
Rewriting Logic and Probabilities

Olivier Bournez1 and Mathieu Hoyrup2

1 LORIA/INRIA, 615 Rue du Jardin Botanique
54602 Villers lès Nancy Cedex, France

2 ENS-Lyon, 46 Allée d’Italie
69364 Lyon Cedex 07, France

Abstract Rewriting Logic has shown to provide a general and elegant
framework for unifying a wide variety of models, including concurrency
models and deduction systems. In order to extend the modeling capa-
bilities of rule based languages, it is natural to consider that the firing
of rules can be subject to some probabilistic laws. Considering rewrite
rules subject to probabilities leads to numerous questions about the un-
derlying notions and results. In this paper, we discuss whether there
exists a notion of probabilistic rewrite system with an associated notion
of probabilistic rewriting logic.

1 Introduction

Rewriting Logic [19] is known to provide a very elegant and powerful framework
for unifying a wide variety of models, including concurrency models and deduc-
tion systems. Indeed, the basic axioms of this logic, which are rewrite rules of
the form t → t′, where t and t′ are terms over a given signature, can be read in
two dual ways: computationally, t → t′ can be read as the local transition of a
concurrent system or logically, t → t′ can be read as the inference rule of some
logic [19]. Several computer systems, including MAUDE [11] and ELAN [7],
are based on this framework and have been intensively used in the last decade
for the prototyping of various kinds of logics and systems: see survey [18].

In order to extend the modeling capabilities of rule based languages, it seems
natural to extend the framework with probabilities: for example, the modeling
of concurrent systems requires often to consider that the local transitions t → t′

can be subject to some probabilistic laws [8]. This leads to numerous questions
about the underlying theories and results.

In a previous RTA paper [8], strategies were shown to provide a nice setting
for expressing probabilistic choices in rule based languages. Probabilistic abstract
reduction systems and notions like almost-sure termination or probabilistic con-
fluence were introduced and related to the classical notions.

This paper is devoted to a next step: understand whether there exists a valid
and useful notion of rewrite system and rewriting logic in presence of probabili-
ties.

In classical (non-probabilistic) rewriting theory each rewrite system induces
a reduction relation which defines the relation of an abstract reduction system

over the terms: see e.g. [2]. When considering systems with probabilistic firing
of rules, the analog of abstract reduction systems seems to be the notion of
probabilistic abstract reduction systems introduced in [8]. Can we build a valid
and nice notion of probabilistic rewrite system, that would induce probabilistic
abstract reduction systems over terms in a natural way?

A first natural idea seems to consider the following notion: define a proba-
bilistic rewrite system as a classical rewrite system, i.e. a set of rewrite rules,
plus associated probabilities (or weights see discussions later) : i.e. a probability
(or a weight) for each rule.

In the classical setting, the reflexive transitive closure of the relation induced
by some rewrite system can be proved to correspond to the smallest reflexive
transitive relation that contains the identities involved by the rewrite system
and which is closed by substitutions and Σ-operations: see e.g. [2]. That means
in particular that one can build a sound and complete proof system that decides
if two terms are in relation by the reflexive transitive closure of the reduction re-
lation of a given rewrite system. This proof system corresponds to the deduction
rules of Rewriting Logic [19]. Does that work in the probabilistic settings?

We prove in this paper that there is no hope to build a sound and complete
proof system that would prove whether two terms are in relation by the reflex-
ive transitive closure of the reduction relation of a given rewrite system with
associated probabilities in the general case.Does there exist however a notion of
probabilistic rewriting logic?

We propose a notion of probabilistic rewriting logic. One main difference
between the proposed setting and the classical rewriting logic setting is that
proof terms become now mandatory, in order to have completeness results: we
prove that when proof terms are present, probabilistic rewriting logic is sound
and complete.

One main interest of rewriting logic lies in its modeling capabilities [18,19].
We show that the proposed probabilistic rewriting logic extends the modeling
capabilities of classical rewriting logic.

This paper is organized as follows: classical non-probabilistic theory is re-
called in Section 2. Probabilistic abstract reduction systems are recalled in Sec-
tion 3. Several computability theory results which show that this is not way to
have sound and complete proof systems that deal correctly with transitivity are
proved in Section 4. The proposed notion of probabilistic rewrite system with
its associated semantic is introduced in Section 5. The associated sound and
complete probabilistic rewriting logic is discussed in Section 6. The modeling
capabilities of probabilistic rewriting logic are exemplified in Section 7. Section
8 discusses related and future work.

2 Rewriting Logic

We need first to recall some classical notions and results (we follow the notations
and terminology from [2]): T (Σ, X) denotes the set of terms over signature Σ
and disjoint set of variables X . When t ∈ T (Σ, X) is a term, let Pos(t) be the

set of its positions. For ρ ∈ Pos(t), let t|ρ be the subterm of t at position ρ, and
let t[s]ρ denote the replacement of the subterm at position ρ in t by s. The set
of all substitutions is denoted by Sub.

Definition 1 (Labeled rewrite system). A labeled rewrite system (R,L)
consists of a set R ⊆ T (Σ, X) × T (Σ, X) of rules and a set L of labels, such
that each rule in R is bijectively associated to a label in L. We write g → d ∈ R
for (g, d) ∈ R and (l : g → d) when l ∈ L is associated to g → d ∈ R.

Definition 2 (Abstract Reduction System). An abstract reduction system
(A,→) consists of a set A and a binary relation → on A, called reduction rela-
tion. We write a → b for (a, b) ∈→, and we write →∗ for the reflexive transitive
closure of →.

Definition 3 (Reduction relation). Let R be a rewrite system. The associ-
ated reduction relation →R⊆ T (Σ, X) × T (Σ, X), also denoted by → when R
is clear, is defined by t →R t′ iff ∃(g → d) ∈ R, p ∈ Pos(t), σ ∈ Sub, such that
t|p = σ(g) and t′ = t[σ(d)]p.

A rule g → d ∈ R will be said to be applicable at the root of term t if position
p can be chosen as the root position: i.e. there is a substitution σ ∈ Sub with
t = σ(g). In that case, σ(d) is the the result of its application.

The idea of rewriting logic is, for a given rewrite system R, to consider →R

as the description of a transition system over terms.

Definition 4. The executional semantic of a given rewrite system R is the ab-
stract reduction system SR = (T (Σ, X),→R).

The derivations of this abstract reduction system correspond to the provable
sequents of a logic, called rewriting logic. This logic talks about sentences of the
form t → t′, meaning that t can evolve toward t′ in SR [19].

Proposition 1. [There exists a sound and complete proof system for →∗ [19]]
Suppose rewrite system R is fixed. Two terms s, t ∈ T (Σ, X) are related by →∗

iff t → t′ can be established starting with axioms l → r for each rule l → r ∈ R
by the following proof system:

Reflexivity : if t ∈ T (Σ, X),

t → t

Congruence : if f ∈ Σn,

t1 → t′1 · · · tn → t′n
f(t1, . . . , tn) → f(t′1, . . . , t

′
n)

Replacement : if l : g(x1, ..., xn) → d(x1, ..., xn) ∈ R,

t1 → t′1 · · · tn → t′n
g(t1, . . . , tn) → d(t′1, . . . , t

′
n)

Transitivity :
t1 → t2 t2 → t3

t1 → t3

Remark 1. Rewriting logic is generally defined considering rewriting modulo: se-
quents correspond to quotient set T (Σ, X)/E where E is a given set of identities
[19]. In this paper, we will not consider terms modulo a congruence class. Further-
more, we will not allow conditional rules. We believe this restricted framework
to be enough interesting by itself for the following discussions.

Remark 2. In order to represent both a reduction and the proof tree that induces
this reduction, proof terms can also be considered: the set PT of proof terms is
defined as the set T (Σ ∪L∪ {; }, X) of terms on the signature Σ extended with
the labels of L and the binary concatenation operator ”; ” [10]. Rewriting logic
deduction rules can then be adapted to derive sentences of the form π : t → t′

meaning that t evolves toward t′ in SR using path encoded by proof term π′:
see [10,19]. But, as shown by previous proposition, unless one wants to define
the notion of model [19], or the notion of strategy [10], proof terms are not
mandatory.

3 Probabilistic Abstract Reduction Systems

Let S be a countable finite or infinite set. A stochastic sequence (Xn)n≥0 on S
is a family of random variables from some fixed probability space to S.

Definition 5 (Homogeneous Markovian Stochastic Sequence). A
stochastic sequence (Xn)n≥0 is Markovian if its conditional distribution function
satisfies ∀n ≥ 1, i0, . . . , in ∈ S, p(Xn = in|Xn−1 = in−1, . . . , X0 = i0) = p(Xn =
in|Xn−1 = in−1). It is said to be homogeneous if furthermore this probability is
independent of n.

In other words, Markov property means that the system evolution does not
depend on past, but only on present state. The homogeneity property means
that the dynamic is independent of time.

In that case, P = (pi,j)i,j∈S defined by pi,j = p(Xn = j|Xn−1 = i) is a
stochastic matrix on S: i.e. it satisfies for all i, j ∈ S, pij ∈ [0, 1] and for all i,
∑

j pij = 1. It is called a matrix even when S is infinite. Homogeneous Marko-
vian stochastic sequences (HMSS) and stochastic matrices are in correspondence,
since conversely to any stochastic matrix P = (pi,j)i,j∈S corresponds a homo-
geneous Markovian stochastic sequence: if at time n the system state is i ∈ S,
choose at time (n + 1) system state j with probability pi,j .

In [8], we suggested to extend abstract reduction systems in a homogeneous
Markovian way:

Definition 6 (PARS). A Probabilistic Abstract Reduction System A = (A, ;)
consists of a countable (finite or infinite) set A and a mapping ; from A × A
to [0, 1] such that for all s ∈ A,

∑

t∈A s t = 0 or 1.

A PARS A is like a HMSS on A whose stochastic matrix is P = (s t)s,t.
However contrary to a HMSS, a state can be irreducible, that is such that
∑

t∈A s t = 0. Actually, a PARS can be transformed into a stochastic matrix
by adding a new state ⊥ and reducing irreducible states to ⊥: let S = A ∪ {⊥}
the extension of A with ⊥. Extend ; on S × S by

s ⊥ = 1 if s ∈ A is irreducible
s ⊥ = 0 if s ∈ A is reducible
⊥ t = 0 for all t ∈ A
⊥ ⊥ = 1

Definition 7 (Derivation). A derivation of A is a corresponding HMSS on S.

PARS correspond to the extension of Abstract Reduction Systems (ARS) with
probabilities. Indeed, to a PARS A = (A, ;) can be associated a unique ARS
(A,→), called its projection, obtained by forgetting probabilities: s → t if and
only if s t > 0. Conversely, to any ARS can be associated several PARS by
distributing probabilities over the possible derivations: the projection of these
PARS will be the original ARS: see [8] for a full discussion.

4 Probabilities and Transitivity

We now come to the main object of this paper, that is to discuss whether there
exists a notion of probabilistic rewrite system with some executional semantic
for which there exists some associated notion of probabilistic rewriting logic.

We have not yet defined what probabilistic rewrite systems are, but one may
expect a probabilistic rewrite system to correspond to a classical rewrite system
with somehow the addition of probabilities. One may also expect its executional
semantic to be defined as a probabilistic abstract reduction system over terms.
In other words, one would expect to define probabilistic rewrite systems and their
executional semantics by distributing in some manner the probabilities over the
executional semantic of classical rewrite systems.

The point is to get something “nice”: one may in particular want to have re-
sults in the spirit of Proposition 1: there is some associated sound and complete
proof system that could derive whether two terms are related in the correspond-
ing executional semantic. If it were so, guided by classical theory, we would then
call this complete proof system probabilistic rewriting logic.

However, we prove in this section that there is no hope to get such a sound
and complete proof system.

We start by a computability theory result about homogeneous Markovian
stochastic sequences: observe that, when P is a stochastic matrix, and n is an
integer, P n is a stochastic matrix whose entries (P n)i,j give the probability of
going from i to j in n steps [9]. We show that even two steps transitions, that
is P 2, is not computable in the general case: a stochastic matrix P = (Pi,j)i,j

is said recursive if all its entries are rational and there exists a Turing machine
that given i, j outputs Pi,j . Such a matrix can be represented by an index of a
corresponding Turing Machine.

Theorem 1. The decision problem “given a stochastic matrix P, and some ra-
tional q, decide if top-left entry of P 2 is q” is not recursively enumerable.

Proof. The halting problem “given integer w, decide if Turing machine number
w accepts input w” is recursively enumerable non-recursive, and hence, its com-
plement Co − Halt can not be recursively enumerable. We only need to prove
that problem Co − Halt reduces to our problem.

Given an input w of Co − Halt, consider the matrix P = (Pi,j)i,j where
P1,j = 1

2j for all j, Pi,j = 0 for all j > 2, Pi,1 = 0 (respectively: Pi,2 = 1) if
Turing machine number w over input w halts in less than i steps, 1

2i otherwise
(resp. 1 − 1

2i otherwise). P is a recursive stochastic matrix: all its entries are
computable rationals of [0, 1], and for i = 1, we have

∑

j≥1 p1j =
∑

j≥1
1
2j = 1,

and for i > 1,
∑

j≥1 pij is pi1 + pi2 = 0 + 1 or 1
2i + (1 − 1

2i) = 1 according to
whether Turing machine number w stops on input w in less than i steps or not.

Assume that Turing machine number w does not accept input w. For all
i > 1 we have pi1 = 1

2i and pi2 = 1 − 1
2i . The top-left entry of P 2 is given by

∑

k≥1 p1kpk1 =
∑

k≥1

(

1
2k

)2
= 1

3 .

Assume that Turing machine number w accepts input w at time i0.We have
pi1 = 1

2i and pi2 = 1 − 1
2i for all i ≤ i0 and pi1 = 0 and pi2 = 1 for all i > i0.

After a certain row, the first column elements of matrix P are 0 and the second
column elements are 1. The top-left entry of P 2 is given by

∑

k≥1 p1kpk1 =
∑i0

k=1

(

1
2i0

)2
= 1

3

(

1 − 1
4i0

)

< 1
3 .

Hence, problem Co−Halt reduces to our problem considering matrix P and
rational q = 1/3.

Remark 3. The previous proof also shows that the problem of determining if
the top-left entry of P 2 is ≥ q is not recursively enumerable. The problem of
determining whether it is > q can be shown to be recursively enumerable but
non recursive.

We now come back to rewriting and probabilities. A point is that one expects
the notion of probabilistic rewrite system to cover at least homogeneous Marko-
vian stochastic sequences: indeed, any stochastic matrix P = (pi,j)i,j on set of
states S can be considered as a rewrite system with probabilities: take a constant
for each element i ∈ S and write a rule i → j with associated probability pi,j for
each i, j.

Suppose there were a sound and complete proof system that could derive
whether two terms are related in the executional semantic of a given probabilistic
rewrite system. It is rather natural to expect this proof system not only to talk
about whether there is a path between two terms in the executional semantic but
also to talk about the probability of this path: otherwise it would have nothing
to do with probabilities. In other words, it is natural to expect such a proof
system to derive sentences of type t ;

∗
p t′ (or t ;

n
p t′) meaning “term t can

evolve to term t with probability p (respectively in n steps).

We show this is impossible (observe that you can fix n = 2 in what follows):

Theorem 2 (There is no sound and complete proof system for ;
n).

There is no way to conceive a sound and complete proof system (axioms + de-
duction rules) that could derive in the general case for all terms s,t and integer
n the probability s ;

n t of going from s to t in n steps.

Proof. Assume there were a finite (or even a recursively enumerable) set of ax-
ioms and a finite (or even recursively enumerable) set of deductions rules that
would allow to give probabilities s ;

n t for all s, t, n. By enumerating recursively
axioms and proofs we could enumerate all the possible proofs. Hence, the prob-
lem “given some probabilistic rewrite system, some terms s, t and some rational
q, decide if q = s ;

n t” would be recursively enumerable. This is in contradic-
tion with Theorem 1 considering systems describing a homogeneous Markovian
stochastic sequence.

One may argue that the previous arguments relies on systems with a non-finite
set of rules, or that we do not talk about reachability in any number of steps.
Actually, we prove:

Theorem 3. The decision problem “given a PARS represented by a finite set of
rewrite rules with probabilities, some states s,t, decide if the probability s ∗ t
of going from s to t in any number of steps is q” is not recursively enumerable.

Proof. We only need to reduce non-recursively enumerable decision problem Co−
Halt to our problem. Let E ⊆IN2 be the set of couples (w, t) such that Turing
Machine number w halts on input w in less than t steps. E is a recursive set.
By Bergstra-Tucker theorem [6], there exists a confluent rewriting system on a
signature Σ ⊃ {0, s, In}, where 0 is a constant symbol, s is an unary (successor)
function symbol, and In is a binary function symbol, such that for all x, t ≥ 0,

In(sx(0), st(0)) →∗ 0 if (x, t) ∈ E
→∗ s(0) if (x, t) /∈ E

Consider signature Σ ′ = Σ ∪ {F, Run}, where F is binary, Run unary (and
these symbols are not in Σ). Consider the rewrite system R composed of the
rules of the rewriting system associated to E plus the rules:

Run(x) → F (x, 0)
F (x, t) → F (x, s(t))
F (x, t) → In(x, t)

Build a PARS on T (Σ′, X) by assigning probabilities to the reductions of
R: put probability 1/2 on the reductions F (x, t) → F (x, s(t)) and F (x, t) →
In(x, t), and probability 1 on all other reductions.

By construction, the probability p(w) that Run(sw(0)) reduces to s(0) is

∑

n|(w,n)6∈E

1

2n+1
.

Indeed, a reduction that leads to s(0) can be written as

F (sw(0), 0) → · · · → F (sw(0), sn(0)) → In(sw(0), sn(0)) → · · · → s(0)

and the probability of such a reduction is 1
2n+1 .

Observing definition of E, probability p(w) is 1 iff w ∈ Co−Halt, and is < 1
otherwise. Hence, problem Co − Halt reduces to our problem.

Remark 4. The previous proof also shows that the problem of deciding whether
s ∗ t is ≥ q is non-recursively enumerable. Deciding whether it is > q can be
shown to be recursively enumerable but non recursive.

Using similar arguments to those used to establish Theorem 2, we get.

Theorem 4 (There is no sound and complete proof system for ;
∗).

Even when restricting to systems described by a finite set of rewriting rules,
there is no way to conceive a proof system that could derive in the general case
for all terms s,t the probability s ;

∗ t of going from s to t.

5 Probabilistic Rewrite Systems

We now present the notion of probabilistic rewrite system with the associated
notion of executional semantic that we propose.

The rules that can be applied on some term t depend on t. For example for
the following rewrite system

R

{

l1 : f(a, x) → x
l2 : f(x, b) → c

over signature Σ = {f, a, b, c}, on term f(a, b) both rules l1 and l2 apply, but on
term f(a, a) only rule l1 applies.

Furthermore, on a given term t, one may have the choice to apply a rule at
the root of the term, that is to use replacement rule, or to rewrite concurrently
only (one or several) subterms, that is to use congruence rule.

We would like to distribute probabilities over the possibilities: a first difficulty
is that we can not hardwire directly probabilities: if we wanted to put probability
pi to rule li, for i = 1, 2, on term f(a, b) we would expect p1 + p2 = 1, on term
f(a, a) we would expect p1 = 1. This is impossible unless p2 is 0, i.e. l2 never
applies.

Our proposition is to consider that we do not assign probabilities but weights :
a weight is some positive real number. The following strategy is then proposed: on
a term t, choose some applicable possibility (that is to say a rule that applies at
the root of t or congruence rule for symbol f if term t is of type t = f(t1, . . . , tn)
and some of the ti is reducible) selecting possibility i of weight wi with probability
wi

w , where w is the sum of the weights of applicable possibilities.
This strategy, even if often considered to avoid problems (see e.g. [14]), which

requires to normalize weights to have true probabilities, and then choosing an
applicable solution accordingly, may seem artificial.

However, we claim that this is equivalent to a more natural strategy: since
the previous strategy is unchanged if all weights are multiplied by some real
positive constant, assume that weights wi are chosen such that

∑

i wi = 1. It
can then be also obtained as follows: on a term t, choose any possibility selecting
possibility i with probability wi. As long as the chosen possibility can not be
applied to t, repeat. When one succeeds to get one that applies to t, apply it.

This is indeed a restatement of following easy observation.

Proposition 2. Suppose that we have n alternatives that can be partitioned into
“bad ones” and “good ones”. Suppose that weights w1, . . . , wn (i.e. positive real
numbers) are assigned to the alternatives in such a way that

∑

i wi = 1.
Then the following algorithm:
1. Choose l ∈ {1, . . . , n} selecting i with probability wi.
2. If alternative number l is a bad one, then repeat: i.e. goto 1.
3. Answer “alternative number l”.

never stops if there is no good alternative, returns with probability 1 some good
one otherwise, returning alternative number i with probability wi

P

j good alternative
wj

.

The following problem remains: suppose t = f(t1, . . . , tn) and congruence
is chosen. In the spirit of classical rewriting logic, we want to allow concur-
rent rewriting, that is to allow several of the ti to be rewritten simultaneously.
How should we distribute probabilities? We propose to choose the subterms in
an independent way. Indeed, n probabilities qf

1 , . . . , qf
n (i.e. n real numbers of

[0, 1]) are associated to each function symbol of the signature of arity n: in an
application of congruence rule, subterm ti will be chosen to be rewritten with
probability qf

i . One technical point is that we assume that always at least one
subterm is rewritten, and hence the probabilities are probabilities conditioned
by this fact.

In a same spirit, we want to allow concurrent rewriting of subterms in appli-
cation of replacement rule. We assume that all the variables in the right member
of a rule l : g → r of the rewrite system appear in the left member. Every rule can
then be written as l : g(x1, . . . , xn, . . . , xn+k) → r(x1, . . . , xn) where variables
x1, . . . , xn are in both members and variables xn+1, . . . , xn+k are only in left
member. We then suppose that to every such rule are associated n probabilities
ql
1, . . . , q

l
n: in an application of replacement rule subterm tiwill be chosen to be

rewritten with probability ql
i. Since replacement involves at least one rewrite, we

do not expect that at least one subterm is rewritten.
We have now all the ingredients.

Definition 8 (Probabilistic Rewrite System). A probabilistic rewrite sys-
tem (R,L,W) is given by a labeled rewrite system (R,L), where all variables in
a right member of a rule of R appears in the left member, with the addition of
the following:
1) a weight (positive real number) wl for each rule l ∈ R,
2) a weight wf for each function symbol of the signature,

3) n reals qf
1 , . . . , qf

n of [0, 1] for each function symbol f of arity n,

4) n reals ql
1, . . . , q

l
n of [0, 1] for each rule l : g(x1, . . . , xn, . . . , xn+k) →

r(x1, . . . , xn) of R.
The weights are assumed to be chosen such that

∑

f wf +
∑

l wl = 1.

We can then introduce the following reduction algorithm:

Definition 9. Given some probabilistic rewrite system, Reduction is the follow-
ing recursive algorithm:

Input: a reducible term t.
Output: a term t′.
Algorithm:
1. Choose either a rule l ∈ R or a symbol f of the signature, according to
the probability distribution given by the weights.
2. If a rule l : g(x1, . . . , xn, . . . , xn+k) → r(x1, . . . , xn) was chosen then

2.1 If 6 ∃σ ∈ Sub with σ(g) = t then repeat: i.e. goto 1.
/* From now on, t = g(t1, . . . , tn+k) for some t1, . . . , tn+k*/
2.2 Choose X1, . . . , Xn ∈ {0, 1} with probability(Xi = 1) = ql

i.
2.3 For i = 1, . . . , n, let t′i be the result of the recursive call of algorithm

Reduction on ti when Xi = 1 and ti reducible and let t′i = ti otherwise.
2.4 Return r(t′1, . . . , t

′
n).

3. If a symbol f was chosen
3.1 If t is not f(t1, . . . , tn) for some t1, . . . , tn then repeat: i.e. goto 1.
/* From now on, t = f(t1, . . . , tn) for some t1, . . . , tn*/

3.2 Choose X1, . . . , Xn ∈ {0, 1} with probability(Xi = 1) = qf
i .

3.3 If Xi = 0 for all i with ti reducible then repeat : i.e. goto 1.
3.4 For i = 1, . . . , n, let t′i be the result of the recursive call of algorithm

Reduction on ti when Xi = 1 and ti reducible and let t′i = ti otherwise.
3.5 Return f(t′1, . . . , t

′
n).

Remark 5. This algorithm terminates with probability 1 when given some re-
ducible t. If given some non-reducible t it runs for ever: this is a consequence of
Proposition 2.

We can then define:

Definition 10. The executional semantic of a given probabilistic rewrite system
(R,L,W) is the corresponding probabilistic abstract reduction system on terms:
it is defined as SR = (T (Σ, X), ;) where for all s, t, s ; p is 0 if s is not
reducible, and the probability that algorithm Reduction returns t on input s if s
is reducible.

When (R,L,W) is a probabilistic rewrite system, call (R,L) its projection: that
is, the classical rewrite system obtained by forgetting probabilities. We have from
definitions:

Theorem 5. The projection of the executional semantic of any probabilistic
rewrite system is the executional semantic of its projection.

6 Probabilistic Rewriting Logic

We now show that there is a sound and complete proof system if proof terms
are explicit, i.e. if paths between terms are given.

We propose a logic that works with sequents of type π : t →p t′: when p is a
positive real number and t′ 6= ⊥, such a sequent means that term t can evolve
to term t′ in the executional semantic using the path given by proof term π and
that the probability of this path is p. The logic consists of three rules: reflexivity,
congruence, replacement. Transitivity is not here because of results of Section 4.

A sequent deduced from reflexivity in classical rewriting logic does not cor-
respond to a reduction of the rewriting reduction relation. We suggest to distin-
guish such a sequent from the others with the use of a new symbol replacing the
probability : •.

Reflexivity : for all reducible constant a,

Ref :
a : a →• a

We need a way to express that a term is non-reducible: we propose to use symbol
⊥. We assume that rules have been added to the rewrite system so that we have
the rule {⊥a : a → ⊥} for every non-reducible constant a. When t is a term,
we denote by R(t) the set of rewrite rules that can be applied at its root. In
particular, we assume R(a) = {⊥a : a → ⊥} for every non-reducible constant a.
A sentence of type π : t →p ⊥ will mean that t is non-reducible.

Congruence : for all f ∈ Σn,

C :
π1 : t1 →p1 t′1 · · · πn : tn →pn

t′n
f(π1, . . . , πn) : f(t1, . . . , tn) →p f(t′′1 , . . . , t′′n)

with p = θI
f , I =

{

i ∈ {1, . . . , n}|t′i 6= ⊥
}

, t′′i =

{

t′i if i ∈ I
ti if i /∈ I

θI
f =

• if ∀i, pi = •
(

wf

wf+
P

R(t) wl

)

(

1

1−
Q

i∈I
(1−qf

i
)

)

(

∏

i ∈ I
pi 6= •

qf
i pi

)(

∏

i ∈ I
pi = •

(1 − qf
i)

)

otherwise
t = f(t1, . . . , tn).

Here, I is the set of subterms that can be reduced. The rule is valid if I 6= ∅. If
I = ∅, since f(t1, . . . , tn) is non-reducible, the rule becomes

⊥t1 : t1 →1 ⊥ . . . ⊥tn
: tn →1 ⊥

⊥f(t1,...,tn) : f(t1, . . . , tn) →1 ⊥

Replacement : for all l : g(x1, . . . , xn+k) → d(x1, . . . , xn) ∈ R,

Rep :
π1 : t1 →p1 t′1 · · · πn : tn →pn

t′n
l(π1, . . . , πn, tn+1, . . . , tn+k) : g(t1, . . . , tn, . . . , tn+k) →p d(t′′1 , . . . , t′′n)

with p = θI
l , I =

{

i ∈ {1, . . . , n}|t′i 6= ⊥
}

, t′′i =

{

t′i if i ∈ I
ti if i /∈ I

and θI
l =

{

• if ∀i, pi = •
(

wl

wf+
P

R(t) wl′

)(

∏

i∈I|pi 6=• ql
ipi

)(

∏

i∈I|pi=•(1 − ql
i)
)

otherwise

t = g(t1, . . . , tn+k).

Here the rule is correct even when I = ∅.
The previous rules distribute correctly probabilities onto rewrite rules (the

proof can be found in [17]).

Proposition 3. Let t be a reducible term. Let S(t) be the set of sequents π : t →p

t′ deductible from the rules [Reflexivity,Congruence,Replacement], and such that
p 6= •. Then

∑

S(t) p = 1.

The main property of this proof system is given by following result (the proof,
based on repeated applications of Proposition 2, can be found in [17]).

Theorem 6 (The above logic provides a sound and complete proof sys-
tems for sequents with proof terms). Suppose probabilistic rewrite system
R is fixed. For all t, t′ ∈ T (Σ, X), there is a path encoded by π between t and t′

in the executional semantic of R of positive probability p iff π : t →p t′ with a
positive p is provable using the previous three rules.

7 Modeling Randomized Systems

In order to argue that our notions of probabilistic rewrite systems, executional
semantic and associated logic are natural, we now show how some systems can
easily be modeled. We write l : g →p d when weight p is associated to rule
l : g → d.

Example 1 (Coin flipping). We use constant symbols head and tail and the
following system.

R

{

h : x →1/2 head
t : x →1/2 tail

Example 2 (Two players games). Each player has n euros at beginning. At each
run, a coin is flipped. If it falls on head player 1 wins 1 euro from player 2. If it
falls on tail, player 2 wins 2 euros from player 1. Game stops when one player
is ruined.

Current amount of a player is encoded using constant 0 and unary function
s (successor). Binary function game is used to group both players, and two
constants W1 and W2 are used to mean that player 1 or 2 wins. Weight 0 is
assigned to function symbol game. The game is modeled by the derivations
starting from game(sn(0), sn(0)).

R

h1 : game(n1, s(s(n2))) →1/2 game(s(n1), s(n2))
h2 : game(n1, s(0)) →1/2 W1

t1 : game(s(s(s(n1))), n2) →1/2 game(s(n1), s(s(n2)))
t2 : game(s(s(0)), n2) →1/2 W2

Example 3 (Two players with two urns). Two players can not see one another
and have each an urn. At beginning there are n balls in each urn. At each
round they can choose between taking a ball in their urn or doing nothing. With
probability p urns are exchanged at each run by some external person. A player
with an empty urn loses.

We do as before with constant 0, W1, W2 and functions s and game. We put
weight 0 to functions game and s. If the probability that player i takes a ball is
qi, we set qech

1 = ql
1 = q1 and qech

2 = ql
y = q2.

R

choose : s(x) →1 x
ech : game(s(x), s(y)) →p game(s(y), s(x))
l : game(s(x), s(y)) →(1−p) game(s(x), s(y))
g1 : game(0, s(y)) →1 W1

g2 : game(s(x), 0) →1 W2

n : game(0, 0) →1 T ie

8 Related Works, Discussions

In this paper, we discussed the existence of a notion of rewriting logic in pres-
ence of probabilities. We proved that, unlike what happens for classical theory,
accessibility can not be effectively axiomatized, and thus that there is no hope
to get a sound and complete logic that would cover transitivity. When transi-
tivity is avoided, in particular when proof terms are explicit and mandatory, we
proved that one can define a natural notion of probabilistic rewrite system with
some associated semantic, and an associated sound and complete probabilistic
rewriting logic.

First-order logics have been proposed to deal with probabilities: see e.g. [3,15].
The impossibility of effective axiomatizations of several first-order logics with
probabilities has been proved [1,15], but our results do not seem to follow directly.

The idea of considering rewriting rules with probabilities has already been
proposed and illustrated on several examples in [8,14,20], where it is observed
that the probabilities cannot be hardwired directly to rules. Paper [8] proposes to
avoid the problem by considering the notion of strategy. Papers [14,20] propose
a solution similar to the one adopted here considering weights instead of prob-
abilities. Observe that this trick has similarities with classical techniques used
to extract a discrete time Markov chain from a continuous one [9], and hence is
sometime implicitly or explicitly used for high level modeling of continuous time
Markovian systems (see e.g. [13]).

Probabilistic rewriting logic provides a high-level tool for modeling proba-
bilistic systems. Low level models include Markov chains [9] and Markov deci-
sion processes if non-determinism is allowed [22]. Other high-level models include
models based on Petri nets (cf survey [4]), on process algebra (cf survey [16]), or
on automata (cf e.g. [5,13,21,23]). According to the classification [24], our propo-
sition falls into the “generative”case. Observe that our proposition for definining
congruence and replacement is similar to (covers) what [12] proposes for the
semantic of parallel composition.

The benefits of using a given approach for describing probabilistic systems,
compared to another one, depend on the preferred way of describing world,
but we believe that our setting is a rather natural and expressive setting, as
classical rewriting logic is a rather natural and expressive setting for describing
non-probabilistic reactive systems: see survey [18].

Future work includes investigating more deeply the expressive power of the
logic. Considering rewriting with congruence classes may constitute a future
work direction. Allowing conditional rewriting is another possibility. Another
important direction seems also to understand model theory of these systems:
Definition 10 reads like the notion of canonical model associated to some given
probabilistic rewrite system. What is the notion of model of a given probabilistic
rewrite theory? Which results of classical theory (see for e.g. the results in [18,19])
do generalize in this context?

Acknowledgments

The authors would like to thank Claude Kirchner for many helpful discussions
and comments about this work.

References

1. Mart́ın Abadi and Joseph Y. Halpern. Decidability and expressiveness for first-
order logics of probability. Information and Computation, 112(1):1–36, July 1994.

2. Franz Baader and Tobias Nipkow. Term Rewriting and all That . Cambridge
University Press, 1998.

3. F. Bacchus. Representing and reasoning with probabilistic knowledge. MIT-Press,
1990.

4. Gianfranco Balbo. Introduction to stochastic Petri nets. Lecture Notes in Computer
Science, 2090:84, 2001.

5. Benveniste, Levy, Fabre, and Le Guernic. A calculus of stochastic systems for
the specification, simulation, and hidden state estimation of mixed stochastic/non-
stochastic systems. TCS: Theoretical Computer Science, 152, 1995.

6. A. Bergstra and J.V. Tucker. A characterisation of computable data types by means
of a finite equational specification method. In Springer Verlag, editor, Automata
Languages and Programming, Seventh Colloquium, Lecture Notes in Computer Sci-
ence, pages 76–90, 1980.

7. P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and Ch. Ringeissen. An
Overview of ELAN. In C. Kirchner and H. Kirchner, editors, Second Workshop on

Rewriting Logic and its Applications WRLA’98, volume 15 of Electronic Notes in
Theoretical Computer Science, Pont-à-Mousson (France), 1998. Elsevier Science B.
V. URL: http://www.elsevier.nl/locate/entcs/volume15.html.

8. Olivier Bournez and Claude Kirchner. Probabilistic rewrite strategies: Applications
to ELAN. In Sophie Tison, editor, Rewriting Techniques and Applications, volume
2378 of Lecture Notes in Computer Science, pages 252–266. Springer-Verlag, July
22-24 2002.

9. Pierre Brémaud. Markov Chains. Springer, 1991.
10. C. Castro. Solving Binary CSP using Computational Systems. In J. Meseguer,

editor, Proceedings of 1st International Workshop on Rewriting Logic, volume 4,
Asilomar (CA, USA), September 1996. Electronic Notes in Theoretical Computer
Science.

11. M. Clavel, F. Durán, S. Eker, J. Meseguer P. Lincoln, N. Mart́ı-Oliet, and J.F.
Quesada. Towards Maude 2.0. In 3rd International Workshop on Rewriting Logic
and its Applications (WRLA’00), volume 36 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2000.

12. Pedro R. D’Argenio, Holger Hermanns, and Joost-Pieter Katoen. On generative
parallel composition. In Electronic Notes In Computer Science, volume 22, 1999.

13. L. De Alfaro. Stochastic transition systems. Lecture Notes in Computer Science,
1466:423, 1998.

14. Thom Frühwirth, Alexandra Di Pierro, and Herbert Wiklicky. Toward probabilis-
tic constraint handling rules. In Slim Abdennadher and Thom Frühwirth, editors,
Proceedings of the third Workshop on Rule-Based Constraint Reasoning and Pro-
gramming (RCoRP’01), Paphos, Cyprus, December 2001. Under the hospice of the
International Conferences in Constraint Programming and Logic Programming.

15. Joseph Y. Halpern. Discourse, Interaction, and Communication, chapter A logical
approach to reasoning about uncertainty: a tutorial, pages 141–55. Kluwer, 1998.

16. H. Hansson. Time and Probability in Formal Design of Distributed Systems. Series
in Real-Time Safety Critical Systems. Elsevier, 1994.

17. Mathieu Hoyrup. Réécriture en présence de choix probabilistes. Master’s thesis,
Ecole Normale Supérieure de Lyon, 2002.

18. Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic: Roadmap and bibliogra-
phy. Theoretical Computer Science, 285(2):121–154, 2002.

19. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

20. Alessandra Di Pierro and Herbert Wiklicky. An operational semantics for prob-
abilistic concurrent constraint programming. In Proceedings of the 1998 Interna-
tional Conference on Computer Languages, pages 174–183. IEEE Computer Society
Press, 1998.

21. B. Plateau and K. Atif. Stochastic automata network for modelling parallel sys-
tems. IEEE Transactions on Software Engineering, 17:1093–1108, 1991.

22. M.L. Puternam. Markov Decision Processes - Discrete Stochastic Dynamic Pro-
gramming. Wiley series in probability and mathematical statistics. John Wiley &
Sons, 1994.

23. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Lec-
ture Notes in Computer Science, 836:481, 1994.

24. Rob van Glabbeek, Scott A. Smolka, Bernhard Steffen, and Chris M. N. Tofts.
Reactive, generative, and stratified models of probabilistic processes. In Proceed-
ings, Fifth Annual IEEE Symposium on Logic in Computer Science, pages 130–141,
Philadelphia, Pennsylvania, 4–7 June 1990. IEEE Computer Society Press.

