Lightweight Emulation to Study Peer-to-Peer Systems

Lucas Nussbaum and Olivier Richard

Laboratoire Informatique et Distribution

Laboratoire ID-IMAG MESCAL INRIA Project Grenoble, France

Outline

Introduction : Study of Peer-to-Peer Systems

2 P2PLab

3 Conclusion

Outline

- Peer-to-peer systems
- Solutions for P2P Study
- Summary

2 P2PLab

Peer-to-Peer systems

- Heterogeneous nodes (CPU, network)
- Non-persistent nodes
- Difficult (Impossible ?) to control
- \Rightarrow Hard to study (correctness, performance) and to understand

Peer-to-peer systems Solutions for P2P Study Summary

Solutions for P2P Study

Peer-to-peer systems Solutions for P2P Study Summary

Emulation

Virtualization on the nodes

Existing tools

Existing tools

Modelnet, NetBed/Emulab, MicroGrid, PlanetLab

Existing tools (2)

Example : PlanetLab

700 distributed nodes available as a testbed for distributed systems research. But :

- 700 « millions
- Nodes hosted by universities, research centers, big corporations. "Real" Internet?

Tools for emulation and virtualization

Network emulation

Change network link characteristics (bandwidth, latency, congestion/packet loss)

- NIST Net (Linux 2.4 and 2.6)
- TC and Netem (Linux 2.6)
- Dummynet (FreeBSD)

Virtualization

Execute several instances of an application on the same physical system

- User Mode Linux
- VServer
- Xen

Summary

- Solutions aim at very high accuracy
 - Efficiency?
 - Scalability ?
- Virtualization of a full operating system
 - Really necessary for P2P systems? (vertically integrated apps)
- Network emulation targeting the network core
 - Really important for P2P systems? (applications running on the edge of the Internet)

Intro Virtualization Network Evaluation Virtualization Scalability Fairness

Outline

Introduction : Study of Peer-to-Peer Systems

2 P2PLab

- Introduction
- P2PLab : process-level virtualization
- P2PLab : network emulation
- P2PLab : Evaluation
- Virtualization ratio
- Scalability
- Fairness of virtualization

3 Conclusion

Intro Virtualization Network Evaluation Virtualization Scalability Fairness

P2PLab : Introduction

Main idea

- light and efficient emulation system (good virtualization ratio)
- Targeting peer-to-peer systems specifically

Key facts

- Uses FreeBSD 5 (for Dummynet)
- Process-level virtualization (by virtualizing the network identity)
- Decentralized network emulation for good scalability

P2PLab : process-level virtualization

- Affect an IP address to each process, for both *clients* and servers
- Modification of the Libc (bind(), connect() and listen()) to always issue a bind() on the address specified by \$BINDIP

P2PLab : network emulation

- Uses interface aliases (minimal overhead)
- Manages network emulation on the nodes (input & output)
 - Limits bandwidth and adds latency for each virtual node
 - Adds latency between groups of virtual nodes

Intro Virtualization Network Evaluation Virtualization Scalability Fairness

Emulation of network topologies

P2PLab : Evaluation

Virtualization ratio

- How many virtual machines on each physical machine?
- Scalability ?
 - Experiments with a large number of nodes?
- Fairness of virtualization?
 - Which level of fairness between two processes from the same physical node?

Intro Virtualization Network Evaluation Virtualization Scalability Fairness

P2PLab : Evaluation (2)

BitTorrent

- popular file-sharing protocol
- each client gets a list of *peers* from the *tracker*, then connects to them directly and exchanges pieces of a file
- Largely studied through modelling, simulations and runs on real systems
- very complex, difficult to study it accurately

Evaluation system

- GridExplorer cluster (part of the Grid'5000 project)
- ~200 bi-Opteron 2 Ghz, 2GB of RAM, gigabit ethernet network

Virtualization ratio

- Download of a 16 MB file with BitTorrent
- 160 downloaders
- Started every 10 seconds
- Network settings : 2 mbps down, 128 kbps up, latency 30 ms
- On 160 physical nodes, then 16, then 8, then 4, then 2.

Intro Virtualization Network Evaluation Virtualization Scalability Fairness

Virtualization ratio (2)

Virtualization ratio (3)

- Download of a 16 MB file with BitTorrent
- 160 downloaders
- Started every 10 seconds
- Network settings : 2 mbps down, 128 kbps up, latency 30 ms
- On 160 physical nodes, then 16, then 8, then 4, then 2.
- \Rightarrow No visible overhead even with 80 clients per physical node
- \Rightarrow First limiting factor : performances of the underlying network

Intro Virtualization Network Evaluation Virtualization Scalability Fairness

Scalability

- Download of a 16 MB file using BitTorrent
- Between 5760 peers (5755 downloaders, 4 seeders, 1 tracker)
- Started every 0.25s
- On 5760/32 = 180 nodes
- Network settings : 2 mbps down, 128 kbps up, latency 30 ms

Clients displayed on the graph : no 0, 50, 100 ... 5750.

Intro Virtualization Network Evaluation Virtualization Scalability Fairness

Scalability (2)

Fairness of virtualization

Question

Which level of fairness can be expected between two processes from the same physical machine?

Experiment

- Starting a process every second
- When alone, needs 12 seconds to complete
- Result : time needed for each process to complete

Intro Virtualization Network Evaluation Virtualization Scalability Fairness

Fairness of virtualization (2)

Outline

Introduction : Study of Peer-to-Peer Systems

P2PLab

Conclusion

- Emulation is an interesting tool when studying peer-to-peer systems
 - Heavy virtualization and emulation is not always needed
- ... and P2PLab is a useful emulation system, using a simple approach
- Still needs a lot of work :
 - Comparison with other tools (Modelnet, NetBed/Emulab, MicroGrid, PlanetLab)
 - Comparison with classical topology generators
 - What's the importance of congestion in the Internet core for P2P systems?
 - Virtualization and fairness
 - Move to Linux ?
 - Realistic parameters for experiments?
 - Node failure and departure, varying network conditions

Questions?

- Q : Is P2PLab available?
 - A : Currently, no
 - A : But I'm interested in collaborations : if you have a working prototype you would like to evaluate using P2PLab, contact me (lucas.nussbaum@imag.fr)!
- Other questions ?