autonomy of the robot. [dLMH10] also does not rely on motion-capture data,
but their applications are restricted to human cyclic walking and a single upstanding
posture is sufficient to solve for the said redundancies, while we are targeting more general
acyclic motions.

Moreover, most of these works [AdSP07, YH10, Col09, SBB09] produce motion
for the robot in a single stance, standing either on one foot or two-feet stances, without
changing their contact configuration. As in [dLMH10] our method adds a finite-state
machine to perform motions that go through changing contact-configuration stances, but,
once again as opposed to [dLMH10], in an acylic way.

Note, however, that although [AdSP07, dLMH10] report computation times that
reach near real-time objectives using an LCP-based simulator on the animated characters,
we do not focus in this work on optimizing the computation time to be real-time since in
our current implementation some real robot constraints (self-collisions and joint limits)
need to be checked a posteriori, i.e. once the full motion has been generated, before safely
executing it on the robot (cf. Section 4.6). This is why our method here is presented
as an off-line motion generation tool in simulation rather than an on-line control one
directly embedded in the real robot.

Other approaches use different formulations to control/generate motion of humanoid
robot in multi-contact stances [SPK10, LMKY10]. The former uses a prioritized tasks
hierarchy formulation but does not explicitly take into account contact constraints, the
latter approach is conceptually different as it generates optimal motion through a semi-
infinite optimization formulation of B-spline parametrized motion. While no time com-
plexity analysis has been reported for [SPK10], the approach in [LMKY10] applied to
humanoid robot requires for now computation times as high as a few hours to generate
a one-minute motion. Finally, the recent work of [SRM+11] uses hierarchy of tasks
in a cascade of quadratic programs handling inequality, equality, and unilateral contact
constraints based on the work of [EMW10].
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4.3. Overview of the Method

Fig. 4.1 shows an overview of the proposed motion generation method. In this figure
the multi-contact stances planner block (Chapter 2) and the simulator block [CMK+06]
are considered as black-box modules. Their implementation is not developped in this
chapter, which focuses on the finite-state machine and the multi-objective controller
designs. t denotes the simulation time; q, q̇, and q̈ denote respectively the configuration,
configuration velocities, and configuration accelerations of the humanoid robot, which
include both the actuated joints and the root SE(3) component of the robot; f denotes
the aggregated vector of contact forces applied at finite contact points between the robot
and the environment; and u denotes the actuator torques that control the simulated robot.
qs and qg are the start and goal configuration input by the user. The motion parameters,
also input by the user, include the step time, step height, etc. and are further detailed
in the finite-state machine description section (Section 4.5).

multi-contact
stances planner

qs
sequence of

static postures
finite-state
machine

set of objectives

multi-objective
controller

q̈
f
u simulator

q

q̇

qg

t

motion parameters

Figure 4.1. Overview of the motion generator

At every time step of the simulation, the finite-state machine decides on the objectives
to feed to the controller, which then uses a quadratic formulation that solves for the
configuration accelerations, the contact forces, and the control torques. Note that the
produced configuration accelerations q̈ could be directly integrated to update q and q̇.
We choose however to discard the produced q̈, along with the computed contact forces
f , and to keep only the control u that we feed to the simulator which will in turn output
a more accurate f and q̈ to be integrated. This approach, the same as the one chosen
in [AdSP07, dLMH10], allows for a complete decoupling of the controller and the
simulator blocks, the latter can later be replaced by any other one, more accurate or
faster, depending on the targeted application. In particular, replacing the simulator by
the real robot can be seen as particular case, provided that adequate sensors/estimators
feed us back with q and q̇ (especially the SE(3) components of these vectors).

4.4. Multi-Objective Controller

The multi-objective controller minimizes a weighted sum of objectives subject to the
following constraints:
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• satisfy the dynamics equation of motion,
• non-sliding of the contact points,
• contact forces inside the (linearised) friction cone,
• actuation torques within their limits.

The objectives are specified in terms of tasks (the term features is alternatively used
in the literature). A task is for example driving the position of an end-effector, the
center of mass of the robot, the whole configuration of the robot, etc. Conflicts between
different tasks are solved through a weighted formulation rather than strict prioritization.
More technical details of the optimization problem formulation is found in the following
subsections:

4.4.1. The Linear Constraints. Let us suppose we have a humanoid robot made
of r revolute joints and r + 1 links indexed by k ∈ {0, . . . , r}. On each link k a
set of contact forces fk,1, . . . , fk,mk

are applied at the respective local-frame-expressed
points ak,1, . . . , ak,mk

. Let q = (x0, θ0, q̂) ∈ R
3+4+r denote the configuration vector of

the humanoid robot, where x0 is the global-frame-expressed position of the root, θ0 a
parametrization of its orientation (a unit quaternion for instance), and q̂ the internal
(actuated) joint angles vector. For each k, Jtk(p) denotes the 3 × (3 + 4 + j) transla-
tional Jacobian of the link k relative to the global frame with respect to q expressed at a
local-frame-expressed point p.

The motion of the humanoid robot is governed by the following equation (see Sec-
tion 4.8 and [Wie05] from which we borrow the notations for details on how we derive
this equation, especially for the expressions of M and N , g is the gravity vector):

(4.1) M(q)q̈ +N(q, q̇)q̇ = M(q)
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+
∑

k,i

Jtk(ak,i)
T fk,i ,

The motion is additionally subject to the following constraints, denotingKk,i the Coulomb
friction cone at ak,i,

(4.2) ∀ k, i Jtk(ak,i) q̇ = 0 ,

(4.3) ∀ k, i fk,i ∈ Kk,i ,

(4.4) ∀ j uj,min ≤ uj ≤ uj,max .

We linearise the friction cone Kk,i by specifying a finite set of global-frame-expressed
generators {vk,i,1, . . . , vk,i,νk,i} so that each contact force fk,i is a non-negative linear com-
bination of the vectors v:

(4.5) fk,i =

νk,i
∑

µ=1

λk,i,µ vk,i,µ ,

(4.6) ∀ k, i, µ λk,i,µ ≥ 0 .

We denote λ = (λk,i,µ)k,i,µ.
By time-differentiating the constraint (4.2) we get

(4.7) Jtk(ak,i) q̈ + J̇tk(ak,i) q̇ = 0 .
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Let us define the parameter vector X = (q̈, λ, u). For clarity we denote

α = dim(q̈) = 3 + 4 + r , γ = dim(u) = r ,(4.8)

β = dim(λ) =
m
∑

k=0

mk
∑

i=1

νk,i , ζ =
m
∑

k=0

mk .(4.9)

Furthermore, for a family of same-size matrices (Yι)ι∈{1,...,I}, we denote the block aggre-
gation operators

(4.10) ⌊Yι⌋ι∈{1,...,I} =







Y1
...

YI






, ⌈Yι⌉ι∈{1,...,I} =

(

Y1 . . . YI
)

.

Finally, the equation of motion (4.1) and constraints (4.4), (4.6), (4.7) take the fol-
lowing linear form

(4.11) A1X = B1 , A2X ≤ B2 ,

where the matrices A1,A2 and the vectors B1,B2 are defined

A1 =

(

M(q) −⌈Jtk(ak,i)T vk,i,µ⌉k,i,µ −
( 03×γ

04×γ

1γ×γ

)

⌊Jtk(ak,i)⌋k,i 03ζ×β 03ζ×γ

)

,

B1 =

(

−N(q,q̇)q̇+M(q)

( g
04
0r

)

⌊−J̇tk(ak,i)q̇⌋k,i

)

,

(4.12) A2 =

(

0β×α −1β×β 0β×γ

0γ×α 0γ×β −1γ×γ

0γ×α 0γ×β 1γ×γ

)

, B2 =
(

0β
−umin
umax

)

.

Let us now write the target function to optimize.

4.4.2. The Quadratic Objectives. We define a task (or feature) as a scalar or
vector function g of the configuration of the robot g : R

3+4+r → R
d, where d is the

dimensionality of the task. Example of such tasks include the global-frame expression
of a particular point attached to one of the robot’s links (d = 3), the CoM of the entire
robot (d = 3), the configuration itself of the robot (d = 3+4+ r), etc. Let Jg denote the
Jacobian of the task, i.e. the (3 + 4 + r)× d matrix Jg(q) = ∂g/∂q.

As proposed in [dLMH10] we will use two kinds of objectives for the task g:

• a set-point objective, denoted Espt,g, used if we wish to servo the task g around
an given reference value gref ,
• a target objective, denoted Etgt,g, used if we wish to steer the task g from a given
initial value (g0, ġ0) to a given target final value (gf , ġf) in given time tf .

The Set-point Objective. The corresponding objective function component takes the
form

Espt,g(X) =
1

2
||κp(gref − g)− κvġ − g̈||2 ,

=
1

2
XTQX + cTX +

1

2
cT c ,

(4.13)
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where

(4.14) Q =

(

JT
g Jg 0α×β 0α×γ

0β×α 0β×β 0β×γ

0γ×α 0γ×β 0γ×γ

)

, c =





−JT
g

(

κp(gref−g)−κvJg q̇−J̇g q̇
)

0β
0γ





. κp and κv are hand-tuned gain parameters, in our applications we systematically set
κv = 2

√
κp.

The Target Objective. Let t0 denote the current time. Let gi be the i-th scalar com-
ponent of g for i ∈ {1, . . . , d}. For every such gi our objective is to reach the specified
target (gif , ġ

i
f) at time tf > t0. The method proposed in [dLMH10] consists in making

gi follow a constant-jerk reference trajectory of the form

(4.15) g̈iref(t) =

(

1− t− t0
tf − t0

)

φi,t0 +
t− t0
tf − t0

ψi,t0 , t ∈ [t0, tf ]

where φi,t0 and ψi,t0 are coefficients determined by integrating (4.15) twice and writing
the boundary values conditions

(4.16)
(

(tf−t0)2/3 (tf−t0)2/6
(tf−t0)/2 (tf−t0)/2

)(

φi,t0
ψi,t0

)

=
(

gi
f
−gi−(tf−t0) ġi

ġi
f
−ġi

)

.

Finally, back to the target objective, the corresponding objective function component
will take the form

Etgt,g(X) =

d
∑

i=1

1

2
(g̈iref(t0)− g̈i)2 =

d
∑

i=1

1

2
(φi,t0 − g̈i)2 ,

=
1

2
XTQX + cTX +

1

2
cT c ,

(4.17)

where, denoting Φt0 = (φi,t0)i,

(4.18) Q =

(

JT
g Jg 0α×β 0α×γ

0β×α 0β×β 0β×γ

0γ×α 0γ×β 0γ×γ

)

, c =





−JT
g

(

Φt0
−J̇g q̇

)

0β
0γ



 .

4.4.3. Putting it Altogether: The QP Formulation. We suppose now that we
have N objectives indexed by k ∈ {1, . . . , N}, denoted g1, . . . , gN . These objectives
can be either set-point or target objectives, with corresponding matrices Qk and vectors
ck as derived in the previous section. Each objective gk is allocated a weight wk that
expresses its relative importance when conflicting with other objectives. We then denote
the weighted sums

(4.19) Qsum =
N
∑

k=1

wkQk , csum =
N
∑

k=1

wk ck .

The Quadratic Program solved by the multi-objective controller at every time step takes
the final form

min
X

1

2
XTQsumX + cTsumX ,

subject to A1X = B1 , A2X ≤ B2 .
(4.20)
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4.5. Finite-State Machine

Let us us now start back from the output of the multi-contact stances planner as por-
trayed in Fig. 4.1, which is a sequence of n statically stable configurations (q0, . . . , qn−1).
Each configuration qi is associated with a stance σi; a stance being the set of contacts that
the robot establishes with the environment when put in that configuration. For example
when the robot stands on two feet then the corresponding stance is a set containing two
contacts (one for each foot). The sequence of stances (σ0, . . . , σn−1) output by the planner
are so-called sequentially adjacent (Chapter 2), i.e. they satisfy the following condition:
each stance σi either adds one contact to the previous stance σi−1 or removes one con-
tact from this same previous stance σi−1. Furthermore, the sequence of configurations
(q0, . . . , qn−1) are so-called transition configurations (Chapter 2), meaning that:

• when a contact has been added then the corresponding configuration qi has to
be statically stable with non-zero contact forces applied only at the contacts of
the previous stance σi−1, the contact forces applied at the newly added contact
are zero,
• when a contact has been removed then the corresponding configuration qi keeps
all the contacts of the previous stance σi−1 but the contact forces at the newly
removed contact are zero.

The motion from qi to qi+1 (from σi to σi+1) will be called step number i. So the
full motion will comprise n − 1 steps. We define a user-input parameter T which is the
desired step time. So step i starts at time t = i T and ends at time t = (i + 1) T . The
full duration of the motion is (n− 1) T .

When step i adds a contact then the link of the added contact (the “swing” link,
generalizing the terminology of swing foot in legged locomotion) will be denoted si and
one arbitrarily chosen point attached to this link and belonging to the contact surface is
denoted pi. The global-frame-expressed position of pi at configuration qi (start position)
is denoted Pi,s and the global-frame-expressed position of pi at configuration qi+1 (goal
position) is denoted Pi,g.

4.5.1. Obstacle Collision Avoidance: Controlling the Swing Link. When
step i is removing a contact we implicitly make the assumption that the motion from qi
to qi+1 (performed inside the sub-manifold of the configuration space corresponding to the
stance σi) is collision-free. When step i adds a contact however, then the motion of the
swing link si has to be more carefully controlled since there is high probability that this
link collides with the target environment contact support object; e.g. when climbing stairs

~v ~u

h

η l l

Pi,v

Pi,s

Pi,g

Figure 4.2. Controlling the point pi of the swing link si
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then the swing foot might collide with the next stair. We introduce a simple heuristic to
avoid this, which consists in steering the swing point pi through a global-frame-expressed
via-point Pi,v, defined by specifying a step height h and an intermediate time Tv < T
(for example one might choose Tv = T/2). So the motion of pi starts from Pi,s at time
t = i T , goes through Pi,v at time t = i T + Tv, and reaches Pi,g at time t = (i+ 1) T .

Let us denote the step length l = ‖Pi,g − Pi,v‖. To define the via-point Pi,v we
decompose the motion of the swing point pi into a parallel component in the direction
of the vector ~u = (Pi,g − Pi,v)/l, and a normal component following the direction of the
vector ~v = ~u× (~ez×~u) (such that ~v is normal to ~u and in the plan defined by ~u and ~ez; ~ez
being the upwards vertical unit vector opposite to the gravity). The via-point is finally
defined as

(4.21) Pi,v = Pi,g + η l ~u+ h~v, η ∈ [0, 1] .

A typical choice of the parameter η is η = 1/2. See Fig. 4.2.
Furthermore, we impose that the swing point pi reaches its goal Pi,g at time t =

(i+1) T with zero velocity, and that it reaches its via-point Pi,v at time t = i T +Tv with
a zero ~v-component (normal) velocity.

All these objectives are formulated as target objectives.

4.5.2. Keeping Balance: Controlling the CoM. The balance of the simulated
robot is controlled through simple strategies, depending on whether we are adding or
removing a contact. If step i adds a contact from then, following the transition config-
urations condition, the whole motion has to be performed by staying balanced on the
initial stance σi, so the objective for the CoM in this case is a set-point objective that
regulates its position around its position at the start configuration qi. If step i removes a
contact, then the robot has to “transfer its weight” from stance σi to stance σi+1 in time
T . For this purpose a target objective is defined for the CoM to reach at time (i + 1) T
its position computed at the goal configuration qi+1, with zero velocity.

4.5.3. Solving the Redundancy: Controlling the Configuration. The remain-
ing redundancies are solved by controlling the whole configuration of the robot, with once
again different strategies when adding or removing a contact. When adding a contact at
step i, the posture is controlled through a set-point objective with the reference posture
being set at qref = qi for the time interval t ∈ [i T, i T + Tv] and set at qref = qi+1 for the
time interval t ∈ [i T +Tv, (i+1) T ] with low stiffness κp. When removing a contact then
the reference configuration for the low-stiffness set-point objective is set at qref = qi+1

during the whole step time interval t ∈ [i T, (i+ 1) T ].

4.5.4. Putting it Altogether: the FSM. As a summary of this section, Fig. 4.3
shows a graphical representation of the FSM. Details of the objectives are found in the
previous subsections. The initial configuration of the robot at time t = 0 is q = q0 = qs
with q̇ = 0.

4.6. Playback Simulation Results

The video available at [Bou] shows some example applications of the proposed ap-
proach. These examples are: a basic walk motion, a single stair climbing motion, a
multiple stairs climbing motion, a sitting motion, a one-step walk-on-hands motion. See
Fig. 4.4 for snapshots of this video.
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start

end1

2 3

4 5

6 7 8

i = n− 1

i < n− 1

i := i+ 1

t < (i+ 1)T

t = (i+ 1)T

r.c.a.c.
t = (i+ 1)T

t < i T + Tv
i T + Tv ≤ t < (i+ 1) T

i := 0

configuration task

CoM task
swing link task

set-point objective

target objective

set of objectives

a.c.: adding contact

r.c.: removing contact
at stepi

at stepi

Figure 4.3. The finite-state machine (note: contains color information).
States are represented as circles (the numbers inside have no particular
meaning) and transitions as arrows between states. Labels next to tran-
sitions are the conditions for the transitions to be triggered. Transitions
without labels are automatically triggered (condition always true). La-
bels next to states, when present, are actions performed when the machine
reaches the states.

4.6.1. Experimental Framework. The humanoid robot model used is HRP-2 [KKK+04]
with some modifications in terms of torque limits and arm links for the walk-on-hand
motion, though our implementation is transparent to the particular robot model. The
simulator used is described in [CMK+06] and the multi-contact static stances planner
in Chapter 2. Collision detection between the robot and the environment is performed
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(a) basic walk (b) single stair
climbing

(c) multiple stairs
climbing

(d) sitting (e) one step on
hands

Figure 4.4. Snapshots from the on-line video

Table 4.1. motion generation parameters

walk single stair multiple stairs sitting hands all scenarios

number of steps n 10 6 8 3 2 wconfig 101

step duration T 0.8 s 1.5 s 4 s 4 s 4 s wCoM 104

step height h 1 cm 30 cm/10 cm 55 cm/30 cm 10 cm/0 cm 10 cm wslink 103

parameter Tv 0.4 s 0.75 s 2 s 2 s 2 s κp,config 101

parameter η 0.5 κp,CoM 103

using the PQP proximity queries package [LGLM00], and the QP solver used for multi-
objective control is the QL convex quadratic programming solver [Sch07]. Table 4.1
gives the parameters used for these motions.

The video starts by showing elementary motions (single steps) produced by the multi-
objective controller with fixed objectives. Then the five above-mentioned motions gen-
erated by coupling the multi-objective controller with the finite-state machine are se-
quentially played. Each of the five motions starts by first showing the output of the
multi-contact stances planner used as input for that motion, i.e. the finite sequence of
static postures (q0, . . . , qn−1).

4.6.2. Discussion and Limitations. The motions displayed on this video have
not been generated in real time. We used a time step of 1ms for the simulator, but
each iteration of the motion generator cycle took approximately 30ms to compute on our
3GHz Pentium IV system. However, real-time on-line control is not, at this stage, the
main preoccupation of our work, so no particular effort has been devoted to reducing this
computation time in our prototype implementation. Still, as a motion generation tool,
the method is much faster than global motion optimization techniques [LMKY10].

Another limitation that currently prevents our method from being used as such as a
control tool for the real robot is the absence of self-collision checking in the simulation
(walk scenario), and joint limits constraints (single stair scenario). A basic strategy to
reduce self-collision occurrences and to stay within joint limits that we implemented is
the introduction of repulsive torques that are activated when a joint comes too close to
its limit, but this does not absolutely guarantee that the limits are not reached.

An interesting feature that appears in these motions is the robustness to collisions
with the environment and to uncertainty with regard to contact locations. In particular,
we can see that when climbing the stairs, the swing foot can slightly collide with the stair
but the robot does not lose balance. Also, even if the contact is not precisely put at its
planned position this does not prevent the motion from being successfully carried out on
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the stance including that contact. These remarks are encouraging in the perspective of
later using the method for the control of the real robot.

There were cases however in which the collision of the swing link with the environ-
ment led to an impact from which the robot could not recover and ended up falling
down. A posteriori tuning of the CoM objectives weights and gains sometimes enabled
to regenerate a stable motion.

“Falling down” is what happens when the constraints of the QP (4.19) cannot be
satisfied. This means that the robot reached a state (q, q̇) outside of the viability ker-
nel [Wie02]. If we had used a prioritization approach, this would have led to either a
dynamically feasible motion that breaks the contacts, or a non-dynamically-consistent
motion that maintains the contacts, both cases resulting in an ill-posed QP formulation
in the subsequent simulation step. This is why we did not see the necessity to use prior-
itized formulation, and the motion generation fails (“crashes”) in case the robot reaches
such a non-viable state. Recovery strategies from these situations should be further in-
vestigated. Note however that falling down can also occur while all the constraints are
satisfied, since the CoM control strategy does not strictly quantify the “stability keeping”
notion that is not well defined outside a ZMP-applicable framework (e.g. [Wie02] for a
discussion, and [HHH+06] for an approach of such notion of stability beyond the ZMP
criterion).

4.7. Conclusion

We investigated a method inspired from computer graphics animation to generate
simulated humanoid robot motion. This method allows the robot to benefit from full
autonomy from the multi-contact planning stage to the motion generation stage, and
thus the two stages of the contact-before-motion framework are achieved.

A number of issues have to be addressed to convert this motion generation tool into an
on-line control tool. Most important is reaching real-time performance. Collision avoid-
ance constraints might be included in the QP formulation by using repulsive potential
field approaches.

We are also studying extendibility to problems such as object manipulation and mul-
tiple robot collaboration, as our generic multi-contact stances planner can handle these.

Another possible improvement worth investigating is to add to the framework a
reduced-model planning phase that would produce more dynamic motions.

We now go back to the static problem solved in Chapter 3 and we try to extend it to
the case of deformable contact support in the next chapter (Chapter 5).

4.8. Appendix: Dynamics Equation

Our objective in this appendix section is to recall the work published in [Wie05]
and apply it to our particular root-link-quaternion-parametrized humanoid robot. So we
suppose we have a humanoid robot made of r revolute joints indexed by j ∈ {1, . . . , r}
and m+1 bodies indexed by k ∈ {0, . . . , m}. The root body is the body 0. On each body
k a set of contact forces fk,1, . . . , fk,mk

are applied at the respective local-frame-expressed
points ak,1, . . . , ak,mk

. Let q = (x0, θ0, q̂) ∈ R
3+4+r denote the configuration vector of

the humanoid robot, where x0 is the global-frame-expressed position of the root, θ0 a
parametrization of its orientation (a unit quaternion for instance), and q̂ the internal
joint angles vector.
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Let Rk denote the orientation of the body k and xk the global-frame-expressed position
of the origin of the local frame k; in particular, R0 is the orientation of the root body.
Let ωglobal

0 and ωroot
0 denote, respectively, the global-frame-expressed and the root-frame-

expressed rotational velocity of the root body. Also, let Jglobal
ω0 and J root

ω0 be respectively
the mappings

(4.22) ωglobal
0 = Jglobal

ω0 θ̇0 ,

(4.23) ωroot
0 = J root

ω0 θ̇0 .

If R01,R02,R03 denote the three columns of R0, then we have

(4.24) Jglobal
ω0 = R03R

T
02

∂R01

∂θ0
+R02R

T
01

∂R03

∂θ0
+R01R

T
03

∂R02

∂θ0
,

and

(4.25) J root
ω0 = RT

0 J
global
ω0 .

We denote Jtk(p), J
local
rk , and Jglobal

rk , respectively, the translational Jacobian at a
local-frame-expressed point p, the local-frame-expressed rotational Jacobian, and the
global-frame-expressed rotational Jacobian of the body k with respect to q. Similarly,
Ĵtk(p), Ĵ

local
rk , and Ĵ root

rk are, respectively, the translational Jacobian at a local-frame-
expressed point p, the local-frame-expressed rotational Jacobian, and the root-frame-
expressed rotational Jacobian of the body k relative to the root body with respect to
q̂.

We have, for the translational Jacobian,

(4.26) Jtk(p) =
[

13×3

∣

∣

∣
− (xk +Rk p− x0)× R0 J

root
ω0

∣

∣

∣
R0 Ĵtk(p)

]

.

Remark: if we denote p0 = RT
0 (xk +Rk p− x0) as the root-frame-expressed position of p,

which does not depend on θ0, then we can show that

−(xk +Rk p− x0)× R0J
root
ω0 = −[R0 p

0×]Jglobal
ω0(4.27)

=
∂R0 p

0

∂θ0
(4.28)

=

[

∂R0

∂θ0,i
p0
]

i

.(4.29)

We also have the following expression for the rotational Jacobian

(4.30) J local
rk =

[

03×3

∣

∣

∣
RT
kR0 J

root
ω0

∣

∣

∣
Ĵ local
rk

]

,

(4.31) Jglobal
rk = Rk J

local
rk =

[

03×3

∣

∣

∣
Jglobal
ω0

∣

∣

∣
R0 Ĵ

root
rk

]

.

Remark 1: The latter expressions is consistent with the composition rule of rotational
velocities

ωglobal
k = Jglobal

rk q̇(4.32)

= Jglobal
ω0 θ̇0 +R0( Ĵ

root
rk

ˆ̇q)(4.33)

= ωglobal
0 +R0 ω

root
k/root .(4.34)
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Remark 2: We can easily check that the two following transport formulas are consistent
with the above derivations of the translational and rotational Jacobians:

(4.35) Jtk(a) = Jtk(b)− Rk[(a− b)×]J local
rk ,

(4.36) Ĵtk(a) = Ĵtk(b)− RT
0Rk[(a− b)×]Ĵ local

rk .

Let ck denote the local-frame-expressed center of mass of the body k, µk its mass,
and Ik(p) its inertia matrix expressed at a local-frame-expressed point p, we have:

(4.37) Ik(ck) = Ik(03)− µk
(

(cTk ck) 13×3 − ck × ck
)

.

The motion of the humanoid robot is governed by the following equation

(4.38) M(q)q̈ +N(q, q̇)q̇ =M(q)
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03

04
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+

m
∑

k=0

mk
∑

i=1

Jtk(ak,i)
Tfk,i ,

u ∈ Rr being the joint actuators torques and g the gravity vector. The expressions of
M(q) and N(q, q̇) are given as follows:

(4.39) M(q) =
m
∑

k=0

Jtk(ck)
TµkJtk(ck) + J local

rk

T
Ik(ck)J

local
rk ,

(4.40) N(q, q̇) =

m
∑

k=0

Jtk(ck)
TµkJ̇tk(ck)+J

local
rk

T
Ik(ck)J̇

local
rk −J local

rk

T (
Ik(ck)J

local
rk q̇

)

×J local
rk .





CHAPTER 5

FEM-based Static Posture Planning for a Humanoid Robot

on Deformable Contact Support

In this chapter, after reaching the dynamics-consistent motion in the previous

chapter (Chapter 4), we go back to statics and we extend the work presented

in Chapter 3, ie. solving the inverse kinematics problem for a humanoid

robot in general multi-contact stances under physical limitations and static

equilibrium constraints, to the case in which the contact is made on a non-

rigid deformable environment support. We take a finite element approach

to solve the static equilibrium equations for the system made of the robot

and the deformable support within the linear elasticity model. Example

simulation results show the humanoid robot HRP-2 taking contact support

with hand or foot link on a deformable cube.

5.1. Introduction

In Chapter 3 we presented an optimization-based solution for the inverse kinematics
problem on non-horizontal non-coplanar frictional multi-contact stances for a humanoid
robot subject to joint and torque limits under the static equilibrium constraint. This
work is used within a contact-before-motion planning framework presented in Chapter 2
that extended the seminal works of [EKM06, HBL05] to general multi-agent systems
for solving indifferently locomotion and manipulation planning problems centred around
the humanoid robot.

One common assumption in all of these works is the rigidity hypothesis, for both
the robot links and the environment objects. Our aim in this work is to further extend
the capabilities of these contact-before-motion planners to cope with deformable objects
in the environment under the linear elasticity hypothesis. This can be made possible
if the underlying inverse kinematics solver under static equilibrium constraint can deal
with such linear elasticity models. Thus we focus on this latter task, extending the
solver presented in Chapter 3 to the case in which the contact prints are positioned on a
surface belonging to a deformable object in the environment. For other planning problems
involving deformable objects, we can cite for example the works [SI07, vdBMGA10].

The approach we choose to solve for the static equilibrium equations of the elastic
material is based on the finite element method. The deformation of the contact support
is related to the corresponding position of the supported link of the robot and is as
such a function of the configuration of the robot. This deformation generates reaction
forces that have to be taken into account in the equilibrium equation of the robot. The
main contribution of this work is thus to relate the induced deformation forces to the
configuration of the robot in a way that will allow us to derive the gradient of the extended
static equilibrium constraint fed to the non-linear constrained optimization solver.

87



88 5. DEFORMABLE SUPPORT

The rest of the chapter is organized as follows. In Section 5.2 we introduce the
notations used by recalling the finite element method for linear elasticity models. We
then write the constraint and its gradient in Section 5.3 which constitutes the main
development of the chapter. Example applications are presented in Section 5.4, before
concluding the chapter by discussing limitations and perspectives in Section 5.5.

Sprint

Sfixed

Sr

ST

TD(= 0)uD

uD = 0

e ∈ E
e 6∈ E

{FP}
{FR}

Figure 5.1. Overview illustration of the method.

5.2. The Finite Element Method

We first recall the finite element method we use to formulate and solve the problem.
This section is mainly adapted from the reference textbook [BF05] that we reproduce
here in order to introduce the notations that we need for the sake of our formulation.1

So let us consider a solid object that occupies in the Euclidean space a volume de-
noted Ω subject to the behaviour model of linear elasticity under the small deformation

1We encourage the reader familiar with the method to still go through this section as a minimum
requirement to understand the notations and reasoning of the rest of the chapter.
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hypothesis. The following equations govern the static equilibrium of the object:

ε(x) =
1

2
(∇u+∇Tu)(x) ,(5.1)

div σ(x) + ρ f(x) = 0 ,(5.2)

σ(x) = A : ε(x) ,(5.3)

where x ∈ Ω, ε is the strain tensor field, u is the displacement field, σ is the Cauchy stress
tensor field, A is the elasticity tensor, ρ is the mass density of the material, f is the body

force density field. The boundary conditions for a well-posed problem are specified as:

σ(x).n(x) = TD(x) (x ∈ ST ) ,(5.4)

u(x) = uD(x) (x ∈ Su) ,(5.5)

where TD and uD are respectively the prescribed surface force density (traction) and
prescribed displacement fields on the the surfaces ST and Su that constitute a partition
of the frontier ∂Ω (ST ∩ Su = ∅ and ST ∪ Su = ∂Ω ), and n(x) is the unit normal to the
surface ∂Ω at the point x.

By applying the virtual work principle, or by following a variational approach mini-
mizing potential energy, we can get to the weak formulation of the problem, in which we
look for a displacement field u satisfying (5.5) such that:

(5.6)

∫

Ω

ε[u] : A : ε[w] dV =

∫

Ω

ρf.w dV +

∫

ST

TD.w dS ,

for all the virtual displacement fields w that are zero on the surface Su, where we have
used the notation

(5.7) ε[v] =
1

2
(∇v +∇Tv) .

We approximate the domain Ω by a domain Ωh = ∪eEe (1 ≤ e ≤ NE) made of
isoparametric elements Ee of characteristic dimension h (the subscript h will be used
to make distinction between the exact problem and the approximated problem) that
constitute a mesh of Ωh, the nodes of which are denoted x(n) (globally within the whole

mesh, or x
(k)
e , 1 ≤ k ≤ ne, locally within each element e). The position of a point

x ∈ Ee is interpolated from the positions of the nodes of the element using the local
shape functions Nk

(5.8) x =

ne
∑

k=1

Nk(a)x
(k)
e ,

where a is a parameter varying in a reference non-deformed “unit” element ∆e, and
we choose to interpolate accordingly an arbitrary displacement field vh on the nodal
displacements v(k) using the same interpolation

(5.9) vh =

ne
∑

k=1

Nk(a)v
(k) .

We also introduce an injective index function dof(n, j) such that dof(n, j) > 0 if the
coordinate j (along the basis vector ej) of the node x(n) is free, meaning that the node

x(n) does not belong to the prescribed-displacement surface Su,h ⊂ ∂Ωh, and dof(n, j) ≤ 0
otherwise.
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Finally we apply the Galerkin method. We look for a displacement field of the form

(5.10) uh(x) = u
(D)
h (x) + u

(0)
h (x) ,

where the fields u
(D)
h and u

(0)
h , respectively satisfying the boundary condition (5.5) and

vanishing on the surface Su,h, are interpolated as

u
(D)
h (x) =

∑

(n,j)|dof(n,j)≤0

Ñn(x) u
(D)
j (x(n)) ej ,(5.11)

u
(0)
h (x) =

∑

(n,j)|dof(n,j)>0

Ñn(x) u
(n)
j ej ,(5.12)

where Ñn are the global shape functions constructed from the functions Nk in (5.8) so
as to represent the position of a point expressed in the whole domain Ωh. The virtual
displacement field defined in the weak formulation (5.6) takes the form

(5.13) w(x) =
∑

(n,j)|dof(n,j)>0

Ñn(x)w
(n)
j ej ,

and the weak formulation (5.6) amounts now to finding a field u
(0)
h of the form (5.12)

such that for every field w of the form (5.13) we have

(5.14)

∫

Ωh

ε[u
(0)
h ] : A : ε[w] dV = −

∫

Ωh

ε[u
(D)
h ] : A : ε[w] dV

+

∫

Ωh

ρf.w dV +

∫

ST,h

TD.w dS .

By gathering the free nodes displacements coordinates u
(n)
j and w

(n)
j (dof(n, j) > 0)

respectively in the vectors {UF} and {W}, the formulation (5.14) takes the following
linear system form

(5.15) {W}T [KF ]{UF} = {W}T{F} ,

or equivalently

(5.16) [KF ]{UF} = {F} ,

where the rigidity matrix [KF ] and generalized nodal forces {F} are defined as sums of
elementary integrals over the elements Ee through identification respectively in

(5.17) {W}T [KF ]{UF} =
NE
∑

e=1

∫

Ee

ε[u
(0)
h ] : A : ε[w] dV ,

and

(5.18) {W}T{F} =
NE
∑

e=1

−
∫

Ee

ε[u
(D)
h ] : A : ε[w] dV +

∫

Ee

ρf.w dV +

∫

ST,h∩Ee

TD.w dS .
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The Voigt Notation. Let us differentiate the two relations (5.8) and (5.9)

dx = J(a) da ,(5.19)

dvh = H(a) da .(5.20)

This allows us to rewrite the relation (5.7) applied to the field vh as

(5.21) ε[vh](x) =
1

2

(

H(a).J−1(a) +
(

H(a).J−1(a)
)T
)

.

By introducing the Voigt representations of the symmetric tensors ε and σ, which are the

R6 vectors containing the 6 independents components of the two tensors

{σ} = {σ11 σ22 σ33 σ12 σ13 σ23}T ,(5.22)

{ε} = {ε11 ε22 ε33 2 ε12 2 ε13 2 ε23}T ,(5.23)

the relation (5.21) takes the form

(5.24) {ε} = [Be(a)]{Ve} ,
where {Ve} is the R3ne vector concatenating the nodal displacements v(k) and [Be(a)] is
a 6 × 3ne matrix obtained through identification in (5.21). Moreover, the relation (5.3)
simplifies into

(5.25) {σ} = [A]{ε} ,
where [A] is the 6 × 6 matrix written in terms of the Lamé parameters λ and µ for an
isotropic homogeneous material

(5.26) [A] =





















λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





















.

These relations allows for a simple evaluation of the elementary integrals in (5.17)
and (5.18) using a Gauss-point-based numerical method.

5.3. Formulation of the Planning Problem

Let us now consider the problem of a humanoid robot in multi-contact stance with its
environment, in which one of the contacts (we will refer to it as the “deformable contact”)
is made on the surface of the deformable object introduced in the previous section. See
Fig. 5.1. Let the corresponding contact surface on the robot be denoted Sr, which is
a planar surface defined on a link l of the robot r. The desired relative position and
orientation of the deformable contact (x, y, θ) ∈ SE(2) define a contact print, that is the
image of the surface Sr projected onto ∂Ω and positioned according to (x, y, θ). Let this
contact print be denoted Sprint ⊂ ∂Ω, and the corresponding bijective projection mapping
pprint : Sr → Sprint, which is simply a rigid transformation. Furthermore, a portion Sfixed

of the frontier ∂Ω is fixed on the environment, for instance the base of the deformable
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Ee|e ∈ E

Sprint

x
(1)
e

x
(3)
e

x
(2)
e

x
(4)
e

f (1)

e

f (3)

e

f (2)

e

Figure 5.2. Nodal reaction forces.

object contacting the rigid floor. Let P and F be the subsets of the surface nodes of
the mesh x(n) that lie inside Sprint and Sfixed respectively

P = {x(n) | x(n) ∈ Sprint} ,(5.27)

F = {x(n) | x(n) ∈ Sfixed} .(5.28)

The prescribed-displacement surface in the boundary condition (5.5) is in this case Su =
Sprint ∪ Sfixed, and the prescribed nodal displacements are

(5.29) u(D)(x(n)) =

{

0 if x(n) ∈ F ,

p−1
print(x

(n))− x(n) if x(n) ∈P.

On the remaining surface ST = ∂Ω \ (Sprint ∪ Sfixed) the prescribed traction is set to zero

(5.30) TD(x) = 0 (x ∈ ST ) ,
and the body force density is also set to zero

(5.31) f(x) = 0 (x ∈ Ω) .

In these conditions, by concatenating the prescribed nodal displacements u(D)(x(n)) into
the vector {UD}, the nodal forces vector (5.18) takes the form

(5.32) {F} = −[KD]{UD} ,
where the matrix [KD] is defined through identification in

(5.33) {W}T [KD]{UD} =
NE
∑

e=1

∫

Ee

ε[u
(D)
h ] : A : ε[w] dV .

Finally equation (5.16) reduces to

(5.34) [KF ]{UF}+ [KD]{UD} = 0 ,

which can be rewritten as

(5.35) {U} =
{

UF

UD

}

=

[−[KF ]−1[KD]

I

]

{UD} ,

the vector {U} containing now the displacements of all the nodes of the mesh, and I
being the identity matrix of dimension dim({UD}). We rewrite this latter equation in a
more compact form

(5.36) {U} = [K]{UD} .
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Nodal Reaction Forces. We would like now compute the nodal reaction forces
{FR} that are applied through the nodes of the contact print P on the contact link l of
the robot r. See Fig. 5.2. First let us define what we mean by such nodal reaction forces.
Let T P be the traction that is applied on the the deformable object through the surface
Sprint. For a point x ∈ Sprint we have

(5.37) T P (x) = σ(x).n(x) .

We approximate the the surface print Sprint by Sprint,h defined as the union of the surfaces
of the elements that have all of their frontier nodes belonging to P. These elements are
members of the set

(5.38) E =
{

e ∈ {1, . . . , NE} | Ee ∩ ∂Ωh ⊂ Sprint

}

,

and thus Sprint,h is

(5.39) Sprint,h =
⋃

e∈E

Ee ∩ ∂Ωh .

For every e ∈ E , we would like to compute the traction TP (x) when x varies in
Ee∩∂Ωh. Since we chose to use tetrahedron elements, the matrix [Be(a)] defined in (5.24)
can be shown to be independent of the parameter a, [Be(a)] = [Be], and the stress field
σ(x) is thus constant within every element Ee, σ(x) = σ

e
. Since Ee ∩ ∂Ωh reduces in this

case to a planar triangle, the normal n(x) is constant throughout Ee ∩ ∂Ωh, we denote
it ne, and subsequently T P (x) is also constant throughout Ee ∩ ∂Ωh, we denote it T Pe .
The nodal surface forces {FPe } are defined such that for every virtual displacement field
w(x), x ∈ Ee ∩ ∂Ωh interpolating the nodal displacements {WP

e } of the three surface
triangle nodes through the interpolation (5.9) we have

(5.40) {WP
e }T{FPe } =

∫

Ee∩∂Ωh

TPe .w dS .

If αe denotes the area of the triangle Ee ∩ ∂Ωh, we can show that identification in this
latter relation leads to

(5.41) {FPe } =
αe
3
N σ

e
.ne ,

where N is a duplication matrix

(5.42) N =
[

I3×3 I3×3 I3×3

]T
.

{FRe }, the contribution of the element e ∈ E to the nodal reaction forces {FR}, is the
opposite of this vector

(5.43) {FRe } = −{FPe } = −
αe
3
N σ

e
.ne ,

The application points of {FRe } are the vertices (x
(1)
e , x

(2)
e , x

(3)
e ) of the triangle Ee ∩ ∂Ωh.

Finally the reaction surface force distribution over the triangle Ee ∩ ∂Ωh is equivalent
from a virtual work point of view to the set of three point forces

(5.44)























f (1)

e
= −αe

3
σ
e
.ne applied at x(1)e

f (2)

e
= −αe

3
σ
e
.ne applied at x(2)e

f (3)

e
= −αe

3
σ
e
.ne applied at x(3)e
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The Optimization Approach. We recall now the approach followed in Chapter 3
for solving an inverse problem. if q denotes the configuration of the robot (including the
free-flying base component in SE(3)) and Λ the set of non-negative coefficients along the
linearised friction cone generators at the contact points, the approach consists in solving
the non-linear constrained optimization problem of an arbitrary objective function obj2

min
(q,Λ)

obj(q,Λ)(5.45)

under joint limits,(5.46)

torque limits,(5.47)

friction cone,(5.48)

and static equilibrium constraints.(5.49)

Taking into account the deformable contact is straightforward by adding the forces (5.44)
to the set of contact forces applied on the robot in the formulation of the torque limits
and static equilibrium constraints (5.47) and (5.49) of the formulation (5.45). One dif-
ficulty arises in computing the contribution of these forces to the gradient of these two
constraints (5.47) and (5.49).

So let us consider one of these forces f (j)

e
(e ∈ E and j ∈ {1, 2, 3}) and try to explicit

its dependency on the configuration of the robot q. We have

(5.50) f (j)

e
(q) = −αe

3
σ
e
(q).ne(q) .

Note that since the projection operator pprint is a rigid transformation the area of the
element frontier triangle αe is constant and does not depend on q. Let [D] be the 9 × 6
duplication matrix

(5.51) [D] =



































1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0



































,

such that we can write the definition of the Voigt notation (5.22) of the stress tensor {σe}
as a vectorization relation

(5.52) [D] {σe} = vec(σ
e
) ,

where vec(M) means the column vector obtained by concatenating all the columns of
M into one column vector [MN99]. Since σ

e
.ne is already a column vector then its

2The objective function is designed in a way to minimize a distance to a reference posture and
to optimize the repartition of contact forces or actuation torques. In the present case an additional
weighted component aimed at minimizing the deformation can be added by minimizing the norm of the
nodal reaction forces that will are derived in the subsequent development of the chapter. This is done
in particular in the presented results at the end of the chapter.
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vectorization is trivial

(5.53) vec(σ
e
.ne) = σ

e
.ne .

The algebra of the vectorization operation tells us that the vectorization of a matrix
product can be derived using the Kronecker product operation ⊗
(5.54) vec(M1M2) = (MT

2 ⊗ Ik×k) vec(M1) ,

where k is the number of rows of M1. So the relation (5.53) using (5.52) becomes

σ
e
.ne = vec(σ

e
.ne) ,(5.55)

= (nTe ⊗ I3×3) vec(σe) ,(5.56)

= (nTe ⊗ I3×3) [D] {σe}.(5.57)

Moreover, from (5.24) and (5.25) we can write

(5.58) {σe} = [A][Be]{Ue} ,
where {Ue} are the nodal displacements of the four vertices of the element Ee, which can
be obtained from (5.36) as

(5.59) {Ue} = [Ke]{UD} ,
[Ke] being the matrix extracted by keeping only the 12 rows of the matrix [K] correspond-
ing to the 12 components {Ue} in {U}. Finally we can rewrite an explicit expression
of (5.50)

(5.60) f (j)

e
(q) = −αe

3

(

ne(q)
T ⊗ I3×3

)

[D][A][Be][Ke]
{

U
D(q)

}

.

The gradient of (5.60) with respect to q can now be derived based on the two computa-
tionally available Jacobian matrices of the contact link l of the robot r

∂ne(q)

∂q
,(5.61)

∂
{

UD(q)
}

∂q
.(5.62)

(Recall that at the solution Sr = Sprint and thus ne(q) and the non-zero components of
{

UD(q)
}

can be considered as rigidly attached to Sr ie. rigidly attached to the link l).
This gradient takes the final form

(5.63)
∂f j

e

∂q
= −αe

3

[(

[

∂ne
∂qi

]T

⊗ I3×3

)

[D][A][Be][Ke]
{

U
D
}

]dim(q)

i=1

− αe
3

(

nTe ⊗ I3×3

)

[D][A][Be][Ke]
∂
{

UD
}

∂q
.

The gradients of the moment of the force f (j)

e
(q) and the torques resulting from it

follow directly using the Jacobians at the application points that can also be considered
as being attached to the surface Sr and thus to the link l of the robot r

(5.64)
∂x

(j)
e (q)

∂q
.
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Finally the computation of these gradients allows us to use non-linear optimization
solvers such as [LT96, WB06] to solve the problem (5.45) taking into account the nodal
reaction forces.

5.4. Simulation Results

We applied the presented method to an example scenario in which the humanoid
robot HRP-2 [KKK+04] takes support with both feet on the rigid ground and with a
modified hand link on a deformable object.

The deformable object is a simple 1m × 1m × 1m cube with an isoparametric mesh
made of 166 nodes and 570 tetrahedron elements. See Fig. 5.3. Table 5.1 gives the
physical properties of the material that constitutes the cube.

Figure 5.3. The mesh of the deformable environment contact support.

Young’s modulus E 106Pa
Poisson’s ratio ν 0.4
Mass density ρ 103 kg/m3

Table 5.1. Properties of the deformable material.

Fig. 5.4 shows the resulting configuration together with snapshots configurations along
the optimisation iteration process. Note that we are only interested in the final iterate,
the intermediate configurations do not have physical meaning.

In another example scenario, shown in Fig. 5.5, the HRP-2 robot has its left foot
supporting on a rigid object and its right foot supporting on the same deformable cube.
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(a) Final result

(b) i = 0/68 (c) i = 1/68 (d) i = 20/68 (e) i = 50/68 (f) i = 68/68

Figure 5.4. Example of the execution of the optimisation algorithm. i is
the iteration counter. The total number of iterations is 68.

(a) Non-deformed configuration (b) Deformed cube after taking a step

Figure 5.5. HRP-2 taking a step on the deformable cube.
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Finally, Fig. 5.6 shows for the sake of visualization an on-purpose exaggerated defor-
mation resulting from lower Young’s modulus of the material constituting the cube. This
configuration is not physically valid since the linear elasticity regime should be applied
under the small deformation hypothesis, which occurs only in the first case. For large
deformations, non-linear approaches such as [BJ05, YC00] should be investigated.

As for execution time, the orders of magnitude as reported in Chapter 3 range from
one to ten seconds per query. Adding the FEM resolution step keeps it in the order
of tens of seconds, without any effort devoted to reducing this time in our prototype
implementation.

(a) E = 106Pa (b) E = 5× 105Pa

Figure 5.6. Resulting configuration with different Young’s mudulus E.

5.5. Conclusion

We extended our multi-contact static posture planning optimisation framework to
take into account non-rigid linear-elasticity-based deformable model as a possible contact
support. The linear behaviour made it possible to derive the gradient of the nodal
reaction forces with respect to the configuration of the robot, which defines the boundary
conditions of the deformation.

One limitation of this approach resides in its non applicability to the planning of
the whole sequence of postures in the framework of contact-before-motion planning in
its continuous formulation as presented in Chapter 2, Section 2.3.2, Algorithm 2. The
reason is that the position of the contact print (x, y, θ) on the deformable surface should be
specified and fixed beforehand in the current approach. If we were to keep this position
(x, y, θ) as an optimisation variable, then the reaction forces would not any more be
continuous functions of the configuration since the set E of the finite elements belonging
the non-fixed contact print Sprint would vary in a discrete non-continuous way. Thus it is
not possible to use a finite-element-based approach to plan for the sequence of postures
under continuous search of the best positions of the contacts.

One way to overcome this limitation is to resort to a contact-before-motion planning
approach in its pre-discretized contact positions formulation as in [HBL05] (Chapter 2,
Section 2.3.1, Algorithm 1), where we pre-process the environment by sampling a finite set
of possible contact positions (fixed) on the environment, in particular on the deformable
support, and perform a discrete search along these sampled positions. The approach
presented in this chapter is thus suitable in this case.
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Finally, one remaining difficulty lies in the formulation of the collision-avoidance con-
straint with deformable objects.





Conclusion

In this PhD work we contributed to the general autonomy of humanoid robots by
providing them with a tool that allows them to plan locomotion or manipulation motions
changing their contact configurations.

We first needed to set up the desired level autonomy and, for that purpose, to identify
the kind of objectives in terms of which we would like to specify a task to be realized
by the autonomous robot. We chose to specify the task without distinction between
a locomotion and a manipulation component. The robot autonomously plans either
of them or interleaves both of them if necessary in order to realize the required task.
This is what we called the non-decoupled locomotion-and-manipulation planning. We
analytically demonstrated this paradigm on low-dimensional example systems.

We then tackled the full-scale real-life systems made of humanoid robots armed with
their dexterous locomotion and manipulation capabilities, having in mind the objective
of extending existing multi-contact planning algorithms in accordance with our non-
decoupled paradigm, scaled to fit the humanoid planning problems. We reached this
objective by considering general centralized multi-agent systems of which the humanoid
robots, the dexterous hands, the manipulator arms, the manipulated object, appear as
being only particular instances. This way we generated sequences of stances and postures
that encode the control-wise significant changes in the contact configurations necessary
to realize a wide variety of tasks of different natures with one unique planner.

Each posture in this sequence was generated with an inverse kinematics solver that
outputs a configuration of the system of robots under static equilibrium, within their
joint and torque limits, avoiding collision, and reaching a specified set of contacts that
are frictional, non-horizontal, non-co-planar, and as such general enough to consider the
desired variety of humanoid planning problems.

We subsequently synthesized dynamically-consistent continuous motion that goes
through this sequence of static configurations considered as milestones of the motion.
This was done by a feedback multi-objective controller, the objectives of which are de-
cided by a finite-state machine built upon the sequence of static postures.

Finally we envisioned the possibility of considering deformable environment objects
used as contact support. We re-solved the inverse kinematics problem integrating finite-
element models of linear-elastic materials that constitute the deformable environment.

From here on, possible future research in the direction sketched by the conclusion of
this PhD work (besides the technical issues listed at the conclusive section of each respec-
tive chapter of the dissertation) might go towards more autonomy and more reactivity.

First the autonomy. The strongest hypothesis assumed in the present work is the full
knowledge of the environment by our autonomous humanoid agents. Sensing is considered
as a black box that provides them with perfect model of the environment. Integrating the
sensing problem inside the contact planning state of the art is an unavoidable requirement
to pretend reaching actual autonomy.
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As for reactivity, the current computational cost of the different phases of the planning
and execution framework in this work is far too prohibitive to rely on or hope for any short-
term improvement of computational power of the processors in order to reach real-time
performances. We should thus tackle from a theoretical angle this technical limitation of
the implementation hardware support, by investigating algorithms parallelizability and
distributivity on multi-core processors, for example.

Finally both autonomy and reactivity necessitate dealing with uncertainty. This un-
certainty should be resolved at the sensing, the planning, and the execution levels. Not
to mention the absence of unpredictable free-willing agents, namely real human, in the
environment of the humanoids, which is a core limitation given that one of the declared
objectives of studying humanoids is precisely the interactivity with humans.

Yet we hope that our thesis contributes with a step along this complicated path
towards the full autonomy of humanoids.



APPENDIX A

Potential Field Guide for Humanoid Multi-Contact Acyclic

Motion Planning

We present a motion planning algorithm that computes rough trajectories

used by a contact-points planner as a guide to grow its search graph. We

adapt collision-free motion planning algorithms to plan a path within the

guide space, a submanifold of the configuration space included in the free

space in which the configurations are subject to static stability constraint.

We first discuss the definition of the guide space. Then we detail the differ-

ent techniques and ideas involved: relevant C-space sampling for humanoid

robot, task-driven projection process, static stability test based on polyhedral

convex cones theory’s double description method. We finally present results

from our implementation of the algorithm.

A.1. Introduction

In Chapter 2 we adapted Best First Planning to multi-contact planning by growing
the search tree in the space of sets of contacts. A key element of this contacts planner
is the potential field that drives the search. It has to be carefully chosen as the planner
may get trapped in local minima, which occur for example when we choose too simple
potential fields such as the Euclidian distance to goal. An inappropriate potential field
may also lead to the planning of complicated paths and postures. In [EKMG08], a
solution is given by building the potential field around a rough trajectory, a contact-
points guide, that gives an approximation of the intended path in the workspace as well
as an idea of the postures that the robot has to adopt along this path. This trajectory
was given manually as an input to the planner. Our aim in this work is to provide such
a trajectory automatically, thus giving more autonomy to the robot.

A.2. Solution

The main idea is to adapt existing collision-free motion planning algorithms to plan
the contact-points guide.

A.2.1. General algorithm. The collision-free motion planning problem can be for-
malized as follows (adapted from [LaV06]):

Problem A.2.1 (collision-free motion planning problem).

• a world W = R3.
• an obstacle region O ⊂ W.
• a robot R defined in W as a kinematic tree of m joints J1,J2, . . . ,Jm to which
rigid bodies B1,B2, . . . ,Bm are attached.
• the configuration space (also called C-space) C defined as the set of all possible
transformations that may be applied to the robot. The image of the robot R in the
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(c) Contact-points planning.

Figure A.1. Illustration of the problem.

configuration q is denotedR(q). From C we derive Cfree = {q ∈ C | R(q)∩O = ∅}
and Cobs = C \ Cfree.
• a query pair (qI , qG) ∈ C2free of initial and goal configurations.
• an algorithm must compute a continuous path τ : [0, 1]→ Cfree such that τ(0) =
qI and τ(1) = qG.

Two classes of methods exist so far to address this problem [LaV06]: combinatorial
motion planning and sampling-based motion planning. The difference between the two
lies in that the latter avoids explicit construction of Cobs. Instead it uses a sampling of the
C-space to grow a discrete graph G(V,E), called a roadmap, of which every vertex v ∈ V
represents a configuration q ∈ Cfree and every edge e ∈ E represents a continuous path in
Cfree, that progressively covers Cfree. The search for the path is then conducted into the
constructed roadmap that supposedly represents an approximation of the connectivity of
Cfree. Different instantiations of sampling-based motion planning as a general approach
exist [KScLO96][LK01]. Algorithm 3 gives the general frame of the one we take as
a starting point for our study, keeping in mind that it is possible to choose any other
instantiation modulo adequate modifications.

Algorithm 3 sampling-based collision-free motion planning.

1: initialize G(V ← {qI , qG}, E ← ∅)
2: while no path found in G do

3: sample a random configuration qs in C
4: if qs ∈ Cfree then
5: for all qV ∈ V ∩ neighbourhood(qs) do
6: if the direct path τd(qs, qV ) lies in Cfree then

7: V.add(qs) and E.add(τd(qs, qV ))
8: end if

9: end for

10: end if

11: end while

Now we would like to adapt algorithm 3 in order to plan a contact-points guide. The
problem is that the path yielded by a contact-points planner lies on the boundary of Cobs:
∂Cobs. Simply replacing Cfree with ∂Cobs in algorithm 3 would be a failing strategy as the
measure of ∂Cobs is equal to zero . This means that the rejection rate at line 4 would
be equal to 1. The second problem with this strategy concerns the linear direct paths
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in line 6, as ∂Cobs is generally a non linear submanifold, a linear edge joining two of its
elements will almost always be completely outside the submanifold.

Our solution is to consider a submanifold of C of non-zero measure, we label it Cguide,
that can be visually represented as a layer wrapping each connected component of ∂Cobs.
The idea, to some extent similar to [ABD+98], is to sample configurations “near” the
obstacles; however, work in [ABD+98] focuses on 6D rigid robots, whereas our primary
targets are polyarticulated humanoid robots. We will now detail our definition of Cguide.

A contact situation between a body Bi of the robot and the obstacle region O is
normally defined as

(A.1) ∂Bi ∩ ∂O 6= ∅ and int(Bi) ∩ int(O) = ∅

One way of adding a dimension, and thus creating a “volume”, to the submanifold Cguide
could be to consider the body Bi as in contact with O if d(Bi,O) < εcontact, which is a
positive fixed threshold. d denotes the Euclidian distance.

Definition A.2.2 (body-obstacle contact situation). A rigid body B is in contact
with an obstacle region O if

(A.2) 0 < d(B,O) < εcontact

In this situation, we denote by AB and AO respectively the closest points on the body and

on the obstacle and by n =
−−−→
AOAB/‖

−−−→
AOAB‖ the normal of the contact. The robot R is in

contact in configuration q ∈ Cfree if at least one of its bodies is in contact in configuration
q.

We can now define Cguide as

(A.3) Cguide = {q ∈ Cfree | R is in contact in configuration q}

and then plan a collision-free path in Cguide using algorithm 3 and replacing in it all
the occurrences of Cfree by Cguide. This would produce a path that could be tricky to
follow by the contact-points planner as the latter will have to compute statically stable
configurations along this path, and may need to stray significantly from the given path
to find these stable configurations. So we have to refine the definition of Cguide to take
static stability into account.

Considering the laws of rigid body dynamics applied toR and assuming that there are
no limits to the torques we can apply to the robot joints (which is only an approximation),
the static stability condition is simply written

(A.4)

{
∑

f∈F f +mg = 0
∑

f∈F MO(f) + MO(mg) = 0

where F is the set of all contact forces applied to the robot, and MO is the moment of
a force in a point O ∈ R3. m is the mass of the robot and g the gravity vector. For
simplicity we have modeled any surface contact as a discrete set of punctual contacts
applied at chosen points distributed over the contact surface (we intentionally do not
make it explicit in our formulas for readability’s sake). Each contact force f ∈ F applied
on the robot at a point A ∈ ∂R with a normal n lies in a friction cone CA,n,θ, θ being
the angle of the cone that depends on the friction coefficient between the body and the
obstacle, A is the apex of the cone, and n defines the revolution axis of the cone.
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Definition A.2.3 (static stability situation). The robot R placed in a configuration
q ∈ Cfree is statically stable if

(A.5) ∀i ∈ I(q), ∃ fi ∈ CABi
,ni,θi, s.t.

{

∑

i∈I(q) fi +mg = 0
∑

i∈I(q) MO(fi) + MO(mg) = 0

where

(A.6) I(q) =
{

i ∈ {1, . . . , m} | 0 < d(Bi(q),O) < εcontact

}

We can now introduce our new definition of Cguide as
(A.7) Cguide = {q ∈ Cfree | R is statically stable in configuration q}

and once again try to adapt algorithm 3. This is still not enough, as the rejection
rate of our sampling would still be very high. This is the reason why we have decided
to split the sampling procedure into two distinct phases: the sampling of a more or less
uniform random configuration qs in C, followed by a projection process of qs to try to
make it fit inside Cguide. This projection process is for now only applied on the sampled
configurations, and on some discretization points along the linear direct path. There is
no guaranty, however, that the whole continuous direct path is inside Cguide.

Finally, we get algorithm 4, which is the adaptation of algorithm 3 taking into account
the previously discussed points. p : Cfree −→ Cguide denotes the projection function.

Algorithm 4 contact-points guide planning

1: initialize G(V ← {qI , qG}, E ← ∅)
2: while no path found in G do

3: sample a random configuration qs in C
4: if qs ∈ Cfree then
5: apply projection qp = p(qs) ∈ Cguide
6: for all qV ∈ V ∩ neighbourhood(qp) do
7: if (a discretization of) τd(qp, qV ) lies in Cguide then

8: V.add(qp) and E.add(τd(qp, qV ))
9: end if

10: end for

11: end if

12: end while

We will now get into the detail of the different steps of execution of algorithm 4,
especially the lines 3 and 5.

A.2.2. Sampling random configurations. In this section we detail line 3 of algo-
rithm 4.

Our humanoid robot R is represented as a kinematic tree of m joints J1, . . . ,Jm .
The root joint J1 is a six-dimensional free flyer that evolves in the C-space R3 × SO(3),
or, if the translations are bounded, [xmin, xmax]× [ymin, ymax]× [zmin, zmax]× SO(3). The
remaining joints are revolute joints yielding the C-space

∏m
i=2[θi,min, θi,max]. The total

C-space is consequently

(A.8) C = R
3 × SO(3)×

m
∏

i=2

[θi,min, θi,max]
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that we can write in a more expressive way as

(A.9) C = Cposition × Corientation × Cposture
A random C-space variable Q is as such a vector of three independent random C-space
variables Q = (Qposition, Qorientation, Qposture).

A.2.2.1. Position sampling. Qposition can be either a uniform random variable if the
workspace W is bounded or a spatial Gaussian random variable otherwise.

A.2.2.2. Orientation sampling. For the orientation we would like to bias the sampling
in order to favor some interesting orientations for a humanoid robot, such as the standing-
up orientation for a walk, the laying-down orientation for a crawl, or a slightly front-leant
orientation for a climb. SO(3) being homeomorphic to the unit quaternion sphere S3, we
need a random variable that looks like a Gaussian distribution on the sphere S

3 around
one of its points q0 that would represent one of the orientations above. The Von Mises -
Fisher distribution [MJ00] achieves this very purpose. Given a mean unit vector q0 and a
concentration parameter κ ∈ R+, the probability density function of the Von Mises-Fisher
distribution on the sphere Sp−1 ⊂ Rp is

(A.10) fq0,κ(q) = Cp(κ) exp
(

κqT0 q
)

Cp(κ) is a normalization constant

(A.11) Cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)

where Iv denotes the modified Bessel function of the first kind and order v. The param-
eter κ controls the concentration of the distribution around q0. The bigger κ the more
concentrated the distribution. κ = 0 yields a uniform distribution over the sphere. An
algorithm for simulating a Von Mises-Fisher random variable is given in [Woo94].

A.2.2.3. Posture sampling. Now we want to sample the posture space Cposture =
∏m

i=2[θi,min, θi,max]. We could immediately choose for Qposture a uniform random vari-
able. However, this would produce postures that once again are not interesting enough
for a humanoid robot, especially when the dimension m− 1 of this manifold is relatively
high (m− 1 = 30 in our humanoid platform). To solve this problem we choose to reduce
the dimensionality of Cposture by sampling in the affine space generated by the standing-up
posture qkey0 and a certain number of key postures qkey1

, . . . , qkeyn . These latter postures
should be relevant for a humanoid robot and could represent for example the sitting-down
posture, the four-legged posture, etc. To remain within the joints limits, we consider the
bounded space

(A.12) Cposture =
{

qkey0 +

n
∑

i=1

λi(qkeyi − qkey0) | (λi)i ∈ (Bnk)
+

}

where (Bnk)
+ is the positive quadrant of the unit ball of dimension n for the k-norm ‖.‖k

(A.13) (Bnk)
+ =

{

(λi)i ∈ [0, 1]n |
n
∑

i=1

λki ≤ 1

}

that we sample uniformly.
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Figure A.2. Illustration of the projection process.

A.2.3. Projection process. We detail now line 5 of algorithm 4. What we mean
by projection here is an operation that tries to bring a given configuration sample in Cfree
inside Cguide. The idea of projection was introduced in [CSL02] and further investigated
in [Sti07]. The solution we choose is to use a stack of tasks solver based on generalized
inverse kinematics called hppGik and presented in [YKEJL06]. A task is a function
f : C −→ R that we would like to bring to zero, i.e to solve f(q) = 0, q ∈ C. Suppose we
have sampled a random configuration qs. From this configuration we want to compute
a statically stable configuration, thus we have to create contacts with the neighboring
obstacles, given that the more contacts we create the more stable the configuration is
likely to be. On the other hand, the more contacts we create the more we deform the
original posture and reduce the mobility for the next posture, this is why we should
create the “minimum” number of contacts to ensure the stability. To create a contact
between a body B and the obstacle region O we need to bring it to a distance closer than
εcontact. Let us define the goal point Agoal as the point translated from AO by a εcontact/2
distance following n, and the goal plan Pgoal as the plan normal to n in Agoal. The task
that we want to formalise is “bring the point AB in the plan Pgoal”, i.e. bring to 0 the
corresponding task function

(A.14) f(q) = (
−−−−−−−→
AgoalAB(q)|n)

where (.|.) denotes the Euclidian scalar product. To solve the task f(q) = 0 we implent
the Newton’s method for finding zeros of a function (the same idea is suggested [HBL05]).
To do so we linearize f around a start configuration q0 as

(A.15) f(q) ≃ f(q0) +
∂f

∂q
(q0).dq

where dq = q − q0 and then we solve the linear system

(A.16) f(q0) +
∂f

∂q
(q0).dq = 0

using generalized inverse kinematics to compute the pseudo-inverse of J(q0) = ∂f
∂q
(q0)

that we denote J(q0)
†.The solution q1 of the system is thus given by

(A.17) q1 = q0 − J(q0)†f(q0)
The Newton’s method consists in iterating again starting now from q1, meaning that we
construct a sequence (qn)n∈N recursively as

(A.18) qn+1 = qn − J(qn)†f(qn)
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that supposedly converges to the solution. However, in our task of bringing the body
close to the obstacle, we do not really need to converge to the exact solution, but rather to
converge towards a static stability situation, even though this latter is far from the exact
solution. This is why we have chosen the Newton’s method, as we can stop its execution
after each single iteration to test the static stability of the intermediate solutions, and can
reach the static stability after few iterations. Now we would like to bring not only one
body B close to the obstacle region O, but the maximum number of bodies B1, . . . ,Bm
to O, this means that we need to solve the system of equations:

(A.19)

m
⋂

i=1

fi(q) = 0

or the linearized version

(A.20)
m
⋂

i=1

fi(q0) +
∂fi
∂q

(q0)dq = 0

The stack of tasks solver hppGik [YBEL05] allows us to solve such a system with priori-
ties, meaning that it solves the first equation, then it tries to solve the second equation at
best while remaining in the solution space of the first equation, and so on. The priority
we choose is the distance to obstacle, as we try to bring closer with the highest priority
the closest body to the obstacles. Let i1, . . . , im ∈ {1, . . . , m} be the indexes of the bodies
sorted in increasing order of distance to O, i.e:
(A.21) d(Bi1 ,O) ≤ d(Bi2 ,O) ≤ . . . ≤ d(Bim ,O)
The hppGik solver solves, in the order of priority, the following stack of tasks:

(A.22)
m
⋂

j=1

tj : fij(q0) +
∂fij
∂q

(q0)dq = 0

where tj is the task of priority j.
Finally we give algorithm 5 of the projection process, in which we introduce one new

task per iteration in order to deform as little as possible the posture. We also stop
the process after a maximum number of iterations, after which we discard the current
configuration and we start again the process with a new qs according to algorithm 4.

Algorithm 5 projection process

1: sample a random configuration qs
2: set q0 ← qs
3: counter← 1
4: while q0 is not statically stable and counter < max iterations do

5: sort the bodies d(Bi1 ,O) ≤ . . . ≤ d(Bim ,O)
6: q0 ← solution of the stack of tasks (t1, . . . , tcounter)
7: counter← counter+ 1
8: end while

9: return q0

We will now get into the detail of line 4 of algorithm 5, in which we have to test the
static stability of a configuration.
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A.2.4. Testing the static stability. Suppose we have the robotR in configuration
q and we want to check whether or not it is statically stable in this configuration, according
to definition A.2.3. In order to get a linear system, we need to consider the modeling of
each friction cone CABi

,ni,θi as discrete polyhedral cone with a finite number of generators
ui,1, . . . ,ui,ni

CABi
,ni,θi = C (ui,1, . . . ,ui,ni

)(A.23)

=
{

ni
∑

j=1

λjui,j / λ1, . . . , λni
∈ R

+
}

(A.24)

which is the set of all non negative linear combinations of the generators. With this
modeling, we have

(A.25) fi ∈ CABi
,ni,θi ⇐⇒ ∃ (λi,j)j=1..ni

∈
(

R
+
)ni , fi =

ni
∑

j=1

λi,jui,j

allowing us to rewrite the static stability condition as a linear problem

(A.26) ∃ (λi,j) i∈I(q)
j=1..ni

∈
∏

i∈I(q)

(

R
+
)ni , s.t.







∑

i∈I(q)
j=1..ni

λi,jui,j +mg = 0
∑

i∈I(q)
j=1..ni

MO(λi,jui,j) + MO(mg) = 0

The system of two 3-dimensional equations can be written as a single 6-dimensional
equation, putting

(A.27) ai,j =

(

ui,j

MO(ui,j)

)

and v = −
(

mg

MO(mg)

)

the static stability condition then becomes

(A.28) ∃ (λi,j) i∈I(q)
j=1..ni

∈
∏

i∈I(q)

(

R
+
)ni , s.t.

∑

i∈I(q)
j=1..ni

λi,jai,j = v

which can be read as the membership of v in the cone generated by the ai,j vectors

(A.29) v ∈ C (ai,j)i,j

To solve this system, we used some results that come from the polyhedral convex cone
theory that we detail hereafter.

Polyhedral convex cone theory. Let C (a1, . . . , am) be the cone generated by a1, . . . , am
in Rn

(A.30) C (a1, . . . , am) =
{

m
∑

j=1

λjaj | λ1, . . . , λm ∈ R
+
}

the dual cone (also called the polar cone) C p is defined as

(A.31) C
p(a1, . . . , am) =

{

x ∈ R
n | ∀i ∈ {1, . . . , m} xTai ≤ 0

}

Minkowski [Min11] demonstrated that the polar cone is a cone too, i.e. ∃ b1, . . . ,bk ∈
Rn such that

(A.32) C
p(a1, . . . , am) = C (b1, . . . ,bk)
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The Farkas lemma [Far02] states that (C p)p = C i.e.

(A.33) C (a1, . . . , am) = C
p(b1, . . . ,bk)

this result allows us to test the membership of a vector x ∈ R
n in the dual of the dual

cone instead of the cone itself

(A.34) x ∈ C (a1, . . . , am)⇐⇒ x ∈ C
p(b1, . . . ,bk)

or

(A.35) ∃(λj)j ∈ (R+)m x =

m
∑

j=1

λjaj ⇐⇒ ∀i ∈ {1, . . . , k} xTbi ≤ 0

The second member of this latter equivalence is much easier to check than the first
one, if we could compute the vectors b1, . . . ,bk. The Motzkin’s double description algo-
rithm [MRTT53] achieves this. We implemented a variation of the original algorithm,
proposed by Padberg [Pad99], that allows us to compute a minimal set of generators for
the dual cone.

A.3. Results

We implemented the ideas presented in the previous section within the HPP frame-
work using KineoCAM’s software Kineo Path Planner and KineoWorks as a core collision-
free motion planning and collision detection module. The model we used for the humanoid
robot is HRP-2 [KKK+04] which has 36 degrees of freedom (including the free-flyer).
The collision-free path planning algorithms we choose are either basic PRM [KScLO96]
or bidirectional RRT [LK01].

The main scenario we considered is the highly constrained one demonstrated in [EKMG08]
which consists in standing up from a chair and going away from a table. The robot is
sitting on the chair in initial configuration and is standing by the table at final confi-
guration. The guide obtained is shown in figure A.3 while the contacts points plan is
illustrated in figure A.4. Using the distance to goal as a potential function the robot
ends up climbing the table and the contacts planning stops after having consumed all
the memory resource of the computer. With the provided guide the contacts planner
finds the solution in approximately 3h30min on a standard Pentium IV system, after
approximately 10min of computation for the guide.

Figure A.3. Guide planning for the out-of-table-and-chair scenario.

We also tested the guide planner on other scenarios on which we have not yet tested
the contacts planner, simply to demonstrate the ability of the guide planner of going
through different situations (Figs. A.5a and A.5b).
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Figure A.4. Contacts planning for the out-of-table-and-chair scenario fol-
lowing the guide provided by the contacts guide planner.

(a) Over the sofa.

(b) Through the tunnel.

Figure A.5. Different scenarios.

Although the gain in computing time that we achieve at the contact-points planner’s
level is theoretically infinite, computing time at the contacts-guide planner’s level remains
relatively high for scenarios such as A.5a and A.5b (a few hours). The time is consumed
both on distance computation and stack of tasks solving which are solicited at each
iteration of the algorithm.

A.4. Conclusion

Improvements of our contacts guide planner are still possible and need to be consid-
ered, especially regarding line 7 of algorithm 4. Ensuring that the continuous direct path
linking two configurations in guide space lies in the guide space remains an unanswered
question in our work. We also still need to work on the linking method that computes
the direct path between two guide space’s configurations, and which is for now a linear
direct path linking method. We added a dimension and thus “volume” to Cguide in order
to pass the test line 7 with higher probability; however, a better solution would be to
apply a projection to the whole linear direct path in order to make it fit inside Cguide.
These are all questions we plan to investigate in future work.
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