Introducing the IGA approach in plasma physics

Virginie Grandgirard $^{1}, \underset{\text { Eric Sonnendrücker }}{ }{ }^{2,3}, \quad$ Ahmed Ratnani ${ }^{2}$,

${ }^{1}$ CEA, IRFM, Cadarache, France
${ }^{2}$ Max-Planck-Institut für Plasmaphysik
Garching, Germany
${ }^{3}$ Technische Universität München, Garching, Germany

$3^{\text {rd }}$ International Conference on Isogeometric Analysis, Trondheim, 2015

Max-Planck-Institut für Plasmaphysik

What is a plasma?

- Plasma is an ionized gas;
- It is known as the fourth state of matter;
- 99\% of the mass of the universe is in the plasma state.
- Examples: stars, solar wind, lightning, ...

Controlled fusion and magnetic confinement

D-T Fusion reaction

Deuterium

Temperature >100 Million ${ }^{\circ} \mathrm{K}$.
\Rightarrow Gas composed of positive ions and negative electrons: plasma

\Rightarrow Plasma responds strongly to electromagnetic fields
\Rightarrow Fusion reactor ITER: controlled fusion by magnetic confinment

Magnetic confinement of a plasma

To avoid losses at the ends of the magnetic field, the field lines are usually bent to a torus.
\longrightarrow Need to twist field lines helically to compensate particle drifts.

Motivation: simulating complex plasma shapes

The Gyrokinetic Semi-Lagrangian (GYSELA) code:

- Gyrokinetic model: 5D kinetic (Vlasov) equation on the charged particles distribution +3 D field equation (Maxwell)
- 5 Dimensions: 2 in velocity space, 3 in configuration space
- Simplified geometry: concentric toroidal magnetic flux surfaces with circular cross-sections
- Based on the Semi-Lagrangian scheme

Motivation: current state of GYSELA's geometry

Current representation of the poloidal plane:

- Annular geometry
- Polar mesh (r, θ)

Some limitations of this choice :

- Geometric (and numeric) singular point at origin of mesh
- Unrepresented area and very costly to minimize that area
- Impossible to represent complex geometries

Table of contents

(1) Motivation
(2) Multi-patch approach
(3) The hexagonal mesh
(4) The Semi-Lagrangian Method
(5) The Guiding Center model
(6) Conclusion and perspectives

Multi-patch: the general idea

Our original mesh:

Multi-patch: the general idea

New representation of the poloidal plane:

The 5 patches configuration

External crown divided into 4 patches and the connectivity is defined as a patch-edge to patch-edge association (creation tool: CAID ${ }^{1}$)

Advantages

- Flexibility defining complex geometries
- Each patch can be treated separately
- No geometrical singularity New challenges
- What is the best BC?
- How to treat interaction between patches?
- 4 new numerical singularities

Multi-patch: Some results

Results always showed instabilities near singular points. What we've tried to avoid them:

- Boundary conditions tested: strictly interdependent gradients and mean gradients between connecting patches
- Over-lapping: difficulties with interior patch and useless for others
- Squared internal mapping

Problem: Impossible to avoid singular points from mapping from a square to a circle
Possible solution: Stretch the mesh at singular points in order to avoid the singularities

Alternative approach: the hexagonal mesh ${ }^{2}$

Idea: Use a new mapping: hexagon \longrightarrow circle (thanks to B.D. Scott and T.T. Ribeiro).

Some advantages:

- No singular points
- (Hopefully) no need for multiple patches for the core of the tokamak
- Twelve-fold symmetry \Rightarrow more efficient programming
- Easy mapping to a disk \Rightarrow field aligned physical mesh
- Regularity of the mesh \Rightarrow easy to find characteristic's feet (BSL)

[^0]
The Backward Semi-Lagrangian Method

We consider the advection equation

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{a}(x, t) \cdot \nabla_{\mathbf{x}} f=0 \tag{1}
\end{equation*}
$$

The scheme:

- Fixed grid in phase-space
- Method of characteristics: ODE \longrightarrow origin of characteristics
- Density f is conserved along the characteristics

$$
\begin{equation*}
\text { i.e. } \quad f^{n+1}\left(\mathbf{x}_{i}\right)=f^{n}\left(X\left(t_{n} ; \mathbf{x}_{i}, t_{n+1}\right)\right) \tag{2}
\end{equation*}
$$

- Interpolate on the origin using known values of previous step at mesh points (initial distribution f^{0} known).

The guiding center model: general algorithm

We consider a reduced model of the gyrokinetic model - a simplified 2D Vlasov equation coupled with Poisson:

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}+E_{\perp} \cdot \nabla_{X} f=0 \tag{3}\\
-\Delta \phi=\nabla \cdot E=f
\end{array}\right.
$$

The global scheme:

- Known: initial distribution function f^{0} and electric field E^{0}
- For every time step :
- Solve poisson equation $\Rightarrow E^{n+1}$
- Apply Semi-Lagrangian method with new electric field \Rightarrow ODE
- Solve (Leap frog, RK4, ...) ODE to get origin of characteristics $\Rightarrow X^{n}$
- Interpolate distribution in $X^{n} \Rightarrow f^{n+1}$

Two different approaches for interpolation step:
Spline and Hermite Finite Elements interpolations.

Box-splines and quasi-interpolation

Box-Splines:

- Generalization of B-Splines
- Depend on the vectors that define the mesh
- Easy to exploit symmetry of the domain

A box-spline $B_{M}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ associated to the matrix $M=\left[\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right]$ is defined, when $N=d$ by

$$
B_{M}(x)=\frac{1}{|\operatorname{det} M|} \chi_{M}(x)
$$

else, by recursion

$$
B_{M \cup \xi}(x)=\int_{0}^{1} B_{M}(x-t \xi)
$$

Box-splines and quasi-interpolation

Box-Spline properties:

- Does not depend on the order of ξ_{i} in M
- has the support $S=M[0,1)^{d}$
- is positive on support S
- is symmetric

Quasi-interpolation:

- Distribution function known at mesh points
- Of order L if perfect reconstruction of a polynomial of degree $L-1$
- No exact interpolation at mesh points $f_{h}\left(x_{i}\right)=f\left(x_{i}\right)+O\left(\left\|\Delta x_{i}\right\|^{L}\right)$

$$
\begin{equation*}
f_{h}(x)=\sum_{j} c_{j} B_{M}\left(x-x_{j}\right) \tag{4}
\end{equation*}
$$

\Rightarrow Additional freedom to choose the coefficients c_{j}

Main problem: Handling boundary conditions

Non interpolating splines \longrightarrow Problems with Dirichlet boundary conditions

We can differentiate three different types of elements:

- Interior/Exterior elements
- Boundary elements

New questions arise:

- How to derive the equation such that BC intervene?
- Which elements should be considered as interior/exterior?

Nitsche's method ${ }^{a} \longrightarrow$ Adding additional terms to weak formulation

[^1]
Guiding center model : Diocotron instability test case

The Guiding-center model ${ }^{3}$:

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}+E_{\perp} \cdot \nabla_{X} f=0 \tag{5}\\
-\Delta \phi=f
\end{array}\right.
$$

with initial distribution function (the diocotron instability in polar coordinates):

$$
f(0, r, \theta)=\left\{\begin{array}{l}
1+\varepsilon \cos (l \cdot \theta), \quad r^{-} \leq r \leq r^{+} \tag{6}\\
0, \quad \text { otherwise }
\end{array}\right.
$$

with

- $\varepsilon=0.1$
- $l=9$.
- radius $=10$
- $r^{-}=5$ and $r^{+}=8$
- Null Dirichlet boundary condition.
${ }^{3}$ L. S. Mendoza et al. Solving the guiding-center model on a regular hexagonal mesh. https://hal.archives-ouvertes.fr/hal-01117196. 2015 (under review).

Comparing results with a FE method

Comparing results with a FE method

Diocotron instability - Time evolution of the distribution

DB: center_guide_rho0010.xmf

Diocotron instability - Time evolution of the distribution

DB: center_guide_rho0160.xmf

Diocotron instability - Time evolution of the distribution

DB: center_guide_rho0380.xmf

Diocotron instability - Time evolution of the distribution

DB: center_guide_rho0730.xmf

Diocotron instability - Time evolution of the distribution

DB: center_guide_rho 1090.xmf

Conclusions and perspectives

Conclusions:

- New mesh with no singular points for modelling the poloidal plane;
- Interpolation scheme adapted to hexagonal meshes:
- Box-splines adapted to mesh;
- Quasi-interpolation scheme: efficient scheme.
- Stable method for the Guiding-center model;
- Competitive results (precision/time) with:
- Multi-patch approach;
- Hermite Finite Elements method.

Perspectives:

- More complex models to be tested (Vlasov-Poisson, Drift Kinetic, ...);
- $\lg A$ with hexagonal mesh as parameter space;
- Implementation of Nitsche's method;
- Other geometry problems: X-point, Scrape-off layer, ...
- Hexagonal mesh for other methods: PIC, ...

Thank you for your attention!

Backup slides

Computing the spline coefficients using pre-filters

Idea: Coefficients obtained by discrete filtering of sample values $f\left(x_{i}\right)$

$$
\begin{equation*}
c=p * f=\sum_{i} f\left(x_{i}\right) p_{i} \tag{7}
\end{equation*}
$$

prefilters ${ }^{4}$: Obtained by solving a linear system of L equations (quasi-interpolation conditions)

Example with $L=2$:

- We use information on two hexagons from point
- Points at same radius have same weight
- Error: $O\left(\|\Delta x\|^{2}\right)$

[^2]
Poisson solver: FEM based solver

In cartesian coordinates:

$$
\begin{cases}-\Delta_{x} \phi=f(t, x) & \text { in } \Omega \\ \phi(t, x)=g_{d}(t, x) & \text { on } \Gamma_{\mathrm{d}} \\ \nabla_{x} \phi(t, x) \cdot \mathbf{n}=g_{n}(t, x) & \text { on } \Gamma_{\mathrm{n}}\end{cases}
$$

Which we can write in general coordinates such as:

$$
\begin{equation*}
-\nabla_{\eta} \cdot J^{-1}\left(J^{-1}\right)^{T} \nabla_{\eta} \tilde{\phi}(\eta)=\tilde{f}(t, \eta) \tag{8}
\end{equation*}
$$

And its weak formulation

$$
\begin{equation*}
-\int_{\Omega}\left(\nabla_{\eta} \tilde{\phi}\right)^{T} \cdot J^{-1}\left(J^{-1}\right)^{T} \nabla_{\eta} \psi|J(\eta)| \mathrm{d} \eta=\int_{\Omega} \tilde{f}(t, \eta) \psi|J(\eta)| \mathrm{d} \eta \tag{9}
\end{equation*}
$$

with ψ test function, that we will define as a box-spline

Poisson solver: Discretization

We discretize the solution ϕ and the test function ψ using the splines (Box- or B-splines) denoted B_{i} as follows

$$
\begin{array}{ll}
\phi^{h}(\mathrm{x}) & =\sum_{i} \phi_{i} B_{i}(\mathrm{x}), \\
\psi^{h}(\mathrm{x}) & =B_{j}(\mathrm{x})
\end{array}
$$

We obtain

$$
\begin{equation*}
\sum_{i, j} \phi_{i}\left(\int_{\Omega} \partial_{x} B_{i} \partial_{x} B_{j}+\int_{\Omega} \partial_{y} B_{i} \partial_{y} B_{j}\right)=-\sum_{i, k} f_{i} \int_{\Omega} B_{i} B_{k} \tag{10}
\end{equation*}
$$

\Rightarrow SELALIB's general coordinate elliptic solver (developed by A. Back) and Django (developed by A. Ratnani et al.) solver

Circular advection test case

A simple but good test is a circular advection model:

$$
\begin{equation*}
\partial_{t} f+y \partial_{x} f-x \partial_{y} f=0 \tag{11}
\end{equation*}
$$

Taking a gaussian pulse as an initial distribution function

$$
\begin{equation*}
f^{n}=\exp \left(-\frac{1}{2}\left(\frac{\left(x^{n}-x_{c}\right)^{2}}{\sigma_{x}^{2}}+\frac{\left(y^{n}-y_{c}\right)^{2}}{\sigma_{y}^{2}}\right)\right) \tag{12}
\end{equation*}
$$

Constant CFL $(C F L=2), \sigma_{x}=\sigma_{y}=\frac{1}{2 \sqrt{2}}$, hexagonal radius : 8 . Null Dirichlet boundary condition.

Hexagonal mesh: first results

model	Points	\mathbf{a}	$\mathbf{d t}$	loops	L_{2} error
On mesh points	17101	0.	0.025	1	4.99×10^{-6}
Constant advec.	17101	0.05	0.025	81	4.70×10^{-3}
Circular advec.	17101	1.	0.025	81	4.33×10^{-3}

Box-splines $(d e g=2)$ for circular advection:

Cells	$\mathbf{d t}$	loops	L_{2} error	L_{∞} error	points $/ \mu$-seconds
40	0.05	60	$3.53 \mathrm{E}-2$	$7.74 \mathrm{E}-2$	0.162
80	0.025	120	$1.88 \mathrm{E}-3$	$4.66 \mathrm{E}-3$	0.162
160	0.0125	240	$6.77 \mathrm{E}-5$	$1.35 \mathrm{E}-4$	0.162

Dirichlet boundary conditions: Nitsche's method

Using Nitsche's method, we derive the variational form of the Poisson equation which yields ${ }^{5}$:

$$
\begin{aligned}
& \int_{\Omega} \nabla \psi \cdot \nabla \phi \mathrm{d} \Omega-\int_{\Gamma d} \psi(\nabla \phi \cdot \mathbf{n}) \mathrm{d} \Gamma_{d}-\int_{\Gamma d} \phi(\nabla \psi \cdot \mathbf{n}) \mathrm{d} \Gamma_{d}+\alpha \int_{\Gamma d} \psi \phi \mathrm{~d} \Gamma \\
&=\int_{\Omega} \psi f \mathrm{~d} \Omega+\int_{\Gamma n} \psi g_{n} \mathrm{~d} \Gamma-\int_{\Gamma d} g_{d}(\nabla \psi \cdot \mathbf{n}) \mathrm{d} \Gamma+\alpha \int_{\Gamma d} \psi g_{d} \mathrm{~d} \Gamma
\end{aligned}
$$

\Rightarrow standard penalty method + additional integrals along Γ_{d}.

Solutions ϕ respect the boundary condition problem under some conditions of the stabilization parameter α
${ }^{5}$ A. Embar, J. Dolbow, and I. Harari. International Journal for Numerical Methods in Engineering 7 (2010).

Nitsche's method: coercivity study and the α parameter We discretize the solution ϕ and the test function ψ using splines like before and we study $r h s\left(\psi^{h}, \phi^{h}\right)$ at $\left(\psi^{h}, \psi^{h}\right)$:

$$
r h s\left(\psi^{h}, \phi^{h}\right)=\int_{\Omega} \nabla \psi^{h} \cdot \nabla \psi^{h} \mathrm{~d} \Omega-2 \int_{\Gamma d} \psi^{h}\left(\nabla \psi^{h} \cdot \mathbf{n}\right) \mathrm{d} \Gamma_{d}+\alpha \int_{\Gamma d}\left(\psi^{h}\right)^{2} \mathrm{~d} \Gamma
$$

Using the definition of the L_{2}-norm : $\|\psi\|=\left(\int_{\Omega} \psi^{2}\right)^{1 / 2}$

$$
r h s\left(\psi^{h}, \phi^{h}\right)=\left\|\nabla \psi^{h}\right\|^{2}-2 \int_{\Gamma d} \psi^{h}\left(\nabla \psi^{h} \cdot \mathbf{n}\right) \mathrm{d} \Gamma_{d}+\alpha\left\|\psi^{h}\right\|^{2}
$$

We define C such that $\left\|\nabla \psi^{h} \cdot \mathbf{n}\right\|_{\Gamma d}^{2} \leq C\left\|\nabla \psi^{h}\right\|^{2}$ and using Young's inequality we find that coercivity is ensured when

$$
\alpha>\frac{1}{\mathrm{C}(\mathrm{~h})}
$$

[^0]: ${ }^{2}$ R. Sadourny, A. Arakawa, and Y. Mintz. "Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere". Monthly Weather Review 6 (1968).

[^1]: ${ }^{\text {a A. Embar, J. Dolbow, and I. Harari. International Journal for Numerical }}$ Methods in Engineering 7 (2010).

[^2]: ${ }^{4}$ L. Condat, D. Van De Ville, and M. Unser. "Efficient Reconstruction of Hexagonally Sampled Data using Three-Directional Box-Splines." ICIP. IEEE, 2006.

