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What is a plasma?

Plasma is an ionized gas;
It is known as the fourth state of matter;
99% of the mass of the universe is in the plasma state.
Examples: stars, solar wind, lightning, ...
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Controlled fusion and magnetic confinement

D-T Fusion reaction

n

nn

n

nn

Deuterium
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Temperature > 100 Million◦K.
⇒ Gas composed of positive ions

and negative electrons: plasma
⇒ Plasma responds strongly to

electromagnetic fields
⇒ Fusion reactor ITER: controlled fusion by magnetic confinment
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Magnetic confinement of a plasma

To avoid losses at the ends of the magnetic field, the field lines are usually
bent to a torus.
−→ Need to twist field lines helically to compensate particle drifts.
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Motivation: simulating complex plasma shapes
The Gyrokinetic Semi-Lagrangian (GYSELA) code:

  

5D Vlasov solver for D + W
(semi-lagrangian scheme) 

adiabatic electrons

J
0
 = gyroaverage

(Padé approximation) 

+

Tore-Supra = circular plasma WEST = D-shaped plasma

Gyrokinetic model: 5D kinetic (Vlasov) equation on the charged
particles distribution + 3D field equation (Maxwell)
5 Dimensions: 2 in velocity space, 3 in configuration space
Simplified geometry: concentric toroidal magnetic flux surfaces with
circular cross-sections
Based on the Semi-Lagrangian scheme
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Motivation: current state of GYSELA’s geometry

Current representation of the
poloidal plane :

Annular geometry
Polar mesh (r , θ)

Some limitations of this choice :
Geometric (and numeric)
singular point at origin of mesh
Unrepresented area and very
costly to minimize that area
Impossible to represent complex
geometries
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Multi-patch: the general idea

Our original mesh:
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Multi-patch: the general idea
New representation of the poloidal plane:
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The 5 patches configuration

External crown divided into 4 patches and the connectivity is defined as a
patch-edge to patch-edge association (creation tool: CAID1)

Advantages
Flexibility defining complex
geometries
Each patch can be treated
separately
No geometrical singularity

New challenges
What is the best BC?
How to treat interaction
between patches?
4 new numerical singularities

1https://github.com/ratnania/caid
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Multi-patch: Some results
Results always showed instabilities near singular points. What we’ve tried
to avoid them:

Boundary conditions tested: strictly
interdependent gradients and mean
gradients between connecting patches
Over-lapping: difficulties with interior
patch and useless for others
Squared internal mapping

Problem: Impossible to avoid singular points from mapping from a square
to a circle
Possible solution: Stretch the mesh at singular points in order to avoid
the singularities
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Alternative approach: the hexagonal mesh2

Idea: Use a new mapping: hexagon −→ circle (thanks to B.D. Scott and
T.T. Ribeiro).

r3

r1r2

Some advantages:
No singular points
(Hopefully) no need for multiple
patches for the core of the tokamak
Twelve-fold symmetry ⇒ more
efficient programming
Easy mapping to a disk
⇒ field aligned physical mesh

Regularity of the mesh ⇒ easy to find characteristic’s feet (BSL)

2 R. Sadourny, A. Arakawa, and Y. Mintz. “Integration of the nondivergent
barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere”.
Monthly Weather Review 6 (1968).
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The Backward Semi-Lagrangian Method
We consider the advection equation

∂f
∂t + a(x, t) · ∇xf = 0 (1)

The scheme:
Fixed grid in phase-space
Method of characteristics : ODE −→ origin of characteristics
Density f is conserved along the characteristics

i.e. f n+1(xi) = f n(X(tn ; xi , tn+1)) (2)
Interpolate on the origin using known values of previous step at mesh
points (initial distribution f 0 known).

IGA conference 2015 – Laura S. Mendoza (mela@ipp.mpg.de) Wednesday 3rd June, 2015 13 / 23



The guiding center model: general algorithm

We consider a reduced model of the gyrokinetic model – a simplified 2D
Vlasov equation coupled with Poisson:

∂f
∂t + E⊥ · ∇X f = 0
−∆φ = ∇ · E = f

(3)

The global scheme:

Known: initial distribution function f 0 and electric field E0

For every time step :
I Solve poisson equation ⇒ En+1

I Apply Semi-Lagrangian method with new electric field ⇒ ODE
I Solve (Leap frog, RK4, ...) ODE to get origin of characteristics ⇒ Xn

I Interpolate distribution in Xn ⇒ f n+1

Two different approaches for interpolation step:
Spline and Hermite Finite Elements interpolations.
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Box-splines and quasi-interpolation
Box-Splines:

Generalization of B-Splines
Depend on the vectors that define the mesh
Easy to exploit symmetry of the domain

A box-spline BM : Rd → R
associated to the matrix
M = [ξ1, ξ2, . . . , ξN ] is
defined, when N = d by

BM (x) =
1

|detM |χM (x)

else, by recursion

BM∪ξ(x) =

∫ 1

0
BM (x − t ξ)
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Box-splines and quasi-interpolation
Box-Spline properties:

Does not depend on the order of ξi in M
has the support S = M [0, 1)d

is positive on support S
is symmetric

Quasi-interpolation:
Distribution function known at mesh points
Of order L if perfect reconstruction of a polynomial of degree L − 1
No exact interpolation at mesh points fh(xi) = f (xi) + O(‖∆xi‖L)

fh(x) =
∑

j
cjBM (x − xj) (4)

⇒ Additional freedom to choose the coefficients cj
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Main problem: Handling boundary conditions
Non interpolating splines −→ Problems with Dirichlet boundary conditions

We can differentiate three different types of
elements:

Interior/Exterior elements
Boundary elements

New questions arise:
How to derive the equation such that
BC intervene?
Which elements should be considered as
interior/exterior?

Nitsche’s methoda −→ Adding additional terms to weak formulation
a A. Embar, J. Dolbow, and I. Harari. International Journal for Numerical

Methods in Engineering 7 (2010).
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Guiding center model : Diocotron instability test case
The Guiding-center model3:

∂f
∂t + E⊥ · ∇X f = 0
−∆φ = f

(5)

with initial distribution function (the diocotron instability in polar
coordinates):

f (0, r , θ) =

{
1 + ε cos(l · θ), r− ≤ r ≤ r+

0, otherwise (6)

with
ε = 0.1
l = 9.
radius = 10

r− = 5 and r+ = 8
Null Dirichlet boundary
condition.

3 L. S. Mendoza et al. Solving the guiding-center model on a regular hexagonal
mesh. https://hal.archives-ouvertes.fr/hal-01117196. 2015 (under review).
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Comparing results with a FE method
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Comparing results with a FE method

IGA conference 2015 – Laura S. Mendoza (mela@ipp.mpg.de) Wednesday 3rd June, 2015 20 / 23



Diocotron instability – Time evolution of the distribution
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Diocotron instability – Time evolution of the distribution
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Conclusions and perspectives
Conclusions:

New mesh with no singular points for modelling the poloidal plane;
Interpolation scheme adapted to hexagonal meshes:

I Box-splines adapted to mesh;
I Quasi-interpolation scheme: efficient scheme.

Stable method for the Guiding-center model;
Competitive results (precision/time) with:

I Multi-patch approach;
I Hermite Finite Elements method.

Perspectives:
More complex models to be tested (Vlasov-Poisson, Drift Kinetic, ...);
IgA with hexagonal mesh as parameter space;
Implementation of Nitsche’s method;
Other geometry problems: X-point, Scrape-off layer, ...
Hexagonal mesh for other methods: PIC, ...
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Thank you for your attention!
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Computing the spline coefficients using pre-filters
Idea: Coefficients obtained by discrete filtering of sample values f (xi)

c = p ∗ f =
∑

i
f (xi)pi (7)

prefilters4: Obtained by solving a linear system of L equations
(quasi-interpolation conditions)

Example with L = 2:
We use information on two
hexagons from point
Points at same radius have
same weight
Error: O(‖ ∆x ‖2)

4 L. Condat, D. Van De Ville, and M. Unser. “Efficient Reconstruction of
Hexagonally Sampled Data using Three-Directional Box-Splines.” ICIP. IEEE, 2006.
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Poisson solver : FEM based solver
In cartesian coordinates:


−∆xφ = f (t, x) in Ω
φ(t, x) = gd(t, x) on Γd

∇xφ(t, x) · n = gn(t, x) on Γn

x

x

Ω

Γd

Γn

Which we can write in general coordinates such as:

−∇η · J−1(J−1)T∇ηφ̃(η) = f̃ (t, η) (8)

And its weak formulation

−
∫

Ω
(∇ηφ̃)T · J−1(J−1)T∇ηψ | J (η) | dη =

∫
Ω

f̃ (t, η)ψ | J (η) | dη (9)

with ψ test function, that we will define as a box-spline
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Poisson solver : Discretization

We discretize the solution φ and the test function ψ using the splines
(Box- or B-splines) denoted Bi as follows

φh(x) =
∑

i
φiBi(x), f h(x) =

∑
i

fiBi(x)

ψh(x) = Bj(x)

We obtain

∑
i,j
φi

(∫
Ω
∂xBi∂xBj +

∫
Ω
∂yBi∂yBj

)
= −

∑
i,k

fi
∫

Ω
BiBk (10)

⇒ SELALIB’s general coordinate elliptic solver (developed by A. Back)
and Django (developed by A. Ratnani et al.) solver
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Circular advection test case

A simple but good test is a circular advection model:

∂tf + y∂x f − x∂yf = 0 (11)

Taking a gaussian pulse as an initial distribution function

f n = exp
(
−1

2

(
(xn − xc)2

σ2
x

+
(yn − yc)2

σ2
y

))
(12)

Constant CFL ( CFL = 2 ) , σx = σy = 1
2
√

2 , hexagonal radius : 8.
Null Dirichlet boundary condition.
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Hexagonal mesh: first results

model Points a dt loops L2 error
On mesh points 17101 0. 0.025 1 4.99× 10−6

Constant advec. 17101 0.05 0.025 81 4.70× 10−3

Circular advec. 17101 1. 0.025 81 4.33× 10−3

Box-splines (deg = 2) for circular advection:

Cells dt loops L2 error L∞ error points/µ-seconds
40 0.05 60 3.53E-2 7.74E-2 0.162
80 0.025 120 1.88E-3 4.66E-3 0.162

160 0.0125 240 6.77E-5 1.35E-4 0.162
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Dirichlet boundary conditions : Nitsche’s method

Using Nitsche’s method, we derive the variational form of the Poisson
equation which yields5:

∫
Ω
∇ψ · ∇φdΩ−

∫
Γd
ψ(∇φ · n)dΓd −

∫
Γd
φ(∇ψ · n)dΓd + α

∫
Γd
ψφdΓ

=

∫
Ω
ψf dΩ +

∫
Γn
ψgndΓ−

∫
Γd

gd(∇ψ · n)dΓ + α

∫
Γd
ψgddΓ

⇒ standard penalty method + additional integrals along Γd .

Solutions φ respect the boundary condition problem under some
conditions of the stabilization parameter α

5 A. Embar, J. Dolbow, and I. Harari. International Journal for Numerical Methods
in Engineering 7 (2010).
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Nitsche’s method: coercivity study and the α parameter
We discretize the solution φ and the test function ψ using splines like
before and we study rhs(ψh , φh) at (ψh , ψh):

rhs(ψh , φh) =

∫
Ω
∇ψh · ∇ψhdΩ− 2

∫
Γd
ψh(∇ψh · n)dΓd + α

∫
Γd

(ψh)2dΓ

Using the definition of the L2-norm : ‖ ψ ‖=
(∫

Ω ψ
2)1/2

rhs(ψh , φh) =‖ ∇ψh ‖2 −2
∫

Γd
ψh(∇ψh · n)dΓd + α ‖ ψh ‖2

We define C such that ‖ ∇ψh · n ‖2Γd ≤ C ‖ ∇ψh ‖2 and using Young’s
inequality we find that coercivity is ensured when

ααα >
1

C(h)
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