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Motivation
The Gyrokinetic Semi-Lagrangian (GYSELA) code:

  

5D Vlasov solver for D + W
(semi-lagrangian scheme) 

adiabatic electrons

J
0
 = gyroaverage

(Padé approximation) 

+

Tore-Supra = circular plasma WEST = D-shaped plasma

Gyrokinetic model: 5D kinetic equation on the charged particules
distribution
5 Dimensions: 2 in velocity space, 3 in configuration space
Simplified geometry: concentric toroidal magnetic flux surfaces with
circular cross-sections
Based on the Semi-Lagrangian scheme
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Motivation

Current representation of the
poloidal plane :

Annular geometry
Polar mesh (r , θ)

Some limitations of this choice :
Geometric (and numeric)
singular point at origin of mesh
Unrepresented area and very
costly to minimize that area
Impossible to represent complex
geometries
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The Backward Semi-Lagrangian Method
We consider the advection equation

∂f
∂t + a(x, t) · ∇xf = 0 (1)

The scheme:
Fixed grid on phase-space
Method of characteristics : ODE −→ origin of characteristics
Density f is conserved along the characteristics

i.e. f n+1(xi) = f n(X(tn ; xi , tn+1)) (2)

Interpolate on the origin using known values of previous step at mesh
points (initial distribution f 0 known).
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The hexagonal mesh1

Idea: Use a new mapping: hexagon −→ circle (thanks to B.D. Scott and
T.T. Ribeiro).

r3

r1r2

Some advantages:
No singular points
(Hopefully) no need of multiple
patches for the core of the tokamak
Twelve-fold symmetry ⇒ more
efficient programming
Easy transformation from cartesian
to hexagonal coordinates
Easy mapping to a disk
⇒ field aligned physical mesh

Regularity of the mesh ⇒ easy to find characteristic’s feet (BSL)
1 R. Sadourny, A. Arakawa, and Y. Mintz. “Integration of the nondivergent

barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere”.
Monthly Weather Review 6 (2014/11/21 1968).
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The guiding center model: general algorithm

We consider a reduced model of the gyrokinetic model – a simplified 2D
Vlasov equation coupled with Poisson:

∂f
∂t + E⊥ · ∇X f = 0
−∆φ = ∇ · E = f

(3)

The global scheme:

Known: initial distribution function f 0 and electric field E0

For every time step :
I Solve (Leap frog, RK4, ...) ODE for origin of characteristics X
I Solve poisson equation ⇒ En+1

I Interpolate distribution in Xn ⇒ f n+1

For interpolation step: Box-splines interpolation.
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B(asis)-Splines basis*
B-Splines of degree d are defined by the recursion formula:

Bd+1
j (x) = x − xj

xj+d − xj
Bd

j (x) + xj+1 − x
xj+d+1 − xj+1

Bd
j+1(x) (4)

Some important properties about B-splines:

Piecewise polynomials of degree d ⇒ smoothness
Compact support ⇒ sparse matrix system
Partition of unity

∑
j Bj(x) = 1, ∀x ⇒ conservation laws
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Box-splines and quasi-interpolation
Box-Spline’s properties:

Generalization of B-Splines;
depends on the vectors that define the
mesh (i.e. triangular meshes);
has compact support;
is positive and symmetric.

Quasi-interpolation:
Of order L if perfect reconstruction of a polynomial of degree L − 1
No exact interpolation at mesh points fh(xi) = f (xi) + O(‖∆xi‖L)

fh(x) =
∑

j
cjBΞ(x − xj) (5)

⇒ Additional freedom to choose the coefficients cj
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Poisson solver : FEM based solver
The Poisson equation in cartesian coordinates:

−∆φ = f (t, x) in Ω

Which in weak formulation gives∫
Ω
∇φ · ∇ψ dx =

∫
Ω

f (t, x)ψ dx (6)

with ψ test function, a box-spline Bj . We discretize φ and f as follows

φh(x) =
∑

i
φiBi(x), f h(x) =

∑
i

fiBi(x), ψh(x) = Bj(x)

We obtain

∑
i,j
φi

(∫
Ω
∂xBi∂yBj +

∫
Ω
∂yBi∂yBj

)
=
∑
i,k

fi
∫

Ω
BiBk (7)

⇒ SELALIB’s general coordinate elliptic solver (developed by A. Back) or
Jorek (Django version, developed by A. Ratnani) solver

Theory Seminar 2014 (mela@ipp.mpg.de) Thursday 27th November, 2014 10 / 15



Circular advection test case
Advection model :

∂tf + y∂x f − x∂yf = 0 (8)

Taking a gaussian pulse as an initial distribution function

f n = exp
(
−1

2

(
(xn − xc)2

σ2
x

+ (yn − yc)2

σ2
y

))
(9)

Constant CFL ( CFL = 2 ) , σx = σy = 1
2
√

2 , hexagonal radius : 8.
Null Dirichlet boundary condition.
Box-splines (deg = 2) for circular advection:

Cells dt loops L2 error L∞ error points/µ-seconds
40 0.05 60 3.53E-2 7.74E-2 0.162
80 0.025 120 1.88E-3 4.66E-3 0.162

160 0.0125 240 6.77E-5 1.35E-4 0.162
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Guiding center model : Diocotron instability test case

The Guiding-center model:
∂f
∂t + E⊥ · ∇X f = 0
−∆φ = f

(10)

with initial distribution function (the diocotron instability in polar
coordinates):

f (0, r , θ) =
{

1 + ε cos(l · θ), r− ≤ r ≤ r+

0, otherwise (11)

with
ε = 0.1
l = 9.
radius = 10

r− = 5 and r+ = 8
Null Dirichlet boundary
condition.
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Diocotron instability

(film.avi)
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Handling boundary conditions : Main problem
Non interpolating splines −→ Problems with Dirichlet boundary conditions

We can differentiate three different types of
elements:

Interior/Exterior elements
Boundary elements

New questions arise:
How to derive the equation such that
BC intervene?
Which elements should be considered as
interior/exterior?

Nitsche’s methoda −→ Adding additional terms to weak formulation
a A. Embar, J. Dolbow, and I. Harari. International Journal for Numerical

Methods in Engineering 7 (2010).
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Conclusion and perspectives
Conclusions:

New mesh with no singular points for modelling the poloidal plane;
Interpolation scheme adapted to hexagonal meshes:

I Box-splines adapted to mesh;
I Quasi-interpolation scheme: efficient scheme.

Method stable for the Guiding-center model;
Competitive results (precision/time) with:

I Multi-patch approach;
I Hermite Finite Elements method.

Perspectives:
More complex models to be tested;
Introduction of mapping to a disk to be done;
Boundary conditions to be defined properly;
Other geometry problems: X-point, Scrape-off layer, ...
Hexagonal mesh for other methods: PIC, ...
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