Solving the guiding center model using the Semi-Lagrangian scheme on a 2D hexagonal mesh (SelHex)

Michel Mehrenberger, Laura Mendoza, Charles Prouveur, Eric Sonnendrücker

September 9, 2014

Table of contents

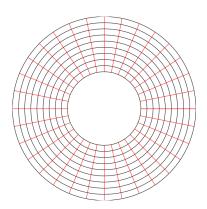
Motivation

- 2 The hexagonal mesh
- The Semi-Lagrangian Method

4 The Guiding Center model

- First approach: Splines interpolation
- Second approach: Hermite finite elements

Motivation



Current representation of the poloidal plane :

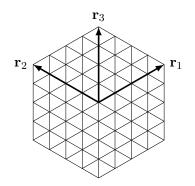
- Annular geometry
- Polar mesh (r, θ)

Some limitations of this choice :

- Geometric (and numeric) singular point at origin of mesh
- Unrepresented area and very costly to minimize that area
- Impossible to represent complex geometries

The hexagonal mesh

Idea: Use a new mapping: hexagon \longrightarrow circle. We define a tiling of triangles of a hexagon as our mesh for a 2D poloidal plane.



Some advantages:

- No singular points
- (Hopefully) no need of multiple patches for the core of the tokamak
- Twelve-fold symmetry \Rightarrow more efficient programming
- Easy transformation from cartesian to hexagonal coordinates
- Easy mapping to a disk

The Backward Semi-Lagrangian Method

We consider the advection equation

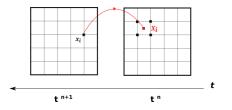
$$\frac{\partial f}{\partial t} + \mathbf{a}(x, t) \cdot \nabla_{\mathbf{x}} f = 0 \tag{1}$$

The scheme:

- Fixed grid on phase-space
- $\bullet\,$ Method of characteristics : ODE \longrightarrow origin of characteristics
- Density f is conserved along the characteristics

i.e.
$$f^{n+1}(\mathbf{x}_i) = f^n(X(t_n; \mathbf{x}_i, t_{n+1}))$$
 (2)

• Interpolate on the origin using known values of previous step at mesh points (initial distribution f^0 known).



The guiding center model: general algorithm

We consider a reduced model of the gyrokinetic model – a simplified 2D Vlasov equation coupled with Poisson–:

$$\begin{cases} \frac{\partial f}{\partial t} + E_{\perp} \cdot \nabla_X f = 0\\ -\Delta \phi = f \end{cases}$$
(3)

The global scheme:

- Known: initial distribution function f^0 and electric field E^0
- Solve (Leap frog, RK4, ...) ODE for origin of characteristics X
- For every time step :
 - Solve poisson equation $\Rightarrow E^{n+1}$
 - Interpolate distribution in $X^n \Rightarrow f^{n+1}$

Two different approaches for interpolation step: Spline and Hermite Finite Elements interpolations.

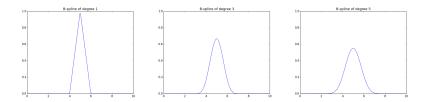
First approach: B(asis)-Splines basis*

B-Splines of degree d are defined by the **recursion** formula:

$$B_{j}^{d+1}(x) = \frac{x - x_{j}}{x_{j+d} - x_{j}} B_{j}^{d}(x) + \frac{x_{j+1} - x}{x_{j+d+1} - x_{j+1}} B_{j+1}^{d}(x)$$
(4)

Some important properties about B-splines:

- Piecewise polynomials of degree $d \Rightarrow$ smoothness
- Compact support ⇒ **sparse matrix system**
- Partition of unity $\sum_j Bj(x) = 1$, $\forall x \Rightarrow$ conservation laws



First approach: Box-splines and quasi-interpolation

Box-Splines:

- Generalization of B-Splines
- Depend on the vectors that define the mesh
- Easy to exploit symmetry of the domain
- \Rightarrow More efficient interpolation

Quasi-interpolation:

- Distribution function known at mesh points
- Of order L if perfect reconstruction of a polynomial of degree L-1
- No exact interpolation at mesh points $f_h(x_i) = f(x_i) + O(||x_i||^L)$

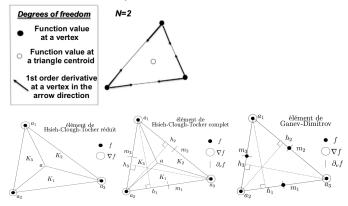
 \Rightarrow Additional freedom to choose the coefficients c_j

$$f_h(x) = \sum c_j \chi^L(x - x_j)$$
(5)

Second approach: Hermite finite elements

Computed from the value of the function and its derivatives in various directions at various points.

Five in total have been implemented and tested:



Circular advection test case

In order to compare the two families' performances:

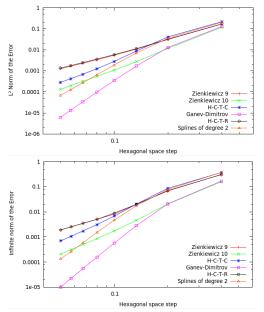
$$\partial_t f + y \partial_x f - x \partial_y f = 0 \tag{6}$$

Taking a gaussian pulse as an initial distribution function

$$f^{n} = exp\left(-\frac{1}{2}\left(\frac{(x^{n} - x_{c})^{2}}{\sigma_{x}^{2}} + \frac{(y^{n} - y_{c})^{2}}{\sigma_{y}^{2}}\right)\right)$$
(7)

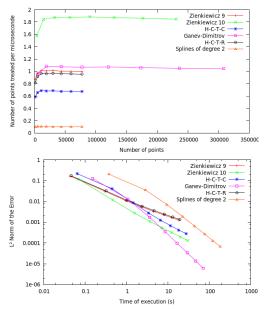
Constant CFL (CFL = 2), $\sigma_x = \sigma_y = \frac{1}{2\sqrt{2}}$, hexagonal radius : 8. Null Dirichlet boundary condition.

Circular advection: results 1



SelHex (CEMRACS 2014)

Circular advection: results 2



SelHex (CEMRACS 2014)

Conclusion and perspectives

• Hexagonal mesh for SELALIB

• Comparison between two families of finite elements.

Splines : good precision but poor efficiency.

Amongst the other tested elements the complete Zienkiewicz's one seems to be the best choice in this case, at the moment.

Perspectives

Optimization.

Abstract classes.

Finite element solver of Poisson's equation on hexagonal mesh.