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Motivation

SelHex (CEMRACS 2014)

Current representation of the
poloidal plane :

@ Annular geometry
o Polar mesh (r,0)
Some limitations of this choice :

e Geometric (and numeric)
singular point at origin of mesh

@ Unrepresented area and very
costly to minimize that area

@ Impossible to represent complex
geometries
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The hexagonal mesh

Idea: Use a new mapping: hexagon — circle.
We define a tiling of triangles of a hexagon as our mesh for a 2D poloidal

plane.
Some advantages:

@ No singular points

r3
7y o (Hopefully) no need of multiple
patches for the core of the
r2 I tokamak

o Twelve-fold symmetry = more
efficient programming

e Easy transformation from
cartesian to hexagonal
coordinates

o Easy mapping to a disk
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The Backward Semi-Lagrangian Method

We consider the advection equation

g’:+a(x, t)-Vyf =0 (1)
The scheme:

o Fixed grid on phase-space
@ Method of characteristics : ODE — origin of characteristics
Density f is conserved along the characteristics

e M) = (X (b Xy tagn)) (2)
Interpolate on the origin using known values of previous step at mesh

points (initial distribution f known).

-

Y i

X

¢ N+l tn

SelHex (CEMRACS 2014) September 9, 2014 5/13



The guiding center model: general algorithm

We consider a reduced model of the gyrokinetic model — a simplified 2D
Vlasov equation coupled with Poisson—:

of
{m+EL'VXf:0 (3)
~A¢ =

The global scheme:

e Known: initial distribution function f° and electric field E°

@ Solve (Leap frog, RK4, ...) ODE for origin of characteristics X
@ For every time step :

» Solve poisson equation = E™!
» Interpolate distribution in X" = f”Jrl

Two different approaches for interpolation step:
Spline and Hermite Finite Elements interpolations.
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First approach: B(asis)-Splines basis*
B-Splines of degree d are defined by the recursion formula:

Bt (r) = - Bi(a) +

— I~ Bl (z 4
Tird—z 7 Tjtd+1 — Tj+l #1(2) @

Some important properties about B-splines:

@ Piecewise polynomials of degree d = smoothness
o Compact support = sparse matrix system

o Partition of unity 3°; Bj(z) =1, Vo = conservation laws

Bspline of degree 1 . B-spline of degree 3 N B-spline of degree 5
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First approach: Box-splines and quasi-interpolation

Box-Splines:
@ Generalization of B-Splines
@ Depend on the vectors that define the mesh

@ Easy to exploit symmetry of the domain

= More efficient interpolation

Quasi-interpolation:
@ Distribution function known at mesh points
@ Of order L if perfect reconstruction of a polynomial of degree L — 1
o No exact interpolation at mesh points f,(z;) = f(x;) + O(||z||%)

= Additional freedom to choose the coefficients c;
f(z) =" ez — ;) (5)
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Second approach: Hermite finite elements

Computed from the value of the function and its derivatives in various
directions at various points.
Five in total have been implemented and tested:

Degrees of freedom N=2

Function value
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Circular advection test case

In order to compare the two families’ performances:
Oif + yOrf — x0yf =0 (6)
Taking a gaussian pulse as an initial distribution function

e (- (E o W) ) )

T Y

+

Constant CFL ( CFL=2) ,0, =0y = 2%/5 , hexagonal radius : 8.
Null Dirichlet boundary condition .
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Circular advection: results 1
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Circular advection: results 2
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Conclusion and perspectives

@ Hexagonal mesh for SELALIB
@ Comparison between two families of finite elements.
Splines : good precision but poor efficiency.

Amongst the other tested elements the complete Zienkiewicz's one
seems to be the best choice in this case, at the moment.
o Perspectives
Optimization.
Abstract classes.
Finite element solver of Poisson’s equation on hexagonal mesh.
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