Solving the Vlasov equation using the Semi-Lagrangian scheme on a 2D hexagonal mesh

Laura S. Mendoza

Max-Planck-Institut für Plasmaphysik
Supervisor: Eric Sonnendrücker

June 5, 2014

Outline

(1) Motivation
(2) The Semi-Lagrangian Method
(3) Splines: a short introduction
(4) Multi-patch approach
(5) Second approach: hexagonal mesh

6 Conclusion and perspectives

Motivation

The Gyrokinetic Semi-Lagrangian (GYSELA) code:

- Gyrokinetic model: 5D kinetic equation on the charged particules distribution
- 5 Dimensions: 2 in velocity space, 3 in configuration space
- Simplified geometry: concentric toroidal magnetic flux surfaces with circular cross-sections
- Based on the Semi-Lagrangian scheme

Motivation

Current representation of the poloidal plane:

- Annular geometry
- Polar mesh (r, θ)

Some limitations of this choice:

- Geometric (and numeric) singular point at origin of mesh
- Unrepresented area and very costly to minimize that area
- Impossible to represent complex geometries

The Backwards Semi-Lagrangian Scheme

We consider the simplest form of the Vlasov equation, the advection equation

$$
\frac{\partial f}{\partial t}+\mathbf{a} \cdot \nabla_{\mathbf{x}} f=0
$$

The Semi-Lagrangian scheme:

- Initial distribution known on all mesh points
- Method of characteristics: gives the origin of the trajectory of the particle at previous time step (density conserved along characteristics)
- Interpolate on the origin using known values of previous step at mesh points (usually cubic B-spline interpolation)

B(asis)-Splines basics*

B-Splines of degree d are defined by the recursion formula:

$$
B_{j}^{d+1}(x)=\frac{x-x_{j}}{x_{j+d}-x_{j}} B_{j}^{d}(x)+\frac{x_{j+1}-x}{x_{j+d+1}-x_{j+1}} B_{j+1}^{d}(x)
$$

Some important properties about B-splines

- Piecewise polynomials of degree $d \Longrightarrow$ smoothness
- Compact support \Longrightarrow sparse matrix system
- Partition of unity $\sum_{j} B_{j}(x)=1, \forall x \Longrightarrow$ conservation laws

Interpolating with cubic B-Splines

Initial data:

- Uniform mesh
- Initial distribution function $f\left(t_{0}, x\right)$ known at all mesh points x_{i} The interpolant f_{h} is exact on the mesh points and is defined by

$$
\begin{equation*}
f_{h}(x)=\sum_{j=0}^{N} c_{j} B^{3}\left(x-x_{j}\right) \tag{1}
\end{equation*}
$$

where the coefficients c_{j} are computed using the property

$$
\begin{equation*}
f_{h}\left(x_{i}\right)=\sum_{j=0}^{N} c_{i} B^{3}\left(x_{i}-x_{j}\right)=f\left(x_{i}\right) \tag{2}
\end{equation*}
$$

Which can be written as a sparse matrix system, where boundary conditions intervene.

Multi-patch: the general idea

Our original mesh:

Multi-patch: the general idea

New representation of the poloidal plane:

Multi-patch: the general idea

Specificities of the new geometry definition :

- Additional patch(es) with no
 singular point at origin
- Each patch defined as a transformation (or mapping) from uniform cartesian grid to new mesh
- Mappings defined with NURBS (Non-Uniform Rational B-Splines) \Longrightarrow complex geometries
- Coupling between patches defined by boundary condition

The 5 patches configuration

External crown divided into 4 patches and the connectivity is defined as a patch-edge to patch-edge association (creation tool: CAID)

Advantages

- Flexibility defining complex geometries
- Each patch can be treated separately
- No geometrical singularity

New challenges

- What is the best BC?
- How to treat particules which characteristics' origin are on another patch?
- 4 new numerical singularities

Multi-patch: Some results

Results always showed instabilities near singular points. What we've tried to avoid them:

- Boundary conditions tested: strictly interdependent gradients and mean gradients between connecting patches
- Over-lapping: Impossible with interior patch and useless for others
- Squared internal mapping

Problem: Impossible to avoid singular points from mapping from a square to a circle

Second approach: The hexagonal mesh

Idea: Use a new mapping: square \longrightarrow circle.
We define a tiling of triangles of a hexagon as our mesh for a 2D poloidal plane.

Some advantages:

- No singular points
- (Hopefully) no need of multiple patches for the core of the tokamak
- Twelve-fold symmetry \Longrightarrow more efficient programming
- Easy transformation from cartesian to hexagonal coordinates
- Easy mapping to a disk

Box-splines and quasi-interpolation

Box-Splines:

- Generalization of B-Splines
- Depend on the vectors that define the mesh
- Easy to exploit symmetry of the domain
\Longrightarrow More efficient interpolation

Quasi-interpolation:

- Distribution function known at mesh points
- Of order L if perfect reconstruction of a polynomial of order $L-1$
- No exact interpolation at mesh points $f_{h}\left(x_{i}\right)=f\left(x_{i}\right)+O\left(\left\|x_{i}\right\|^{L}\right)$
\Longrightarrow Additional freedom to choose the coefficients c_{j}

$$
\begin{equation*}
f_{h}(x)=\sum c_{j} \chi^{L}\left(x-x_{j}\right) \tag{3}
\end{equation*}
$$

Computing the spline coefficients using pre-filters

Idea: Coefficients obtained by discrete filtering of sample values $f\left(x_{i}\right)$

$$
\begin{equation*}
c=p * f=\sum_{i} f\left(x_{i}\right) p_{i} \tag{4}
\end{equation*}
$$

prefilters: Obtained by solving a linear system of L equations (quasi-interpolation conditions)

Example with $L=2$:

- We use information on two hexagons from point
- Points at same radius have same weight
- Error: $O\left(\|x\|^{2}\right)$

Hexagonal mesh: First results

Using box splines of degree 2, we obtained the following results:

model	Points	\mathbf{a}	$\mathbf{d t}$	loops	L_{2} error
On mesh points	17101	0.	0.025	1	4.99×10^{-6}
Constant advec.	17101	0.05	0.025	81	4.70×10^{-3}
Circular advec.	17101	1.	0.025	81	4.33×10^{-3}

Using the pre-filter Pfir and mirror boundary conditions. The error increments linearly on time for advections and is of order 4.

Conclusion and perspectives

Hexagonal mesh:

- Results more encouraging than multi-patch results
- No numeric problems due to the mesh
- Efficiency to be compared
- More complex models to be tested
- Results have to be tested on a disk (and not a hexagon)
- Boundary conditions to be defined properly
- Box-MOMS (Maximal order minimal support box splines)

Multi-patch:

- Schwartz iterative method: stabilize singular points
- May still be useful for more complex geometries
- Implementation in the SELALIB library

Thank you for you attention Questions?

