Modelling Vlasov equations on complex geometries using the Semi-Lagrangian scheme

Virginie Grandgirard ${ }^{\ddagger}$, Laura S. Mendoza ${ }^{\dagger}$, Ahmed Ratnani ${ }^{\dagger}$, Eric Sonnendrücker ${ }^{\dagger}$
${ }^{\dagger}$ Max-Planck-Institut für Plasmaphysik, Garching, Germany
${ }^{\ddagger}$ CEA, IRFM, Cadarache, France

Wednesday $4^{\text {th }}$ March, 2015
IP Max-Planck-Institut für Plasmaphysik

Table of contents

(1) Motivation
(2) The hexagonal mesh
(3) The Semi-Lagrangian Method
(4) The Guiding Center model
(5) Conclusion and perspectives

Motivation

The Gyrokinetic Semi-Lagrangian (GYSELA) code:

- Gyrokinetic model: 5D kinetic equation on the charged particules distribution
- 5 Dimensions: 2 in velocity space, 3 in configuration space
- Simplified geometry: concentric toroidal magnetic flux surfaces with circular cross-sections
- Based on the Semi-Lagrangian scheme

Standard poloidal plane mesh

Current representation of the poloidal plane:

- Annular geometry
- Polar mesh (r, θ)

Some limitations of this choice :

- Geometric (and numeric) singular point at origin of mesh
- Unrepresented area and very costly to minimize that area
- Impossible to represent complex geometries

The hexagonal mesh ${ }^{1}$

Idea: Use a new mapping: hexagon \longrightarrow circle (thanks to B.D. Scott and T.T. Ribeiro).

Some advantages:

- No singular points
- (Hopefully) no need of multiple patches for the core of the tokamak
- Twelve-fold symmetry \Rightarrow more efficient programming
- Easy transformation from cartesian to hexagonal coordinates
- Easy mapping to a disk \Rightarrow field aligned physical mesh
- Regularity of the mesh \Rightarrow easy to find characteristic's feet (BSL)
${ }^{1}$ R. Sadourny, A. Arakawa, and Y. Mintz. "Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere". Monthly Weather Review 6 (1968).

The Backward Semi-Lagrangian Method

We consider the advection equation

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{a}(x, t) \cdot \nabla_{\mathbf{x}} f=0 \tag{1}
\end{equation*}
$$

The scheme:

- Fixed grid on phase-space
- Method of characteristics: ODE \longrightarrow origin of characteristics
- Density f is conserved along the characteristics

$$
\begin{equation*}
\text { i.e. } \quad f^{n+1}\left(\mathbf{x}_{i}\right)=f^{n}\left(X\left(t_{n} ; \mathbf{x}_{i}, t_{n+1}\right)\right) \tag{2}
\end{equation*}
$$

- Interpolate on the origin using known values of previous step at mesh points (initial distribution f^{0} known).

The guiding center model: general algorithm

We consider a reduced model of the gyrokinetic model - a simplified 2D Vlasov equation coupled with Poisson:

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}+E_{\perp} \cdot \nabla_{X} f=0 \tag{3}\\
-\Delta \phi=\nabla \cdot E=f
\end{array}\right.
$$

The global scheme:

- Known: initial distribution function f^{0} and electric field E^{0}
- For every time step :
- Solve (Leap frog, RK4, ...) ODE for origin of characteristics X
- Solve poisson equation $\Rightarrow E^{n+1}$
- Interpolate distribution in $X^{n} \Rightarrow f^{n+1}$

For interpolation step: Box-splines interpolation.

B(asis)-Splines basis*

B-Splines of degree d are defined by the recursion formula:

$$
\begin{equation*}
B_{j}^{d+1}(x)=\frac{x-x_{j}}{x_{j+d}-x_{j}} B_{j}^{d}(x)+\frac{x_{j+1}-x}{x_{j+d+1}-x_{j+1}} B_{j+1}^{d}(x) \tag{4}
\end{equation*}
$$

Some important properties about B-splines:

- Piecewise polynomials of degree $d \quad \Rightarrow$ smoothness
- Compact support \Rightarrow sparse matrix system
- Partition of unity $\sum_{j} B j(x)=1, \forall x \quad \Rightarrow$ conservation laws

Box-splines and quasi-interpolation

Box-Spline's properties:

- Generalization of B-Splines;
- depends on the vectors that define the mesh (i.e. triangular meshes);
- has compact support;
- is positive and symmetric.

Quasi-interpolation:

- Of order L if perfect reconstruction of a polynomial of degree $L-1$
- No exact interpolation at mesh points $f_{h}\left(x_{i}\right)=f\left(x_{i}\right)+O\left(\left\|\Delta x_{i}\right\|^{L}\right)$

$$
\begin{equation*}
f_{h}(x)=\sum_{j} c_{j} B_{\equiv}\left(x-x_{j}\right) \tag{5}
\end{equation*}
$$

\Rightarrow Additional freedom to choose the coefficients c_{j}

Poisson solver : FEM based solver

The Poisson equation in cartesian coordinates:

$$
-\Delta \phi=f(t, x) \quad \text { in } \quad \Omega
$$

Which in weak formulation gives

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \nabla \psi \mathrm{d} x=-\int_{\Omega} f(t, x) \psi \mathrm{d} x \tag{6}
\end{equation*}
$$

with ψ test function, a box-spline B_{j}. We discretize ϕ and f as follows

$$
\phi^{h}(\mathrm{x})=\sum_{i} \phi_{i} B_{i}(\mathrm{x}), \quad f^{h}(\mathrm{x})=\sum_{i} f_{i} B_{i}(\mathrm{x}), \quad \psi^{h}(\mathrm{x})=B_{j}(\mathrm{x})
$$

We obtain

$$
\begin{equation*}
\sum_{i, j} \phi_{i}\left(\int_{\Omega} \partial_{x} B_{i} \partial_{x} B_{j}+\int_{\Omega} \partial_{y} B_{i} \partial_{y} B_{j}\right)=-\sum_{i, k} f_{i} \int_{\Omega} B_{i} B_{k} \tag{7}
\end{equation*}
$$

\Rightarrow SELALIB's general coordinate elliptic solver (developed by A. Back) or Jorek (Django version, developed by A. Ratnani) solver

Circular advection test case

Advection model :

$$
\begin{equation*}
\partial_{t} f+y \partial_{x} f-x \partial_{y} f=0 \tag{8}
\end{equation*}
$$

Taking a gaussian pulse as an initial distribution function

$$
\begin{equation*}
f^{n}=\exp \left(-\frac{1}{2}\left(\frac{\left(x^{n}-x_{c}\right)^{2}}{\sigma_{x}^{2}}+\frac{\left(y^{n}-y_{c}\right)^{2}}{\sigma_{y}^{2}}\right)\right) \tag{9}
\end{equation*}
$$

Constant CFL $(C F L=2), \sigma_{x}=\sigma_{y}=\frac{1}{2 \sqrt{2}}$, hexagonal radius : 8 .
Null Dirichlet boundary condition.
Box-splines $(d e g=2)$ for circular advection:

Cells	$\mathbf{d t}$	loops	L_{2} error	L_{∞} error	points $/ \mu$-seconds
40	0.05	60	$3.53 \mathrm{E}-2$	$7.74 \mathrm{E}-2$	0.162
80	0.025	120	$1.88 \mathrm{E}-3$	$4.66 \mathrm{E}-3$	0.162
160	0.0125	240	$6.77 \mathrm{E}-5$	$1.35 \mathrm{E}-4$	0.162

Guiding center model : Diocotron instability test case

The Guiding-center model ${ }^{2}$:

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}+E_{\perp} \cdot \nabla_{X} f=0 \tag{10}\\
-\Delta \phi=f
\end{array}\right.
$$

with initial distribution function (the diocotron instability in polar coordinates):

$$
f(0, r, \theta)=\left\{\begin{array}{l}
1+\varepsilon \cos (l \cdot \theta), \quad r^{-} \leq r \leq r^{+} \tag{11}\\
0, \quad \text { otherwise }
\end{array}\right.
$$

with

- $\varepsilon=0.1$
- $l=9$.
- radius $=10$
- $r^{-}=5$ and $r^{+}=8$
- Null Dirichlet boundary condition.

[^0]
Diocotron instability - Time evolution of the distribution

DB: center_guide_rho0010.xmf

Diocotron instability - Time evolution of the distribution

DB: center_guide_rho0160.xmf

Diocotron instability - Time evolution of the distribution

DB: center_guide_rho0380.xmf

Diocotron instability - Time evolution of the distribution

DB: center_guide_rho0730.xmf

Diocotron instability - Time evolution of the distribution

DB: center_guide_rho 1090.xmf

Handling boundary conditions: Main problem

Non interpolating splines \longrightarrow Problems with Dirichlet boundary conditions

We can differentiate three different types of elements:

- Interior/Exterior elements
- Boundary elements

New questions arise:

- How to derive the equation such that BC intervene?
- Which elements should be considered as interior/exterior?

Nitsche's method ${ }^{a} \longrightarrow$ Adding additional terms to weak formulation

[^1]
Conclusions and perspectives

Conclusions:

- New mesh with no singular points for modelling the poloidal plane;
- Interpolation scheme adapted to hexagonal meshes:
- Box-splines adapted to mesh;
- Quasi-interpolation scheme: efficient scheme.
- Method stable for the Guiding-center model;
- Competitive results (precision/time) with:
- Multi-patch approach;
- Hermite Finite Elements method.

Perspectives:

- More complex models to be tested;
- Introduction of mapping to a disk to be done;
- Boundary conditions to be defined properly;
- Other geometry problems: X-point, Scrape-off layer, ...
- Hexagonal mesh for other methods: PIC, ...

[^0]: ${ }^{2}$ L. S. Mendoza et al. Solving the guiding-center model on a regular hexagonal mesh. Research Report. 2015 (in progress).

[^1]: ${ }^{\text {a A A. Embar, J. Dolbow, and I. Harari. International Journal for Numerical }}$ Methods in Engineering 7 (2010).

