Introducing the IGA approach in plasma physics

Virginie Grandgirardl, Laura S. Mendoza?3, Ahmed Ratnani2,

Eric Sonnendriicker??

LCEA, IRFM, Cadarache, France

2Max-Planck-Institut fiir Plasmaphysik
Garching, Germany

3Technische Universitiat Miinchen,
Garching, Germany
34 International Conference on Isogeometric Analysis, Trondheim, 2015
Max-Planck-Institut @
fir Plasmaphysik

IGA conference 2015 — Laura S. Mendoza (mela@ipp.mpg.de) Wednesday 3¢ June, 2015 1/23




What is a plasma?

@ Plasma is an ionized gas;

@ It is known as the fourth state of matter;
@ 99% of the mass of the universe is in the plasma state.

@ Examples: stars, solar wind, lightning, ...
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Controlled fusion and magnetic confinement

D-T Fusion reaction

Deuterium

C)\ @
“/®<‘0

Temperature > 100 Million°K.

= Gas composed of positive ions
and negative electrons: plasma

=- Plasma responds strongly to
electromagnetic fields

= Fusion reactor ITER: controlled fusion by magnetic confinment
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Magnetic confinement of a plasma

agnetic field lines
magnetic surfaces

To avoid losses at the ends of the magnetic field, the field lines are usually
bent to a torus.
— Need to twist field lines helically to compensate particle drifts.
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Motivation: simulating complex plasma shapes
The Gyrokinetic Semi-Lagrangian (GYSELA) code:

ﬁﬁ?ﬁi: Z

Tore-Supra = circular plasma WEST = D-shaped plasma

e Gyrokinetic model: 5D kinetic (Vlasov) equation on the charged
particles distribution + 3D field equation (Maxwell)

@ 5 Dimensions: 2 in velocity space, 3 in configuration space

o Simplified geometry: concentric toroidal magnetic flux surfaces with
circular cross-sections

@ Based on the Semi-Lagrangian scheme
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Motivation: current state of GYSELA's geometry

Current representation of the
poloidal plane :

@ Annular geometry
e Polar mesh (r,0)
Some limitations of this choice :
e Geometric (and numeric)
singular point at origin of mesh

@ Unrepresented area and very
costly to minimize that area

@ Impossible to represent complex
geometries
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Multi-patch: the general idea

Our original mesh:
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Multi-patch: the general idea
New representation of the poloidal plane:
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The 5 patches configuration

External crown divided into 4 patches and the connectivity is defined as a
patch-edge to patch-edge association (creation tool: CAID?)

Advantages
o Flexibility defining complex
geometries

@ Each patch can be treated
separately

@ No geometrical singularity
New challenges
@ What is the best BC?

@ How to treat interaction
between patches?

@ 4 new numerical singularities

thttps://github.com /ratnania/caid
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Multi-patch: Some results

Results always showed instabilities near singular points. What we've tried
to avoid them:

@ Boundary conditions tested: strictly
interdependent gradients and mean
gradients between connecting patches

o @ Over-lapping: difficulties with interior
patch and useless for others

@ Squared internal mapping

Problem: Impossible to avoid singular points from mapping from a square

to a circle
Possible solution: Stretch the mesh at singular points in order to avoid

the singularities
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Alternative approach: the hexagonal mesh?

Idea: Use a new mapping: hexagon — circle (thanks to B.D. Scott and
T.T. Ribeiro).

r3
7\

Some advantages:
@ No singular points
ry rp o (Hopefully) no need for multiple
patches for the core of the tokamak
@ Twelve-fold symmetry = more
efficient programming
o Easy mapping to a disk
= field aligned physical mesh

@ Regularity of the mesh = easy to find characteristic's feet (BSL)

2 R. Sadourny, A. Arakawa, and Y. Mintz. “Integration of the nondivergent
barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere”.
Monthly Weather Review 6 (1968).
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The Backward Semi-Lagrangian Method

We consider the advection equation

g’;ﬂ(g;, t)-Vyf =0 (1)
The scheme:

o Fixed grid in phase-space
@ Method of characteristics : ODE — origin of characteristics
@ Density f is conserved along the characteristics

e, f"(xy) = fUX (b X, tng1)) (2)

@ Interpolate on the origin using known values of previous step at mesh
points (initial distribution f known).

n/\/

NINEI/N/

VAV

I time !
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The guiding center model: general algorithm

We consider a reduced model of the gyrokinetic model — a simplified 2D
Vlasov equation coupled with Poisson:

of
~Ap=V-E=]

The global scheme:

@ Known: initial distribution function f° and electric field E°
@ For every time step :
» Solve poisson equation = E™t!
Apply Semi-Lagrangian method with new electric field = ODE

Solve (Leap frog, RK4, ...) ODE to get origin of characteristics = X"
Interpolate distribution in X" = f”Jrl

v vy

Two different approaches for interpolation step:
Spline and Hermite Finite Elements interpolations.
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Box-splines and quasi-interpolation

Box-Splines:
@ Generalization of B-Splines
@ Depend on the vectors that define the mesh
@ Easy to exploit symmetry of the domain
A box-spline By : R* - R

associated to the matrix

M = [51762)"%5]\/] is
defined, when N = d by

1

Bu(z) = WXM(@

else, by recursion

BMU§ /BMJZ—tf
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Box-splines and quasi-interpolation

Box-Spline properties:
@ Does not depend on the order of &; in M
e has the support S = M[0,1)?
@ is positive on support S

@ is symmetric

Quasi-interpolation:
@ Distribution function known at mesh points
o Of order L if perfect reconstruction of a polynomial of degree L — 1
o No exact interpolation at mesh points f;,(z;) = f(x;) + O(||Az;||*)

fu(z) = Z ¢jBu(z — ;) (4)

= Additional freedom to choose the coefficients c;
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Main problem: Handling boundary conditions

Non interpolating splines — Problems with Dirichlet boundary conditionsJ

We can differentiate three different types of
elements:

o Interior/Exterior elements
@ Boundary elements
New questions arise:

@ How to derive the equation such that
BC intervene?

AVAVAVAVA
AVAVAVAVAVA

\VAVAVAVAVAV,
\VAVAVAVAY

@ Which elements should be considered as
interior /exterior?

Nitsche's method?® — Adding additional terms to weak formulation

2 A. Embar, J. Dolbow, and |. Harari. International Journal for Numerical
Methods in Engineering 7 (2010).
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Guiding center model : Diocotron instability test case

The Guiding-center model3:

of
E"FEJ_'VX](:O (5)
—Ap=f

with initial distribution function (the diocotron instability in polar
coordinates):

_f 14ecos(l-0), r~<r<rt
10,7, 0) = { 0, otherwise (6)
with
°0ec=01 er =5and rt =38
e [=0. @ Null Dirichlet boundary
@ radius = 10 condition.

3 L. S. Mendoza et al. Solving the guiding-center model on a regular hexagonal
mesh. https://hal.archives-ouvertes.fr/hal-01117196. 2015 (under review).
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Comparing results with a FE method
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Comparing results with a FE method

0.1 -
-
g
w
L
= 0.01 b
s
o
E
2
o 0.001 b e
=
& Zienkiewicz 9 ——
= Zienkiewicz 10 ——
0.0001 H-C-T-C —— |
Ganev-Dimitrov —=—
H-C-T-R —e—
Splines of degree 2 —=—
le-05 L L L

Hexagonal space step

IGA conference 2015 — Laura S. Mendoza (mela@ipp.mpg.de) Wednesday 3¢ June, 2015 20/ 23



Diocotron instability — Time evolution of the distribution

DB: center_guide_rho0010.xmf

Pseudocolor
Var. values
1.00¢

—0.7500
— 0.5000
— 0.2500

0.000
Max: 1.097
Min: -1.300e-05
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Diocotron instability — Time evolution of the distribution

DB: center_guide_rno0160.xmf

Pseudocolor
Var. values
1.000

—0.7500
— 0.5000
— 0.2500

0.000
Max: 1.105
Min: -0.004884

IGA conference 2015 — Laura S. Mendoza (mela@ipp.mpg.de) Wednesday 3¢ June, 2015 21 /23



Diocotron instability — Time evolution of the distribution

DB: center_guide_rho0380.xmf

Pseudocolor
Var. values
1.000

—0.7500
— 0.5000
— 0.2500

0.000
Max: 1.118
Min: -0.0475%
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Diocotron instability — Time evolution of the distribution

DB: center_guide_rho0730.xmf

Pseudocolor
Var. values
1.000

—0.7500
— 0.5000
— 0.2500

0.000
Max: 1.121
Min: -0.07812
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Diocotron instability — Time evolution of the distribution

DB: center_guide_rho1090.xmf

Pseudocolor
Var. values
1.000

—0.7500
— 0.5000
— 0.2500

0.000
Max: 1.148
Min: -0.06025
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Conclusions and perspectives
Conclusions:
@ New mesh with no singular points for modelling the poloidal plane;

@ Interpolation scheme adapted to hexagonal meshes:

» Box-splines adapted to mesh;
» Quasi-interpolation scheme: efficient scheme.

@ Stable method for the Guiding-center model;
o Competitive results (precision/time) with:

» Multi-patch approach;
» Hermite Finite Elements method.

Perspectives:

@ More complex models to be tested (Vlasov-Poisson, Drift Kinetic, ...);
@ IgA with hexagonal mesh as parameter space;

@ Implementation of Nitsche's method;

@ Other geometry problems: X-point, Scrape-off layer, ...

@ Hexagonal mesh for other methods: PIC, ...
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Thank you for your attention!
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Computing the spline coefficients using pre-filters

Idea: Coefficients obtained by discrete filtering of sample values f(z;)
c=pxf=> flz)p: (7)

prefilters*: Obtained by solving a linear system of L equations
(quasi-interpolation conditions)

>

Example with L = 2:

TAVAN
\WAVAN
NN/
\VAV/

@ We use information on two
hexagons from point

AVAVAN
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W
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VAV

@ Points at same radius have
same weight

e Error: O(| Az |]?)
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<

* L. Condat, D. Van De Ville, and M. Unser. “Efficient Reconstruction of
Hexagonally Sampled Data using Three-Directional Box-Splines.” /C/IP. |IEEE, 2006.
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Poisson solver : FEM based solver

In cartesian coordinates:

“Dud = f(t, ) in Q ha
o(t, z) = ga(t, ) on Ty
Vi¢(t, ) - n = gn(t, z) on I'y Ty

Which we can write in general coordinates such as:

—Vy - ST V() = F(t,m) (8)
And its weak formulation

= [T T YV | I [dn = [ Fne | T) [ dy (9)
Q Q

with ¢ test function, that we will define as a box-spline
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Poisson solver : Discretization

We discretize the solution ¢ and the test function 1 using the splines
(Box- or B-splines) denoted B; as follows

o"(x) =3 ¢iBi(x), SH(x) = 3 fiBi(x)
V"'(x) = Bj(x)

We obtain

> ¢ (/ axBiaxBj+/ 8yBiayBj) = _Zfi/ BBy, (10)
o Q Q ik 8

= SELALIB's general coordinate elliptic solver (developed by A. Back)
and Django (developed by A. Ratnani et al.) solver
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Circular advection test case

A simple but good test is a circular advection model:
Otf + yOuf — x0yf =0 (11)

Taking a gaussian pulse as an initial distribution function

1 — exp (_; ((x“ — zc)? i yc)2>> (12)

2 2
o o

Constant CFL ( CFL=2),0, =0y = 2\% , hexagonal radius : 8.
Null Dirichlet boundary condition.
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Hexagonal mesh: first results

model Points a dt loops
On mesh points | 17101 0.
Constant advec. | 17101 | 0.05
Circular advec. | 17101 1.

Ly error

0.025 1 4.99 x 1076
0.025 | 81 |[4.70x 1073
0.025 | 81 |[4.33x10°3

Box-splines (deg = 2) for circular advection:

Cells dt loops | Lo error | L, error | points/u-seconds
40 0.05 60 3.53E-2 | 7.74E-2 0.162

80 0.025 120 | 1.88E-3 | 4.66E-3 0.162

160 | 0.0125 | 240 | 6.77E-5 | 1.35E-4 0.162
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Dirichlet boundary conditions : Nitsche's method

Using Nitsche's method, we derive the variational form of the Poisson
equation which yields®:

| vu-veaa— [ w(ve-mary— [ o(Ve-ndr+a [ wodr
:/wadeL/rnwgndF—/rdgd(vw-n)dr+a/rd¢gddr

= standard penalty method 4 additional integrals along I 4.

Solutions ¢ respect the boundary condition problem under some
conditions of the stabilization parameter «

® A. Embar, J. Dolbow, and |. Harari. International Journal for Numerical Methods
in Engineering 7 (2010).
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Nitsche's method: coercivity study and the o parameter

We discretize the solution ¢ and the test function 1) using splines like
before and we study rhs()", ¢") at (", "):

rhs(b", ") = / Vo - VptdQ — 2 / SV n)drg + o / (M2dr
Q rd rd

Using the definition of the Ly-norm : || ¢ ||= ([q 1/12)1/2

hs(v",0) =|| Vo |2 =2 [ oH(Tu" - m)dla+ o] |

We define C such that || V¢ -n |2, < C || V4" ||? and using Young's
inequality we find that coercivity is ensured when
1
C(h)
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