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Motivation
We are interested in the core of a tokamak, where the magnetic
field lines are wrapped around closed surfaces. These surfaces,
called magnetic surfaces can be described by a constant section
around the torus. Therefore, to have an accurate simulationof the
transport process in a tokamak, the description of the geometry of
the magnetic surfaces is fundamental. When we work with non lin-
ear phenomena such as turbulence, perturbations play an important
role. Gyrokinetics codes, that are specialized in these phenomena,
need there fore to have a precise geometry’s definition.

GYSELA
The GYrokinetic SEmi-LAgrangian code has the following prop-
erties:

• Used for studying plasma’s ion turbulence in tokamaks

• Non linear 5D global gyrokinetic

• Uses circular toroidal geometry(r, θ, ϕ)

• Uses the Semi-Lagrangian method

• Strang splitting (advections 1D inϕ andv|| and 2D in(r, θ)

The BSL method
TheBackwardsSemi-Lagrangian method is now one of the most
used numerical schemes to solve the Vlasov equation, in 1D and
2D. It uses a fixed grid in phase-space. The BSL scheme has two
major components: it follows the characteristics back in time and
it interpolates on the characteristic’s foot.

To illustrate the scheme, we consider
the constant advection equation:

∂f

∂t
+ a · ∇f = 0 (1)

The characteristic curves are the so-
lution of the following ODE:

dX

dt
= a knowing X(s) = x

We noteXn the result and we use the property thatf is conserved
along the characteristics to obtain:fn+1(x) = fn(Xn). As the
computed foot of the characteristic is most certainly not a point on
the mesh, we need to use an interpolation method to findfn(Xn).

Interpolation
Often and in particular in the Gysela code the BSL method is based
on cubic spline interpolation, which consists of an interpolation
using piecewise third-degree polynomials. Let us see the three dif-
ferent possible BSL results that will impact on the interpolation:

(a) BSL - classical case

(b) BSL - particle to neighbour patch (c) BSL - particle out of domain

IGA based Mesh
Our aim is to increase the flexibility of the discretization in the
GYSELA code. Instead of hard coding one specific curvilinear
coordinate system as is done in most gyrokinetic codes, we pre-
fer to rely on an efficient mesh generating tool based on Isogeo-
metric Analysis (IGA) which is based on Non-Uniform Rational
B-Splines (NURBS) functions. A NURBS curve’s general form
is:

C(u) =

n
∑

i=0

Ri,p(u)Pi with Ri,p(u) =
Ni,p(u)ωi

∑n
j=0Nj,p(u)ωj

(2)

whereP is a vector of control points,w a vector of weights and
Ni,p(u) is the p-th degree B-Spline basis functions on the vector
U = {0, ..., 0, up+1, ..., um−p−1, 1, ..., 1}. To go on higher dimen-
sion, a NURBS surface is basically a tensor product between two
curves.

Isogeometry has the following advantages:

• Exact representation of any conic section

• Flexibility to define complex shapes

• Invariant to affine transformations

• Provides the mapping of the domain

• Provides the tools to pass from parametric to physical space

Poloidal section
To avoid the hole presented on the 2D poloidal section we have
studied the reattachment of a second mapping.

The whole domain is then represented with NURBS instead of the
usual analytical mapping.

Moreover we have taken advantage of the symmetry of the domain
to divide it into 4 symmetrically identical patches formingthe ex-
ternal crown and an internal patch.

The “connexion” between patches is made through the interpola-
tion. Instead of using periodic or dirichlet boundary conditions,
the boundary condition of each patch will depend on the patches
at its neighbourhood. To make this process easy numericallywe
have introduced a notation system for the patches and each oftheir
edges.

Results
The first simulations were made to solve the constant advection
equation (1). For the initial condition we have chosen to usea
Gaussian function described as follows:

f0(x, y) = A exp

(

x− xc

2σx
+
y − yc

2σy

)

(3)

We took an amplitudeA of 10 and a widthσ = 0.05. Our domain
is the poloidal section, a disk, centred at the origin and of radius 1.
We remind the analytical solution of the scalar advection equation:

f0(x− a1t, y − a2t) (4)

whereA =

(

a1
a2

)

is the advection coefficient. We ran our first

simulation such that the gaussian density went through the whole
patch, passing 3 patches total.

(d) Numeric result att = 100 (e) Analytical result att = 100

There is some numerical perturbation by the fact the strong den-
sity gradient goes through one of the (numerically) singular points
of the interior mesh. We understand then the importance of using
a good interpolation method and having a good approximationof
the slopes. We have tried two different order (2 and 4) of finite dif-
ferences methods for the computation of the derivatives (slopes):

When the boundary condition has some high gradient density,the
error pikes and goes up to 10 times higher. Therefore the method
used to compute the derivatives needs to be robust in the present
of high gradients.

Perspectives
Before adapting our work to higher di-
mensions we wish to implement a new
method for handling the boundary condi-
tions. Our future work will include an
LWENO schemes which should be more ap-
propriated.

The next step will be solving the Vlasov-Poisson equation. And
finally implementing the method in the GYSELA code.
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