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Laurent Bienvenu1, Adam Day2, Mathieu Hoyrup3, Ilya Mezhirov4, and
Alexander Shen5?

1 LIAFA, CNRS & Université de Paris 7, France,
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Abstract. We prove the effective version of Birkhoff’s ergodic theorem
for Martin-Löf random points and effectively open sets, improving the re-
sults previously obtained in this direction (in particular those of V. Vyu-
gin, Nandakumar and Hoyrup, Rojas). The proof consists of two steps.
First, we prove a generalization of Kučera’s theorem that is a special
case of effective ergodic theorem: a trajectory of a computable ergodic
mapping that starts from a random point cannot remain inside an ef-
fectively open set of measure less than 1. Second, we show that the full
statement of the effective ergodic theorem can be reduced to this special
case. Both steps use the statement of classical ergodic theorem but not
its proof, so we get a new simple proof of effective ergodic theorem (with
weaker assumptions than before).

This result was recently obtained independently by Franklin, Greenberg,
Miller and Ng.

1 Introduction

The classical setting for the ergodic theorem is as follows. Let X be a space with
a probability measure µ on it, and let T : X → X be a measure-preserving trans-
formation. Let f be a real-valued integrable function on X. Birkhoff’s ergodic
theorem (see for example [Shi96]) says that the average value

f(x) + f(T (x)) + f(T (T (x))) + . . .+ f(T (n−1)(x))
n

has a limit (as n → ∞) for all x except for some null set, and this limit (the
“time-average”) equals the “space average”

∫
f(x) dµ(x) if the transformation T

is ergodic (i.e., has no non-trivial invariant subsets).
? Supported by ANR Sycomore, NAFIT ANR-08-EMER-008-01, RFBR 09-01-00709-a
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The classical example of an ergodic transformation is the left shift on Cantor
space Ω (the set of infinite binary sequences, denoted also by 2N or 2ω):

σ(ω0ω1ω2 . . .) = ω1ω2 . . .

Left shift preserves Lebesgue measure (a.k.a. uniform measure) µ on Ω and is
ergodic. Therefore, the time and space averages coincide for almost every starting
point x. For a special case where f is an indicator function of some (measurable)
set A, we conclude that almost surely (for all x outside some null set) the fraction
of terms in the sequence

x, σ(x), σ(σ(x)), . . .

that are inside A, converges to the measure of A.

It is natural to ask whether Birkhoff ergodic theorem has a effective version
for individual points saying that for a Martin-Löf random starting point the
time average coincides with the space average (under some effectivity assump-
tions for the space and the transformation). This question was posed by van
Lambalgen [vL87] and answered by Vyugin [Vyu97] who proved this statement
for the case of computable function f . The result was later extended to larger
classes of functions [Nan08,HR09b]. However, we cannot directly apply these
results to an indicator function of an effective open set since this function is not
computable (but only lower semicomputable). So for effectively open sets (and
lower semicomputable functions) the question remained open.6

In this paper we answer this question and show that effective ergodic theo-
rem remains true for effectively open sets and lower semicomputable funcitons
(Section 3). The proof goes in several steps.

First, in Section 2 we consider the following corollary of Birkhoff’s ergodic
theorem: if A has positive measure, for almost every starting point at least one
element of the trajectory belongs to A. Switching to complements: if A has
measure less than 1, then (almost surely) some points in the trajectory are out-
side A. An effective version of this statement (for effectively open sets of measure
less than 1 and left shifts in Cantor space) was proved by Kučera [Kuč85]. We
reproduce Kučera’s proof and prove several similar statements. (Most of them
are consequences of the general results of Section 3, so the direct proofs are
redundant, but they are nice and simple.)

Then in Section 3 we consider the general effective ergodic theorem. In Sec-
tion 3.1 we prove a general version of Kučera’s theorem for computable ergodic
transformations of Cantor space. Then (Section 3.2) we show how the effective
version of ergodic theorem for effectively open sets and lower semicomputable
function can be reduced to classical Birkhoff’s ergodic theorem and the gen-
eral version of Kučera’s theorem proved in Section 3.1. Finally, we outline the
generalization of these results to other probability spaces (Section 3.3).

In Section 4 we use the results of Section 2 to provide a simple proof of
Miyabe’s theorem (a generalized version of van Lambalgen’s theorem).
6 It was proved in [HR09b] that the result holds for any effectively open set whose

measure is computable.



The results of Sections 2 and 4 were presented at the Computability in Europe
conference (and published in its proceedings [BDMS10]). After that one of us
(M.H.) found that one can go further and reduce the general effective version
of Birkhoff’s ergodic theorem for effectively open sets to this special case. The
same approach was suggested independently in [FGMN10].

2 Variations of Kučera’s theorem

In this section, we prove several variants of Kučera’s theorem. Let us first re-
call the original version proved in [Kuč85]. Let σ be a left shift in Cantor space
(which is an ergodic transformation of this space equipped with uniform mea-
sure). Effectively open subsets of Cantor space are unions of enumerable families
of intervals.

Theorem 1. If A is an effectively open subset of Cantor space of measure less
than 1, then for every Martin-Löf random sequence ω at least one of its tails ω,
σ(ω), σ(σ(ω)),. . . does not belong to A.

Recalling the definition of Martin-Löf randomness (a sequence is random if
it is outside any effectively null set) we can reformulate Kučera’s theorem as
follows:

Let A be an effectively open set of measure less than 1. Consider the set
A∗ of all sequences ω such that every tail σ(n)(ω) belongs to A. Then A∗

is an effectively null set.

Before presenting the proof, let us mention an interpretation of this result.
Recall that the universal Martin-Löf test is a computable sequence U1, U2, . . .
of effectively open sets such that µ(Ui) ≤ 1/2i and the intersection ∩iUi is the
maximal effectively null set, i.e., the set of all non-random sequences. Kučera’s
theorem shows that randomness can be (in a paradoxical way) characterized by
U1 alone: a sequence is non-random if and only if all its tails belong to U1. (In
one direction it is Kučera’s theorem, in the other direction we need to note that
a tail of a non-random sequence is non-random.)

Proof (of Kučera’s theorem). We start with the following observation: it is
enough to show that for every interval I, we can uniformly construct an ef-
fectively open set J ⊂ I that contains I ∩ A∗ and such that µ(J) ≤ rµ(I) for
some fixed r < 1 (here we call an interval any set of type xΩ, where x is some
finite string, which is the set of infinite binary sequences that start with x). Then
we represent the effectively open set A of measure r < 1 as a union of disjoint
intervals I1, I2, . . ., construct the sets Ji for every Ii and note that the union A1

of all Ji is an effectively open set that contains A∗ and has measure r2 or less.
Splitting A1 into disjoint intervals and repeating this argument, we get a set A2

of measure at most r3, etc. In this way we get a effectively open cover for A∗ of
arbitrarily small measure, so A∗ is an effectively null set.



It remains to show how to find J given I. The interval I consists of all
sequences that start with some fixed prefix x, i.e., I = xΩ. Since sequences in
A∗ have all their tails in A, the intersection I ∩ A∗ is contained in xA, and the
latter set has measure rµ(I) (where r = µ(A)). ut

Note that this proof also shows the following: suppose A is an effectively
open set of measure less than 1, and A can be written as a disjoint union of
intervals A = x1Ω∪ x2Ω∪ . . .. Let ω be an infinite sequence that can be written
as ω = w1w2w3 . . . where for all i, wi = xj for some j. Then ω is not random. (If
A contains all non-random sequences, the reverse implication is also true, and
we get yet another criterion of randomness.)

2.1 Effective Kolmogorov 0-1 law

Trying to find characterizations of randomness similar to Kučera’s theorem, one
may look at Kolmogorov’s 0-1-law. It says that any measurable subset A of the
Cantor space that is stable under finite changes of bits (i.e. if ω ∈ A and ω′

is equal to ω up to a finite change of bits, then ω′ ∈ A) has measure 0 or 1.
It can be reformulated as follows: let A be a (measurable) set of measure less
than 1. Consider the set A∗ defined as follows: ω ∈ A∗ if and only if all sequences
that are obtained from ω by changing finitely many terms, belong to A. Then
A∗ has measure zero (indeed, A∗ is stable under finite changes and cannot have
measure 1). Note also that we may assume without loss of generality that A is
open (replacing it by an open cover of measure less than 1).

A natural effective version of Kolmogorov’s 0-1-law can then be formulated
as follows. (In fact, this statement was considered and proved by Kučera but
was not explicitly mentioned in [Kuč85].)

Theorem 2. Let A be an effectively open set of measure r < 1. Consider the
set A∗ of all sequences that belong to A and remain in A after changing finitely
many terms. Then A∗ is an effectively null set.

(As we have seen, the last two sentences can be replaced by the following claim:
any Martin-Löf random sequence can be moved outside A by changing finitely
many terms.)

Proof. To prove this effective version of the 0-1-law, consider any interval I. As
before, we want to find an effectively open set U ⊂ I that contains A∗ ∩ I and
has measure at most rµ(I). Let x be a prefix that defines I, i.e., I = xΩ. For
every string y of the same length as x, consider the set Ay = {ω | yω ∈ A}.
It is easy to see that the average measure of Ay (over all y of a given length)
equals µ(A) = r. Therefore, the set B =

⋂
y Ay (which is effectively open as

an intersection of an effectively defined finite family of open sets) has measure
at most r. Now take U = xB. Let us show that U is as wanted. First U is
an effectively open set, contained in I, and of measure rµ(I). Also, it contains
every element of A∗ ∩ I. Indeed, if α ∈ A∗ ∩ I, x is a prefix of α, so one can
write α = xβ. Since α ∈ A∗, any finite variation of α is in A, so for all y of the



same length as x, yβ ∈ A. Therefore, β is in all Ay, and therefore is in B. Since
α = xβ, it follows that α is in xB = U . ut

2.2 Adding prefixes

We have considered left shifts (deletion of prefixes) and finite changes. Another
natural question is about adding finite prefixes. It turns out that a similar result
can be proven in this case (although the proof becomes a bit more difficult).

Theorem 3. Let A be an effectively open set of measure r < 1. Let A∗ be the
set of all sequences ω such that xω ∈ A for every binary string x. Then A∗ is
an effectively null set.

(Reformulation: for every Martin-Löf random sequence ω there exists a string
x such that xω /∈ A.)

Proof. To prove this statement, consider again some interval I = xΩ. We want
to cover A∗ ∩ I by an effectively open set of measure rµ(I). (In fact, we get a
cover of measure sµ(I) for some constant s ∈ (r, 1), but this is enough.) Consider
some string z. We know that the density of A∗ in I does not exceed the density
of A in zI = zxΩ. Indeed, xω ∈ A∗ implies zxω ∈ A by definition of A∗.

Moreover, for any finite number of strings z1, . . . , zk the set A∗ is contained
in the intersection of sets {ω | ziω ∈ A}, and the density of A∗ in I is bounded
by the minimal (over i) density of A in ziI = zixΩ.

Now let us choose z1, . . . , zk in such a way that the intervals zixΩ are disjoint
and cover Ω except for a set of small measure. This is possible for the same
reason as in a classic argument that explains why the Cantor set in [0, 1] has
zero measure. We start, say, with z1 = Λ and get the first interval xΩ. The rest
of Ω can be represented as a union of disjoint intervals, and inside each interval
uΩ we select a subinterval uxΩ thus multiplying the size of the remaining set by
(1 − 2−|x|). Since this procedure can be iterated indefinitely, we can make the
rest as small as needed.

Then we note that the density of A in the union of disjoint intervals (and this
density is close to r if the union covers Ω almost entirely) is greater than or equal
to the density of A in one of the intervals, so the intersection (an effectively open
set) has density at most s for some constant s ∈ (r, 1), as we have claimed. (We
need to use the intersection and not only one of the sets since our construction
should be effective even when we do not know for which interval the density is
minimal.) ut

2.3 Bidirectional sequences and shifts

Recall the initial discussion in terms of ergodic theory. In this setting it is more
natural to consider bi-infinite binary sequences, i.e., mappings of type Z→ B =
{0, 1}; the uniform Bernoulli measure µ can be naturally defined on this space,
too. On this space the transformation T corresponding to the shift to the left is
reversible: any sequence can be shifted left or right.

The result of Theorem 1 remains true in this setting.



Theorem 4. Let A be an effectively open set of measure r < 1. The set A∗ of all
sequences that remain in A after arbitrary shift (any distance in any direction)
is an effectively null set.

To prove this statement, consider any s ∈ (r, 1). As usual, it is enough to find
(effectively) for every interval Ix an effectively open subset of Ix that contains
A∗∩Ix and has measure at most sµ(Ix). Here x is a finite partial function from Z
to B and Ix is the set of all its extensions. (One may assume that x is contiguous,
since every other interval is a finite union of disjoint contiguous intervals, but
this is not important for us.) Then we may iterate this construction, replacing
each interval of an effectively open set by an open set inside this interval, and
so on until the total measure (sk, where k is the number of iterations) becomes
smaller than any given ε > 0.

Assume that some Ix is given. Note that A∗ is covered by every shift of A,
so any intersection of Ix with a finite collection of shifted versions of A (i.e. sets
of type Tn(A) for n ∈ Z) is a cover for Ix ∩ A∗. It remains to show that the
intersection of properly chosen shifts of A has density at most s inside Ix. To
estimate the measure of the intersection, it is enough to consider the minimum of
measures, and the minimum can be estimated by estimating the average measure.

More formally, we first note that by reversibility of the shift and the invari-
ance of the measure, we have

µ
(
Ix ∩ T−n(A)

)
= µ

(
A ∩ Tn(Ix)

)
for all n. Then we prove the following lemma:

Lemma 1. Let J1, . . . , Jk be independent intervals of the same measure d cor-
responding to disjoint functions x1, . . . , xk of the same length. Then the average
of the numbers

µ(A ∩ J1), . . . , µ(A ∩ Jk)

does not exceed sd if k is large enough. Moreover such a k can be found effectively.

Proof (of Lemma 1). The average equals

1
k

∑
i

E(χA · χi)

where χA is the indicator function of A and χi is the indicator function of Ji.
Rewrite this as

E

(
χA ·

1
k

∑
i

χi

)
,

and note that
1
k

∑
i

χi

is the frequency of successes in k independent trials with individual probability d.
(Since the functions xi are disjoint, the corresponding intervals Ji are indepen-
dent events.) This frequency (as a function on the bi-infinite Cantor space) is



close to d everywhere except for a set of small measure (by the central limit
theorem; in fact Chebyshev’s inequality is enough). The discrepancy and the
measure of this exceptional set can be made as small as needed using a large k,
and the difference is then covered by the gap between r and s. This ends the
proof of the lemma.

Now, given an interval Ix, we cover Ix ∩ A∗ as follows. First, we take a
integer N larger than the size of the interval Ix. The intervals

TN (Ix), T 2N (Ix), T 3N (Ix), . . .

are independent and have the same measure as Ix, so we can apply the above
lemma and effectively find a k such that the average of

µ(A ∩ TN (Ix)), . . . , µ(A ∩ T kN (Ix))

does not exceed sµ(Ix). This means that for some i ≤ k one has

µ(Ix ∩ T−iN (A)) = µ(A ∩ T iN (Ix)) ≤ sµ(Ix)

Therefore, Ix ∩
⋂
i≤k T

−iN (A) is an effectively open cover of A∗ of measure at
most sµ(Ix). ut

The statement can be strengthened: we can replace all shifts by any infinite
enumerable family of shifts.

Theorem 5. Let A be an effectively open set (of bi-infinite sequences) of mea-
sure α < 1. Let S be an computably enumerable infinite set of integers. Then the
set

A∗ = {ω | ω remains in A after shift by s, for every s ∈ S}
is an effectively null set.

(Reformulation: let A be an effectively open set of measure less than 1; let
S be an infinite computably enumerable set of integers; let α be a Martin-Löf
random bi-infinite sequences. Then there exists s ∈ S such that the s-shift of ω
is not in A.)

Proof. The proof remains the same: indeed, having infinitely many shifts, we
can choose as many disjoint shifts of a given interval as we want. ut

The argument used to prove Theorem 4 (and Theorem 5) is more complicated
than the previous ones (that do not refer to the central limit theorem): previously
we were able to use disjoint intervals instead of independent ones. In fact the
results about shifts in unidirectional sequences (both) are corollaries of the last
statement. Indeed, let A be an effectively open set of right-infinite sequences
of measure less than 1. Let ω be a right-infinite Martin-Löf random sequence.
Then it is a part of a bi-infinite random sequence ω̄ (one may use, e.g., van
Lambalgen’s theorem [vL87] on the random pairs, see Section 4 for a precise
statement). So there is a right shift that moves ω̄ outside Ā, and also a left shift
with the same property (here by Ā we denote the set of bi-infinite sequences
whose right halves belong to A).



3 A generalization to all ergodic transformations

3.1 Generalizing Kučera’s theorem

First let us recall the notion of a computable transformation of Cantor space Ω.
Consider a Turing machine with a read-only input tape and write-only output
tape (where head prints a bit and moves to the next blank position). Such
a machine determines a computable mapping of Ω into the space of all finite
and infinite binary sequences. Restricting this mapping to the inputs where the
output sequence is infinite, we get a (partial) computable mapping from Ω into Ω.

Theorem 6. Let µ be a computable measure on Ω. Let T : Ω → Ω be a partial
computable, almost everywhere defined, measure-preserving, ergodic transforma-
tion of Ω. Let A be an effectively open subset of Ω of measure less than 1. Let
A∗ be the set of points x ∈ X such that Tn(x) ∈ A for all n ≥ 0. Then, A∗ is
an effectively null set.

Proof. Let r be a real number such that µ(A) < r < 1. As before, given an inter-
val I, we want to (effectively) find an n such that I ∩

⋂
i≤n T

−i(A) has measure
at most rµ(I). This gives us an effectively open cover of A∗ ∩ I having measure
at most rµ(I); iterating this process, we conclude that A∗ is an effectively null
set.

(A technical clarification is needed here. If we consider T only on inputs
where the output sequence is infinite, the set T−1(A) (and in general T−i(A)) is
no more open in Ω. But since T is almost everywhere defined, we may extend T
to the space of finite and infinite sequence in a natural way and get an effectively
open cover of the same measure.)

To estimate µ(I∩
⋂
i≤n T

−i(A)), we note that it does not exceed the minimal
value of µ(I∩T−i(A)), which in its turn does not exceed the average (over i ≤ n)
of µ(I ∩ T−i(A)). This average,

1
n+1

[
µ(I ∩A) + µ(I ∩ T−1(A)) + . . .+ µ(I ∩ T−n(A))

]
(∗)

can be rewritten as

1
n+1

[
µ(T−n(I) ∩ T−n(A)) + µ(T−(n−1)(I) ∩ T−n(A)) + . . .+ µ(I ∩ T−n(A))

]
since T is measure preserving. The latter expression is the scalar product of the
indicator function of T−n(A) and the average an = (χ0+ . . .+χn)/(n+1), where
χi is the indicator function of T−i(I).

As n → ∞, the average an converges in L2 to the constant function µ(I),
due to von Neumann’s mean ergodic theorem. By Cauchy–Schwarz inequality,
this implies that the scalar product converges to µ(A)µ(I) and therefore does
not exceed rµ(I) for n large enough.

It remains to (effectively) find a value of n for which the L2-distance between
an and the constant µ(I) is small. Note that for all i the set T−i(I) is an
effectively open set of measure µ(I) (recall that T is measure preserving), and



µ(I) is computable since µ is a computable measure. Therefore, for any i and
ε > 0, one can uniformly approximate T−i(I) by its subset U that is a finite
union of intervals such that µ(T−i(I) \U) < ε. This means that the L2-distance
between an and the constant function µ(I) can be computed effectively, and
we can wait until we find a term with any precision needed. In particular, we
can effectively find an n such that the average (∗) is less than r. By the above
discussion, we then have µ(I ∩

⋂
i≤n T

−i(A)) < rµ(I), as needed. ut

Now we get all the theorems of Section 2 (except for Theorem 5) as corollaries:
the effective ergodic theorem for the bidirectional shift (Theorem 4) immediately
follows as the bidirectional shift is clearly computable, measure-preserving and
ergodic (technically we proved Theorem 6 only for the Cantor space Ω, but
the space of functions Z → B on which the bidirectional shift is defined, is
computably isomorphic to Ω). Recalling the discussion in Section 2.3, we see
also that one can derive both Theorem 1 (Kučera’s theorem for deletion of finite
prefixes) and Theorem 3 (addition of finite prefixes) from Theorem 6.

It turns out that even Theorem 2 (finite change of bits) can be proven in this
way. Indeed, let us consider the map F defined on Ω by:

F (1n0ω) = 0n1ω for all n, and F (11111 . . .) = 00000 . . .

(F adds 1 to the sequence in the dyadic sense). It is clear that F is computable
and measure-preserving. That it is ergodic comes from Kolmogorov’s 0-1 law,
together with the observation that any two binary sequences ω, ω′ that agree on
all but finitely many bits are in the same orbit: ω′ = Fn(ω) for some n ∈ Z.
The reverse is also true except for the case when sequences have finitely many
zeros or finitely many ones. This cannot happen for a random sequence, so this
exceptional case does not prevent us to derive Theorem 2 from Theorem 6.

Remark 1. Theorem 5 asserts that given a random ω, and a c.e. open set U ,
there exists an n such that Tn(ω) /∈ U (where T is the shift in the space of
bidirectional sequences), and that moreover n can be found in a computable
enumerable set fixed in advance. This of course still holds for the unidirectional
shift on Ω, but this does not hold for all ergodic maps. Indeed, this fact is related
to the so-called strong mixing property of the shift, which not all ergodic maps
have. For example, a rotation of the circle by a computable irrational angle α
(i.e., a mapping x 7→ x + α mod 1 on [0, 1] = Ω) is a computable ergodic map
that does not have this property, and it is easy to construct a counterexample
to the claim of Theorem 5.

3.2 An effective version of Birkhoff’s ergodic theorem

The generalization of Kučera’s theorem we proved in the previous section (The-
orem 6) is only a weak form of ergodic theorem. It asserts that under the action
of a computable ergodic map, the orbit of a Martin-Löf point will intersect any
given effectively closed set of positive measure, but it does not say anything
about the frequency. This is what we achieve with the next theorem (as we have



mentioned, during the preparation of the present paper this result was indepen-
dently obtained by Franklin, Greenberg, Miller and Ng [FGMN10]).

Theorem 7. Let µ be a computable measure on Ω. Let T : Ω → Ω be a com-
putable almost everywhere defined µ-preserving ergodic transformation. Let X be
an effectively open set. For every Martin-Löf random point ω,

lim
n→∞

1
n

n−1∑
k=0

χX(T k(ω)) = µ(X).

Note that the statement is symmetric, so the same is true for an effectively
closed set X.

Proof. Let gn(ω) = 1
n

∑n−1
k=0 χX(T k(ω)) be the frequency of X-elements among

the first n iterations of ω. Let us first prove that lim sup gn(ω) ≤ µ(X). Then we
show (see part (2) below) that lim inf gn(ω) ≥ µ(X).

(1) Let r > µ(X) be some rational number and let

GN = {ω : (∃n ≥ N) gn(ω) > r}

be the set of points where some far enough frequency (average of at least N
terms) exceeds r. The set GN is an effectively open set; indeed, the functions
gn are lower semicomputable (uniformly in n), hence the condition gn(ω) >
r is enumerable. The sets GN form a decreasing sequence. We know by the
classical Birkhoff’s pointwise ergodic theorem that µ(

⋂
N GN ) = 0, since the

sequence of functions gn converges to µ(X) < r µ-almost everywhere,. As a
result, there exists N such that µ(GN ) < 1. We can thus apply Theorem 6 to this
GN and conclude that for every Martin-Löf random ω there exists k such that
T k(ω) /∈ GN . Hence lim supn gn(T k(ω)) ≤ r. Since finite number of iterations
does not change lim sup, we conclude that lim sup gn(ω) ≤ r. The number r was
an arbitrary rational number greater than µ(X), so lim inf gn(ω) ≥ µ(X).

(2) We now prove that lim inf gn(ω) ≥ µ(X). This in fact can be deduced
from the first part of the proof. The set X is open, so it is a countable union
of disjoint intervals. Taking a finite part of this countable union, we get an
effectively closed set X ′ ⊂ X and can apply the previous statement to its com-
plement. It says that the orbit of a Martin-Löf random point ω will be in X ′ with
frequency at least µ(X ′) (the upper bound for the complement of X ′ means a
lower bound for X ′). Since µ(X ′) can be arbitrarily close to µ(X), we conclude
that lim inf gn(ω) ≥ µ(X). ut

Remark 2. The inequality lim inf gn(ω) ≥ µ(X) can actually be derived from
the algorithmic version of Birkhoff’s theorem proved by V’yugin [Vyu97], since
X ′ is open and closed set, but it is easier to refer to the first part of the proof.
Note also that in this direction we do not need effectivity: lim inf gn(ω) ≥ µ(X)
for every open set X and every Martin-Löf random point ω. Of course the other
inequality generally fails for (non-effectively) open sets: indeed, the orbit of every
point ω can be enclosed in a (non-effectively) open set of small measure.



Theorem 7 extends to a larger class of sets in a straightforward way. We say
that a set A is effectively µ-approximable if µ(A) = sup{µ(F ) : F effectively
closed and F ⊆ A} = inf{µ(G) : G effectively open and A ⊆ G}. For instance,
any ∆0

2-set is effectively µ-approximable.

Corollary 1. Let X ⊂ Ω be an effectively µ-approximable set. For every Martin-
Löf µ-random ω, lim 1

n (χX(ω) + . . .+ χX(Tn−1(ω))) = µ(X).

Proof. For every ε > 0 we can apply Theorem 7 to the upper and lower ε-
approximations of X; the frequency for X is between them. ut

Theorem 7 can also be extended a wider class of functions than characteristic
functions of sets.

Theorem 8. Let f : Ω→ [0,+∞] be lower semicomputable. For every Martin-
Löf random ω,

lim
n→∞

1
n

n−1∑
k=0

f(T k(ω)) =
∫
f dµ.

Note that we allow the integral to be infinite; in this case the sequence in the
left-hand side has limit +∞.

Proof. Let f be a lower semicomputable function with a finite integral. Let
fn = 1

n (f + . . .+ f ◦ Tn−1). Let r >
∫
f dµ be a rational number and

GN = {ω : (∃n ≥ N) fn(ω) > r}.

The set GN is an effective open set and µ(
⋂
N GN ) = 0 as fn(ω) →

∫
f dµ < r

for µ-almost every ω (by the classical version of Birkhoff’s ergodic theorem). As
a result, there exists N such that µ(GN ) < 1. By Theorem 6, if ω is Martin-Löf
random then there exists k such that T k(ω) /∈ GN . Hence lim sup fn(T k(ω)) ≤ r,
and lim sup fn(ω) = lim sup fn(T k(ω)) ≤ r. Since r >

∫
f dµ can be arbitrarily

close to the integral, we have that lim sup fn(ω) ≤
∫
f dµ.

It remains to prove that lim inf fn(ω) ≥
∫
f dµ. This is true for every lower

semicontinuous f . Indeed, consider some lower bound for f that is a basic func-
tion (a linear combination of indicators of intervals). For these basic functions the
statement of the theorem is true (as we already know), and their integrals can be
arbitrarily close to

∫
f dµ. (This argument works also for the case

∫
f dµ = +∞.)

ut

Theorem 8 is, to the extent of our knowledge, the strongest form of effective
ergodic theorem proven so far. In particular, it strengthens the results that ap-
peared in [Vyu97,Nan08,HR09b]. We will see in the next section that it can even
be extended a bit further, namely to other spaces than Ω and to ergodic maps
that are only “weakly computable” (in a sense which we will explain below).

But let us mention first an interesting consequence of Theorem 8. Recall that
the randomness deficiency of a sequence ω is defined as

dµ(ω) = sup
n
{− logµ[ω0 . . . ωn−1]−K(ω0 . . . ωn−1)}



where K(w) is the (prefix) Kolmogorov complexity of w.
The Levin-Schnorr theorem provides the following characterization: a se-

quence ω is Martin-Löf random with respect to µ if and only if dµ(ω) is finite.
Moreover, tµ := 2dµ is a universal randomness test in the sense that it is lower
semicomputable, µ-integrable, and for every lower semicomputable µ-integrable
f : Ω→ [0,+∞] there exists c such that f ≤ ctµ.

For a computable µ-preserving mapping T it is already known that if ω
is Martin-Löf random, then so are T (ω), T 2(ω), etc. Theorem 8 applied to tµ
yields a stronger result for the case of ergodic T : not only the values tµ(ω),
tµ(T (ω)), tµ(T 2(ω)), etc. are finite, but also their average is bounded. In this
sense, the iterates of a random point are “random in the average”. It is still an
open problem whether this still holds in the non-ergodic case.

3.3 A final generalization: computable probability spaces
and layerwise computable functions

We now briefly present two “orthogonal” ways in which the previous results
can be extended to other contexts. On the one hand, the algorithmic theory of
randomness has been extended from the Cantor space to any computable metric
space, where the computability of probability measures is now well understood.
All the results presented above extend to such spaces. On the other hand, on
the Cantor space as well as any computable metric space, the computability
assumption on the mapping T can be weakened into layerwise computability
introduced in [HR09a]. Intuitively, this weakening corresponds in analysis to
replacing continuity with measurability.

The first generalization can be carried out in two ways: the proof on the
Cantor space can generally be adapted to any computable probability space, or
the isomorphism between such spaces (see [HR09c]) can be used to transfer the
result without proving it again. The second generalization is also rather direct:
replacing computability notions with their “layerwise” counterparts generally
leaves the proofs correct. Caution is sometimes needed and appropriate lemmas
then have to be used (especially regarding composition of functions).

We now give a brief overview of the aforementioned concepts. More details
can be found in [Gác05,HR09c,HR09b].

The algorithmic theory of randomness has been extended from the Cantor
space to any computable metric space, i.e. any separable metric space with a
distinguished dense countable set on which the metric is computable. A com-
putable probability space is such a space X, endowed with a computable Borel
probability measure µ. A universal Martin-Löf test always exist on such spaces,
and induces a canonical decomposition of the set of Martin-Löf random points
Rµ =

⋃
nRµn with Rµn ⊆ R

µ
n+1 and µ(Rµn) > 1 − 2−n (namely, Rµn is the com-

plement in X of the n-th level of a universal µ-Martin-Löf test). Using this
decomposition, one can weaken many computability notions, starting with the
notion of a computable function: we say that a function f : X → Y (where Y
is a computable metric space) is µ-layerwise computable if it is computable on



each Rµn (uniformly in n)7. Such a function may be discontinuous, but is still
continuous on each Rµn, which is a totally disconnected set. It turns out that
this notion admits a characterization in terms of effective measure theory.

Observe that µ-layerwise computability of real-valued functions is closed un-
der basic operations such as sum, product, multiplication by a computable real
number, and absolute value. Composition does not automatically preserve layer-
wise computability without an assumption on the preservation of the measure. If
f : X → [−∞,+∞] and T : X → X are µ-layerwise computable and T preserves
µ, then f ◦ T is µ-layerwise computable. If, moreover, f is bounded, then

∫
f dµ

is computable, uniformly in f and a bound on f . In particular, ‖f‖1 and ‖f‖2
are computable.

The main reason for which layerwise computability fits well with Martin-
Löf randomness is that Martin-Löf random points pass a class of tests that is
wider than the usual Martin-Löf tests: the tests that, on each Rµk , “look like”
Martin-Löf tests.

Lemma 2. Let An ⊆ X be such that there exist uniformly effective open sets
Un,k such that An ∩ Rµk = Un,k ∩ Rµk . If µ(An) < 2−n for all n, then every
µ-random point is outside

⋂
nAn. Moreover there is c such that Rµn ∩An+c = ∅

for all n.

Proof. Let Vn = Un,n ∪ (X \ Rµn): Vn is a Martin-Löf test and An ⊆ Vn.

Let us show how to adapt a part of the proof of Theorem 6 to computable
probability spaces and µ-layerwise computable mappings.

Theorem 9. Let (X,µ) be a computable probability space. Let T : X → X be
µ-layerwise computable, measure-preserving, ergodic transformation of X. Let A
be an effectively open subset of X of measure less than 1. For every µ-random
point x, there exists n such that Tn(x) /∈ A.

Proof (Sketch). The proof is essentially the same as that of Theorem 6. The only
differences are: adapting the notion of cylinder; using properties of layerwise
computability; using Lemma 2. ut

A computable probability space always admits a basis of metric balls with
computable centers and radii, whose borders have null measure. These balls
correspond in a sense to the cylinders of the Cantor space: for instance their
measures are computable. Let then B = B(x, r) be a metric ball with computable
center and radius, such that µ({y : d(x, y) = r}) = 0. Then µ(B) is computable,
χB is µ-layerwise computable and for all n the function fn := 1

n

∑n−1
k=0 χB ◦ T k

is µ-layerwise computable, uniformly in n. As a result, the L2-norms of the
functions fn − µ(B) are all uniformly computable. Hence we can effectively find
n such that µ(B ∩

⋂
i≤n T

−i(A)) < rµ(B).

7 When X = Y = Ω, it means that there is a Turing machine that on input n and
oracle x ∈ Rµ

n progressively writes f(x) on the output tape. The machine does not
need to behave well when x /∈ Rµ

n.



In the proof of Theorem 6, the computability of T implied thatB∩
⋂
i≤n T

−i(A)
was effectively open. Assuming that T is µ-layerwise computable, the set B ∩⋂
i≤n T

−i(A) is effectively open on every Rµk . We end up with a test as in
Lemma 2 enclosing

⋂
n T
−n(A), which implies the result. ut

In the same way, Theorems 7 and 8 are true for computable probability spaces
and for µ-layerwise computable mappings T . In Theorem 8, the function f can
be assumed to be µ-layerwise lower semicomputable.

4 An application: the generalized van Lambalgen’s
theorem

The celebrated van Lambalgen theorem [vL87] asserts that in the probability
space Ω2 (pairs of binary sequences with independent uniformly distributed
components) a pair (ω0, ω1) is random if and only if ω0 is random and ω1 is
ω0-random (random relative to the oracle ω0). This can be easily generalized
to k-tuples: an element (ω0, ω1, . . . , ωk−1) of Ωk is random if and only if ω0 is
random and ωi is (ω0, . . . , ωi−1)-random for all i = 1, 2 . . . , k− 1. Can we gener-
alize this statement to infinite sequences? Not completely: there exists an infinite
sequence (ωi)i∈N such that ω0 is random and ωi is (ω0, . . . , ωi−1)-random for all
i ≥ 1 and nevertheless (ωi)i∈N is non-random as an element of ΩN. To construct
such an example, take a random sequence in ΩN and then replace the first i bits
of ωi by zeros.

Informally, in this example all ωi are random, but their “randomness de-
ficiency” increases with i, so the entire sequence (ωi) is not random (in ΩN).
K. Miyabe [Miy] has shown recently that one can overcome this difficulty allow-
ing finitely many bit changes in each ωi (number of changed bits may depend
on i):

Theorem 10 (Miyabe). Let (ωi)i∈N be a sequence of elements of Ω such that
ω0 is random and ωi is (ω0, . . . , ωi−1)-random for all i ≥ 1. Then there exists a
sequence (ω′i)i∈N such that

– For every i the sequence ω′i is equal to ωi except for a finite number of places.
– The sequence (ω′i)i∈N is a random element of ΩN.

Informally, this result can be explained as follows: as we have seen (Theo-
rem 2), a change in finitely many places can decrease the randomness deficiency
(starting from any non-random sequence, we get a sequence that is not covered
by a first set of a Martin-Löf test) and therefore can prevent “accumulation” of
randomness deficiency.

This informal explanation can be formalized and works not only for finite
changes of bits but for any ergodic transformation. In fact, the results of this
paper allow us to get a short proof of the following generalization of Miyabe’s
result (Miyabe’s original proof used a different approach, namely martingale
characterizations of randomness). We restrict ourselves to the uniform measure,
but the same argument works for arbitrary computable measures.



Theorem 11. Let (ωi)i∈N be a sequence of elements of Ω such that ω0 is random
and ωi is (ω0, . . . , ωi−1)-random for all i ≥ 1. Let T : Ω → Ω be a computable
bijective ergodic map. Then, there exists a sequence (ω′i)i∈N such that

– For every i, the sequence ω′i is an element of the orbit of ωi (i.e. ω′i = Tni(ωi)
for some integer ni).

– The sequence (ω′i)i∈N is a random element of ΩN.

Proof. Let U be the first level of a universal Martin-Löf test on ΩN, with µ(U) ≤
1/2. We will ensure that the sequence (ω′i)i∈N is outside U , and this guarantees
its randomness.

Consider the set V0 consisting of those α0 ∈ Ω such that the section

Uα0 = {(α1, α2, . . .) | (α0, α1, α2, . . .) ∈ U}

has measure greater than 2/3. The measure of V0 is less than 1, otherwise we
would have µ(U) > 1/2. It is easy to see that V0 is an effectively open subset
of Ω. Since ω0 is random, by Theorem 6 there exists an integer n0 such that
ω′0 = Tn0(ω0) is outside V0. This ω′0 will be the first element of the sequence we
are looking for.

Now we repeat the same procedure for Uω′
0

instead of U . Note that it is an
open set of measure at most 2/3, and, moreover, an effectively open set with
respect to oracle ω′0. Since ω0 and ω′0 differ by a computable transformation,
the set Uω′

0
is effectively open with oracle ω0. We repeat the same argument

(where 1/2 and 2/3 are replaced by 2/3 and 3/4 respectively) and conclude that
there exists an integer n1 such that the sequence ω′1 = Tn1(ω1) has the following
property: the set

Uω′
0ω

′
1

= {(α2, α3, . . .) | (ω′0, ω′1, α2, α3, . . .) ∈ U}

has measure at most 3/4. (Note that we need to use ω0-randomness of ω1, since
we apply Theorem 6 to an ω0-effectively open set.)

At the next step we get n2 and ω′2 = T (n2)ω2 such that

Uω′
0ω

′
1ω

′
2

= {(α3, α4, . . .) | (ω′0, ω′1, ω′2, α3, α4, . . .) ∈ U}

has measure at most 4/5, etc.
Is it possible that the resulting sequence (ω′0, ω

′
1, ω
′
2, . . .) is covered by U?

Since U is open, it would be then covered by some interval in U . This interval
may refer only to finitely many coordinates, so for some m all sequences

(ω′0, ω
′
1, . . . , ω

′
m−1, αm, αm+1, . . .)

would belong to U (for every αm, αm+1, . . .). However, this is impossible, because
our construction ensures that the measure of the set of all (αm, αm+1, . . .) with
this property is less than 1. ut

Of course, from the discussion of Section 3.3 Theorem 11 can be extended to
any computable probability space instead of the Cantor space, and to a layerwise
computable ergodic map instead of a computable one. The details are left to the
reader.
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[HR09b] Mathieu Hoyrup and Cristóbal Rojas. Applications of effective probability
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