
Descriptive complexity on non-Polish spaces II

Mathieu Hoyrup
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Abstract

This article is a study of descriptive complexity of subsets of repre-
sented spaces. Two competing measures of descriptive complexity are
available. The first one is topological and measures how complex it is to
obtain a set from open sets using boolean operations. The second one
measures how complex it is to test membership in the set, and we call it
symbolic complexity because it measures the complexity of the symbolic
representation of the set. While topological and symbolic complexity are
equivalent on countably-based spaces, they differ on more general spaces.
Our investigation is aimed at explaining this difference and highly sug-
gests that it is related to the well-known mismatch between topological
and sequential aspects of topological spaces.

1 Introduction

This article fits in the line of research extending descriptive set theory, mainly
developed on Polish spaces, to other classes of topological spaces relevant to the-
oretical computer science, such as domains [Sel04], quasi-Polish spaces [dB13],
and represented spaces [PdB15, dBSS16, CH20]. We pursue our investigation
of descriptive set theory on represented spaces, started in [CH20].

Theoretical computer science, logic and descriptive set theory closely inter-
act, providing different ways of describing properties, by programs, formulas or
boolean operation from basic properties, all intimately related. For instance,
a property of real numbers that is decidable in the limit must belong to the
class ˜∆0

2, and every ˜∆0
2-property is decidable in the limit relative to some ora-

cle.
This correspondence works very well on Polish spaces and more generally

countably-based topological spaces. However, little is known for other topolog-
ical spaces whose points can be represented and processed by a program, and it
has been shown in [CH20] that the correspondence fails, even on natural spaces
such as the space of polynomials with real coefficients: there is a property which
can be decided with 2 mind-changes, but which is not a difference of two open
sets, and is in no level below ˜∆0

2.
We introduce symbolic descriptive complexity, which captures the algorith-

mic complexity of a set, and compare it to topological descriptive complexity.
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Our general goal is to understand when and why these two measures of com-
plexity differ, and what topological properties of the underlying space cause this
disagreement. Our results suggest that the mismatch between the two measures
of complexity reflects the discordance between the sequential and the topolog-
ical aspects of the space, so that symbolic complexity may be interpreted as
a measure of sequential complexity rather than topological complexity, in the
same way as many topological notions have a sequential counterpart (sequential
continuity, sequential compactness, sequential closure, etc.).

More precisely, we show that among Hausdorff spaces, the spaces that are
not Fréchet-Urysohn exhibit a disagreement between symbolic and topological
complexity at the lowest level above the open sets, namely the differences of open
sets. This result extends a similar result obtained in [CH20] for the subclass of
coPolish spaces.

We focus on the space of open sets of a Polish space, and relate the dis-
agreement between symbolic and topological complexity to the compactness
properties of the Polish space, by dividing Polish spaces into 4 classes, ranging
from the locally compact to the non σ-compact spaces, and giving a detailed
analysis of descriptive complexity of sets in each case.

Along the way, we develop several tools and techniques that are needed
to prove our results and are interesting on their own right. In particular we
argue that the classical notion of hardness, which makes sense on countably-
based spaces, is too restrictive on other spaces and we solve the problem by
introducing the weaker notion of hard* set.

We finally observe that the discordance between topological and sequential
aspects is already at the core of the theory of admissibly represented topological
spaces. These spaces, also characterized as the T0 quotients of countably-based
spaces, are all sequential and form a subclass of topological spaces which behave
particularly well from a categorical perspective: for instance, contrary to general
topological spaces, they form a cartesian closed category. More concretely, in
this category, the space constructions such as product space or subspaces do
not coincide with the ones in the category of topological spaces, but with their
sequentializations. Our separation results between symbolic and topological
complexity heavily rely on the disagreement between sequential and topological
space constructions.

1.1 Summary of the main results

We give a quick overview of the main results, stated informally.
In a represented space X = (X, δX), we introduce the symbolic complexity of

a set A ⊆ X. If Γ is a descriptive complexity class, such as ˜Σ0
n or ˜Dn (difference

of n open sets), then we define the corresponding symbolic complexity class [Γ]
as follows:

A ∈ [Γ](X) ⇐⇒ δ−1
X (A) ∈ Γ(dom(δX)).

In a topological space with an admissible representation, one usually has

Γ(X) ⊆ [Γ](X)
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and our goal is to understand when and why the other inclusion does not hold,
i.e. when and why the topological and symbolic measures of complexity differ.
It is know from [dB13] that they coincide when X is a countably-based space.

We first observe that the classical notion of hardness, which is very useful
to identify the complexity of a set, is closely related to symbolic rather than
topological complexity. We introduce a weaker version, called hard* set and
prove:

Theorem (Theorem 4.1). For a Borel subset A of an analytic space X,

A is Γ-hard ⇐⇒ A /∈ [Γ̌](X),

A is Γ-hard* ⇐⇒ A /∈ Γ̌(X).

A topological subspace of a sequential space is not always sequential, so
the subspace constructions differ in the categories of topological and sequential
spaces. This difference implies a difference between symbolic and topological
complexity.

The sequential spaces whose subspaces are sequential are called the Fréchet-
Urysohn spaces. The class ˜D2 consists of differences of two open sets.

Theorem (Theorem 5.1). If X is admissibly represented, Hausdorff and not
Fréchet-Urysohn, then

[˜D2](X) * ˜D2(X).

The assumption that the space is Hausdorff is needed. Indeed, spaces of
open sets behave better at low complexity levels.

Theorem (Theorem 6.1). If X is admissibly represented then

[˜Dn](O(X)) = ˜Dn(O(X)).

However, the proof is not constructive and we show that the corresponding
effective classes disagree. The class D2 consists of differences of two effective
open sets. Let N1 be the space of functions N → N having at most 1 non-zero
value.

Theorem (Theorem 6.2). One has [D2](O(N1)) * D2(O(N1)).

Finally, we give a rather detailed study of descriptive complexity on the
spaces O(X) when X is Polish. More precisely, we connect the relationship be-
tween symbolic and topological complexity classes to the compactness properties
of X. Some of the proofs heavily rely on the fact that the product topology is
not sequential in general, so product space constructions differ in the categories
of topological and sequential spaces.

In particular, symbolic and topological complexity differ at higher levels
when X is Polish and not locally compact.

Theorem (Theorem 7.2).

• There exists A ∈ [˜Dω](O(N1)) which is ˜∆0
3-complete*.
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• There exists A ∈ [˜Σ0
k](O(N×N1)) which is ˜Σ0

k+1-complete*, for each k ≥
2.

• There exists A ∈ [˜Σ0
2](O(N )) which is not Borel.

Theorem (Classification - Positive results, Theorem 7.1). Let X be Polish.

• If X ∈ Class I, then O(X) is countably-based,

• If X ∈ Class II, then for all k ≥ 3, [˜Σ0
k](O(X)) = ˜Σ0

k(O(X)),

• If X ∈ Class III, then for all k ≥ 2, [˜Σ0
k](O(X)) ⊆ ˜Σ0

k+2(O(X)).

The paper is organized as follows. In Section 2, after giving the needed back-
ground on represented spaces. In Section 3 we introduce symbolic complexity
and provide simple tools for its study. In Section 4 we introduce and study
the notion of hard* set, used to capture the topological complexity of sets. In
Section 5 we prove that Hausdorff spaces that are not Fréchet-Urysohn exhibit
a disagreement between symbolic and topological complexity at the lowest level.
In Section 6, we study spaces of open sets. In particular, in Section 7 we focus on
open subsets of Polish spaces and locate symbolic complexity classes depending
on the compactness properties of the Polish space.

2 Background

The Baire space is N = NN with the product topology generated by the cylin-
ders [σ], with σ ∈ N∗. A represented space is a pair (X, δX) where X is a set
and δX :⊆ N → X is onto. A realizer of a function f : (X, δX)→ (Y, δY ) is any
function F : dom(δX)→ dom(δY ) such that f ◦ δX = δY ◦F . f is computable
if it has a computable realizer.

A represented space (X, δX) is admissible if the continuously realizable
functions f :⊆ N → X are precisely the continuous functions (for the final
topology of δX).

An effective countably-based space is a countably-based topological space X
with a numbered basis of the topology (Bi)i∈N such that intersection of basic
open sets is computable: Bi∩Bj =

⋃
k∈Wf(i,j)

Bk for some computable f : N2 →
N, where (We)e∈N is an effective enumeration of the c.e. subsets of N. The
standard representation, which is admissible, is defined by representing x ∈ X
by any listing of the set {i ∈ N : x ∈ Bi}. A particularly useful property of
these spaces is that the standard representation is effectively open: δ([σ]) =⋃
i∈Wg(σ)

Bi, for some computable g. The class Σ0
1(X) of effective open sets

consists of c.e. unions of basic open sets. More details can be found in [Wei00,
Pau15].

A topological space has an admissible representation if and only if it is T0 and
is a quotient of a countably-based space, written QCB0-space [Sch02]. Hence
most of the results can be read in two ways, whether one prefers starting with
a represented set or a topological space. The results are stated for admissibly
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represented spaces. However, they could be stated for qcb-spaces with the T0

property. If X is such a topological space, then the symbolic complexity classes
can be defined because X has an admissible representation and the symbolic
classes that are closed under continuous preimages do not depend on the choice
of an admissible representation.

2.1 Hierarchies on topological spaces

Definition 2.1. A complexity class, or simply class, is a family Γ = {Γ(X)}
indexed by topological spaces X, where Γ(X) is a collection of subsets of the
topological space X.

One of the simplest examples is the class of open sets ˜Σ0
1 = {˜Σ0

1(X)}.
We say that a complexity class Γ is closed under continuous preimages if

for all topological spaces X,Y and continuous f : X → Y , A ∈ Γ(Y ) im-
plies f−1(A) ∈ Γ(X). Complexity classes are often closed under continuous
preimages, and we will always explicitely write this assumption when needed.

2.1.1 Borel hierarchy

The Borel hierarchy, usually defined on Polish spaces, can be extended immedi-
ately to any topological space X, with a slight modification to handle correctly
the non-Hausdorff spaces, in which open sets are not always unions of closed
sets [Sel04]. Let X be a topological space.

• ˜Σ0
1(X) is the class of open sets,

• For 1 < α < ω1, A ∈ ˜Σ0
α(X) if A =

⋃
i∈NAi \ Bi where Ai, Bi ∈ ˜Σ0

αi
with αi < α.

We define ˜Π0
α(X) as the class of complements of sets in ˜Σ0

α(X), as well
as ˜∆0

α(X) = ˜Σ0
α(X) ∩ ˜Π0

α(X).

2.1.2 Difference hierarchy

Let X be a topological space. The difference hierarchy (˜Dα(˜Σ0
β(X)))1≤α<ω1

based on ˜Σ0
β(X) is defined by transfinite induction as follows [Sel04]:

• ˜D1(˜Σ0
β(X)) = ˜Σ0

β(X),

• A ∈ ˜Dα+1(˜Σ0
β(X)) if A = U \B where U ∈ ˜Σ0

β(X) and B ∈ ˜Dα(˜Σ0
β(X)),

• For a limit ordinal λ, A ∈ ˜Dλ(˜Σ0
β(X)) if

A =
⋃
α<λ,
α even

Bα+1 \Bα,

where (Bα)α<λ is a growing sequence of sets in ˜Σ0
β(X).
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Let ˜Ďα(˜Σ0
β(X)) be the class of complements of sets in the class ˜Dα(˜Σ0

β(X)).

In order to avoid heavy notations, we write ˜Dα(X) to denote ˜Dα(˜Σ0
1(X)).

In any topological space X, the difference hierarchy based on ˜Σ0
β(X) is

contained in ˜∆0
β+1(X). On Polish spaces and even quasi-Polish spaces, the

Hausdorff-Kuratowski Theorem states that the hierarchy entirely exhausts the
class ˜∆0

β+1(X) (Theorem 70 in [dB13]).

2.2 Space of open sets

Let X = (X, δX) be a represented space. It is also a topological space in the
following way. First, dom(δX) ⊆ N is a topological subspace of N , whose open
sets are obtained as the the intersections of the open subsets ofN with dom(δX).
Next, the topology on X is the final topology of δX, whose open sets are the
sets U ⊆ X such that δ−1

X (U) is open in dom(δX).
The set O(X) has a canonical representation, where the names of U ∈ O(X)

are the names of the open subsets V of N such that δ−1
X (U) = V ∩ dom(δX).

It makes O(X) an admissibly represented space (without assuming that X is
admissibly represented).

The represented space O(X) is in turn a topological space, whose topology
is the Scott topology when X is admissible [Sch15].

Note that the finite levels of the Borel and difference hierarchies can in
turn be equipped with representations in an obvious way. For instance, a
set in ˜D2(X) is represented by pairing two names of open subsets of X. A
set in ˜Σ0

n+1(X) is inductively represented by two sequences of names of sets

in ˜Σ0
n(X). How to represent sets in a given descriptive complexity class has

been investigated in [Bra05, Sel13].

2.3 Product spaces

Each admissiby represented space S comes with a topology τS. If S,T are ad-
missibly represented spaces, then SN and S×T have natural admissible represen-
tations. However, the corresponding topologies are not in general the product
topologies of τS and τT, but their sequentializations. In this section, we iden-
tify a case when the topologies of the product spaces coincide with the product
topologies. This case is when S and T are the spaces of open sets of quasi-Polish
spaces.

For a topological space X, its space of open sets O(X) has at least two
natural topologies: the Scott topology, defined from the ordering structure, and
the compact-open topology. A topological space X is called consonant if the
Scott topology and the compact-open topology coincide on O(X). It is proved in
[dB13] that every quasi-Polish space is consonant. Note that every quasi-Polish
space has an admissible representation.

Proposition 2.1. If X and Y are quasi-Polish, then the topologies on the ad-
missiby represented spaces O(X)N and O(X)×O(Y) are the product topologies.
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Proof. As represented spaces, one has O(X)N ∼= O(N×X) and O(X)×O(Y) ∼=
O(X t Y). The topologies on the admissibly represented spaces O(N × X)
and O(X tY) are the Scott topologies.

On the other hand, for any topological spaces X,Y , it is easy to see that the
compact-open topology on O(N × X) and O(X t Y ) is the product topology
on O(X)N and O(X)×O(Y ) respectively, where O(X) and O(Y ) are endowed
with the compact-open topology.

When X and Y are quasi-Polish, so are N×X and XtY, so X, Y, N×X
and XtY are consonant, i.e. the Scott topology and the compact-open topology
coincide on their spaces of open sets. As a result the topology on the represented
spaces O(X)N and O(X) × O(Y) is the product of the topologies on O(X)
and O(Y).

3 Symbolic descriptive complexity

The main goal of this article is to explore the relationship between the descrip-
tive complexity of subsets of represented spaces, and the descriptive complexity
of their names sets, which we call the symbolic complexity of the set.

Let X = (X, δX) be a represented space. As said before, X is also a topologi-
cal space and if Γ is a complexity class, then we write Γ(X) for the corresponding
topological descriptive complexity class on the topological space X.

We also define another notion of complexity of sets, called symbolic com-
plexity, obtained directly from the representation.

Definition 3.1. Let Γ a complexity class. For any represented space X, we
define the corresponding symbolic complexity class [Γ](X) as follows: for A ⊆
X,

A ∈ [Γ](X) ⇐⇒ δ−1
X (A) ∈ Γ(dom(δX)).

Observe that the conditions B ∈ Γ(dom(δX)) and B = C ∩ dom(δX) for
some C ∈ Γ(N ) are a priori different. The latter implies the former if Γ is
closed under continuous preimages. When Γ = ˜∆0

2, these two conditions are in
general different.

Proposition 3.1. If Γ is a complexity class that is closed under continuous
preimages, then [Γ](X) does not depend on the choice of an admissible repre-
sentation of X.

Proof. Let δ1, δ2 be such that δ1 is continuously reducible to δ2: there exists a
continuous function F : dom(δ1)→ dom(δ2) such that δ1 = δ2 ◦ F . If δ−1

2 (A) ∈
Γ(dom(δ2)) then δ−1

1 (A) = F−1(δ−1
2 (A)) ∈ Γ(dom(δ1).

As a result, if δ1 and δ2 are both admissible, then they are continuously
reducible to each other so they induce the same class [Γ](X).

Symbolic complexity is usually more fine-grained than topological complex-
ity.

7



Proposition 3.2. If Γ is a complexity class that is closed under continuous
preimages, then

Γ(X) ⊆ [Γ](X).

Proof. By definition of the final topology of δX, the function δX : dom(δX)→ X
is continuous, so if A ∈ Γ(X) then δ−1

X (A) ∈ Γ(dom(δX)).

The main topic of the article is to investigate when the other inclusion also
holds, and more generally to better understand the symbolic complexity classes.
Observe that usually, the definition of a descriptive complexity class is exten-
sional, in the sense that it describes how its elements are built.

On Polish spaces with an admissible representation, the Borel hierarchy
built from the open sets coincides with the hierarchy lifted from N by the
representation: for instance a set is a countable union of closed sets if and only
if its pre-image is a countable union of closed sets (Theorem 6.7 in [Bra05]).

On quasi-Polish spaces, the same holds if the definition of the Borel hierarchy
is slightly amended: for instance ˜Σ0

2-sets are not countable unions of closed sets,
but countable unions of differences of open sets.

Theorem 3.1 ([dB13]). If X is a countably-based topological space, then

[˜Σ0
α](X) = ˜Σ0

α(X).

Definition 3.2 (Analytic set). For a topological space X, a set A ⊆ X is
analytic, written A ∈ ˜Σ1

1(X), if A = ∅ or there exists a continuous function f :
N → X such that A = f(N ).

Remark 3.1. The class ˜Σ1
1 is not closed under continuous preimages. Indeed,

let D ⊆ N with D /∈ ˜Σ1
1(N ). In the space D, one has D /∈ ˜Σ1

1(D), but D is the
preimage of N ∈ ˜Σ1

1(N ) under the continuous function id : D → N .
However, ˜Σ1

1 is obviously closed under continuous images. So for any repre-
sented space X, one has [˜Σ1

1](X) ⊆ ˜Σ1
1(X), which contrasts with lower complex-

ity classes, usually closed under continuous preimages and satisfying Proposition
3.2.

Lemma 3.1. One has

[˜Σ1
1](P(ω)) = ˜Σ1

1(P(ω)).

Proof. As observed above, one obviously has [˜Σ1
1](P(ω)) ⊆ ˜Σ1

1(P(ω)).
Conversely, assume that A is the image of a continuous function f : N →

P(ω). The set {(p, q) ∈ N × N : δ(p) = f(q)} belongs to Π0
2(N × N ), in

particular it is analytic, and δ−1(A) is the first projection of that set, so it is
also analytic.

3.1 Tools

We give a simple way of locating a symbolic complexity class. A network in a
topological space X is a family N of subsets of X such that every open set is a
union of elements of N [Eng89].
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Proposition 3.3. Let X be admissibly represented. Assume that X has a count-
able network of sets in ˜Σ0

i+1(X). One has

[˜Σ0
n](X) ⊆ ˜Σ0

n+i(X).

Every admissibly represented space has a countable network, given by the
images of cylinders under the admissible representation.

Proof. Let Y be the topological space with underlying setX and whose topology
is generated by the countable network of X. Y is countably-based, let δY be
its standard representation.

By definition of network, every open subset of X is an open subset of Y.
Conversely, every open subset of Y belongs to ˜Σ0

i+1(X). It implies, by induction

on n, that ˜Σ0
n(Y) ⊆ ˜Σ0

n+i(X).

One has [˜Σ0
n](X) ⊆ [˜Σ0

n](Y) = ˜Σ0
n(Y) because we can apply Theorem 3.1

to the countably-based space Y. As a result, [˜Σ0
n](X) ⊆ ˜Σ0

n+i(X).

Corollary 3.1. Let X = 2N
N

or NNN
. One has

[˜Σ0
n](X) ⊆ ˜Σ0

n+1(X).

Proof. The images of cylinders under the reprentation are closed subsets of X.

A common technique to prove a separation result in a space Y is to prove it
in a simpler space X and then transfer the result to Y by including X into Y.

Proposition 3.4. Let Γ,Γ′ be complexity classes that are closed under contin-
uous (resp. computable) preimages.

Let X be a continuous (resp. computable) retract of Y. If [Γ](X) * Γ′(X),
then [Γ](Y) * Γ′(Y).

Proof. Let r : Y → X and s : X → Y be continuous (resp. computable)
functions such that r ◦ s = idX. Let A ∈ [Γ](X) with A /∈ Γ′(X). Take B =
r−1(A). As r is continuous hence continuously realizable (resp. computable),
one hasB ∈ [Γ](Y). As s is continuous (resp. computable) and A = s−1(B),B /∈
Γ′(Y).

If Y = (Y, δY) is a represented space and X ⊆ Y , then X := (X, δX) is
a represented space by taking δX as the restriction of δY to δ−1

Y (X). Observe
that as a topological space, X is not always a topological subspace of Y, but
the sequentialization of the topological subspace [].

Proposition 3.5. Let Γ be closed under finite intersections and continuous
(resp. computable) preimages, and Γ′ be closed under continuous (resp. com-
putable) preimages. Let X ∈ Γ(Y). If [Γ](X) * Γ′(X), then [Γ](Y) * Γ′(Y).
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Proof. The representation δX of X is the restriction of δY to δ−1
Y (X).

Let A ∈ [Γ](X) with A /∈ Γ′(X). One has A ∈ [Γ](Y). Indeed, δ−1
Y (A) =

δ−1
X (A) = S ∩ dom(δX) for some S ∈ Γ(N ), and dom(δX) = δ−1

Y (X) = T ∩
dom(δY) for some T ∈ Γ(N ). By assumption, U := S ∩ T ∈ Γ(N ) so δ−1

Y (A) =
U ∩ dom(δY) and A ∈ [Γ](Y).

If A ∈ Γ′(Y), then by continuity (resp. computability) of the identity from X
to Y, A ∈ Γ′(X) which is a contradiction.

4 Hardness

An important tool to pinpoint the descriptive complexity of a set is provided
by the notions of hardness and completeness. If Γ is a descriptive complexity
class, then in any topological space X, one can define a set A ⊆ X to be Γ-
hard if for each C ∈ Γ(N ), there is a continuous reduction from C to A,
i.e. a continuous function f : N → X such that C = f−1(A). Note that the
reduction always starts from N . It contrasts with the generalizations of Wadge
reducibility between subsets of a topological or represented spaces investigated
in [Peq15, RSS15].

As is well known in descriptive set theory on Polish (and even quasi-Polish)
spaces, the hardness of a set is closely related to its complexity: Wadge’s Lemma
implies that for any class Γ 6= Γ̌ of Borel sets and any Borel subset A of a Polish
space X,

A is Γ-hard ⇐⇒ A /∈ Γ̌(X).

However, outside countably-based spaces it turns out that the hardness of a
set is related to its symbolic rather than topological complexity, which usually
differ as we will see shortly.

Therefore, we need another notion of hardness which reflects the topological
complexity of a set.

Definition 4.1. Let (X, τ) be a topological space and Γ a descriptive com-
plexity class. We say that A ⊆ X is Γ-hard* if for every countably-based
topology τ ′ ⊆ τ , A is Γ-hard in (X, τ ′). A set is Γ-complete* if it belongs
to Γ(X) and is Γ-hard*.

Note that when (X, τ) is countably-based, these notions coincide with the
standard notions of hardness and completeness.

Now we can state the main result of this section, making clear that hard-
ness is related to symbolic complexity, while hardness* is related to topological
complexity. Say that a topological space is analytic if it is a continuous image
of N .

Theorem 4.1. Let Γ = ˜Dα(˜Σ0
β), α, β < ω1. For an analytic admissibly repre-

sented space X and A ⊆ X Borel,

A is Γ-hard ⇐⇒ A /∈ [Γ̌](X),

A is Γ-hard* ⇐⇒ A /∈ Γ̌(X).

10



For β = 1, the assumptions that the space is analytic and that A is Borel
can be dropped. The proof assumes ˜Σ1

1-determinacy.

Proof. The first equivalence is obtained by apply Wadge’s theorem to δ−1
X (A)

and observe that by admissibility, any continuous function f : N → X factors
into f = δX ◦ F for some continuous F : N → N , so that A is ˜Π0

α-hard if and
only if δ−1

X (A) is ˜Π0
α-hard.

The proof of the second equivalence relies on the following straightforward
generalization of the Louveau-Saint Raymond Theorem (see Theorem 28.19 in
[Kec95]).

Lemma 4.1. Let X be an analytic subset of P(ω). For any A ∈ ˜∆1
1(P(ω))

and α < ω1,
A /∈ ˜Σ0

α(P(ω)) ⇐⇒ A is ˜Π0
α-hard.

Proof. Let δ be the standard representation of X := P(ω) and A /∈ ˜Σ0
α(X). The

sets δ−1(A) and δ−1(X \ A) are disjoint analytic subsets of N by Lemma 3.1,
and cannot be separated by a set in ˜Σ0

α(N ) by Theorem 3.1. We can apply the
Louveau-Saint Raymond theorem, which given C ∈ ˜Π0

α(N ) yieds a continuous
function f : N → δ−1(X) such that C = f−1(A). The function δ ◦ f : N → X
is a continuous reduction from C to A.

We now prove Theorem 4.1. Let f : N → X be continuous onto. If A is
Borel, then there is a countably-based topology τ ′ ⊆ τ such that A is already
Borel in (X, τ ′). The function f is a fortiori continuous when X is endowed
with the topology τ ′. The topology τ ′ is not necessarily T0. Let Y be the
Kolmogorov quotient of (X, τ ′). It is a T0 countably-based space, so it embeds
in P(ω). It is a continuous image of N , so it is analytic. As A is Borel in (X, τ ′),
every point of A is separated from every point of X \A. As a result, the images
of A and X \A form a partition of Y into two analytic sets AY and Y \AY .

As A /∈ ˜Σ0
α(X), AY /∈ ˜Σ0

α(Y ) so AY is ˜Π0
α-hard in Y by Lemma 4.1.

Let h : N → Y be a continuous reduction from some C ∈ ˜Π0
α(N ) to AY .

Let i : Y → (X, τ ′) be any function mapping an equivalence class to an arbi-
trary representative. This function is continuous, and i ◦ h : N → (X, τ ′) is a
continuous reduction from C to A, so A is ˜Π0

α-hard in (X, τ ′).

4.1 Hausdorff-Kuratowski Theorem

On Polish and even quasi-Polish spaces, there is no ˜∆0
n-complete set because

of the Hausdorff-Kuratowski theorem. Other spaces may admit ˜∆0
n-complete*

sets, and this possibility is again tightly related to the validity of the Hausdorff-
Kuratowski Theorem for ˜∆0

n-sets.

Theorem 4.2. Let X be an analytic topological space.
For each n ≥ 2, the Hausdorff-Kuratowski Theorem holds for ˜∆0

n if and only
if there is no ˜∆0

n-complete* set.
For n = 2, the analyticity assumption can be droppped.
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Proof. If the HK Theorem holds, then there is no ˜∆0
n-complete* set. Indeed,

such a set A would be in ˜Dα(˜Σ0
n−1) for some α < ω1 and some countably-based

topology, and ˜∆0
n-hard for that topology, which would imply that ˜∆0

n(N ) ⊆

˜Dα(˜Σ0
n−1)(N ), which is known to be false (the difference hierarchies do not

collapse on N ).
Conversely, if the HK does not hold, then there exists A ∈ ˜∆0

n(X) such
that A /∈ ˜Dα(˜Σ0

n−1) for any α < ω1. If X is analytic or n = 2, then A

is ˇ˜Dα(˜Σ0
n−1)-hard* for each α < ω1 by Theorem 4.1. As a result, A is ˜∆0

n-

hard*, hence ˜∆0
n-complete*.

We now give a criterion for the validity of the Hausdorff-Kuratowski Theorem
at a given level.

Theorem 4.3. Let (X, τ) be a topological space. If there exists a Polish topol-
ogy τ ′ such that τ ⊆ τ ′ ⊆ ˜Σ0

n(τ), then the Hausdorff-Kuratowski theorem holds
for (X, τ) from level n+ 1 onwards: for k ≥ n,

˜∆0
k+1(X, τ) =

⋃
α<ω1

˜Dα(˜Σ0
k(X, τ)).

The proof follows the line of the argument in [Kec95], reducing the case
of ˜∆0

n to ˜∆0
2 by enriching the topology. However, some care is needed because

we have to deal with two topologies.

Proof. We first prove the following result.

Claim 4.1. For any k ≤ n and any countable family F ⊆ ˜Σ0
k(X, τ), there exists

a Polish topology τ ′′ ⊆ ˜Σ0
n(X, τ) containing F .

Proof of the Claim. We prove it by induction on k. For k = 1, the result is
immediate by taking τ ′′ = τ ′, as F is already contained in τ ′. Assume the
result for k < n and let F ⊆ ˜Σ0

k+1(X, τ). There exists a countable fam-

ily G ⊆ ˜Σ0
k(X, τ) such that each element of F is a countable union of differences

of elements of G. By induction, there is a Polish topology τ ′′ ⊆ ˜Σ0
n(X, τ) con-

taining G. Let τ ′′′ be generated by τ ′′ and the complements of the elements
of G. As the latter sets are closed in τ ′′ which is Polish, τ ′′′ is Polish. Moreover,
those sets belong to ˜Π0

k(X, τ) ⊆ ˜Σ0
n(X, τ), so τ ′′′ ⊆ ˜Σ0

n(X, τ). Finally, each
element of F is open in τ ′′′, and the claim is proved.

We now prove the theorem. Let A ∈ ˜∆0
n+1(X, τ). There exists a countable

family F ⊆ ˜Σ0
n(X, τ) such that A and its complement are countable unions of

differences of elements of F . Applying the claim, there exists a Polish topol-
ogy τ ′′ ⊆ ˜Σ0

n(X, τ) containing F . Therefore, A ∈ ˜∆0
2(X, τ ′′) so applying the

Hausdorff-Kuratowski theorem for Polish spaces, one has A ∈ ˜Dα(X, τ ′′) for
some α < ω1. We conclude by observing that τ ′′ ⊆ ˜Σ0

n(X, τ).

12



We give two simple applications of this result.
On R[X], hence on R[X]N, there is a set in [Dω] which is ˜∆0

2-complete*
(Theorem 5.8 in [CH20]). Theorem 4.3 implies that there is no ˜∆0

k-complete*
set for k ≥ 3.

Corollary 4.1. On R[X]N, for all k ≥ 3, the Hausdorff-Kuratowski Theorem
holds for level ˜∆0

k, therefore there is no ˜∆0
k-complete* set.

Proof. For each n, d ∈ N, the set Cn,d := {(Pi)i∈N : deg(Pi) ≤ d} is closed.
Enriching the topology on R[X]N with these sets results in a Polish topology
contained in ˜Σ0

2(R[X]N) (the space becomes homeomorphic to Rn).

We will see later that on O(N1), hence on O(N×N1), there is a set in [Dω]
which is ˜∆0

3-complete* (Theorem 7.2). Theorem 4.3 implies that there is no ˜∆0
k-

complete* set for k ≥ 4.

Corollary 4.2. On O(N×N1), for all k ≥ 4 the Hausdorff-Kuratowski Theorem
holds at level ˜∆0

k, therefore there is no ˜∆0
k-complete* set.

Proof. We add the following sets to the topology: for each (n, f) ∈ N×N1, the
closed set {U : (n, f) /∈ U}; for each (n, p) ∈ N2, the ˜Π0

2-set {U : {n}×[0p] ⊆ U}.
The resulting topological space is homeomorphic to the Cantor space, so it is
Polish, and its topology is contained in ˜Σ0

3(O(N×N1)).

5 Fréchet-Urysohn property

In [CH20] we have given a characterization of the coPolish spaces on which the
symbolic complexity differs from the topological complexity at the level ˜D2:
they are exactly the spaces that are not Fréchet-Urysohn.

We can extend part of the argument from coPolish spaces to Hausdorff ad-
missibly represented spaces. We will see later (Theorem 6.1) that the assump-
tion that the space is Hausdorff cannot be dropped.

Theorem 5.1. Let X be admissibly represented and Hausdorff. If X is not
Fréchet-Urysohn, then

[˜D2](X) * ˜D2(X).

We use the Arens’ space S2, which is the inductive limit of {0}∪{ 1
n + 1

kX
n :

n ≤ N, k ∈ N}. As in [CH20], one has [˜D2](X) * ˜D2(X) and a witness is the
set A = {0} ∪ { 1

n + 1
kX

n : n, k ∈ N}. Therefore, Theorem 5.1 is an immediate
corollary of the next result together with Proposition 3.5.

Proposition 5.1. Let X be admissibly represented and Hausdorff. X is not
Fréchet-Urysohn if and only if X contains a closed copy of S2.

Remark 5.1 (Historical remark about Proposition 5.1). Franklin [Fra67] proved
that when X is a Hausdorff sequential space, X is Fréchet-Urysohn if and only
if it does not contain a set which, endowed with the sequentialization of the sub-
space topology, is homeomorphic to S2 (Proposition 7.3 in [Fra67]). It implies
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that if X is a Hausdorff admissibly represented space, then X is not Fréchet-
Urysohn if and only if X does not contain S2 as a represented subspace.

In [Tan94] and [Lin97] it is proved that when X is a Hausdorff sequential
space having a point-countable k-network, X is not Fréchet-Urysohn if and
only if it does not contain a closed set homeomorphic to S2 (Theorem 2.12 in
[Lin97]). Observe that the subspace topology on a closed subset of a sequential
space is always sequential, so there is no need to take the sequentialization of
the subspace topology as in Franklin’s result. This result implies ours, because
admissibly represented spaces are sequential and the images of cylinders under
the representation give a countable k-network. However we provide a proof in
our setting for self-containedness.

The result was also recently proved in [dBPS19] for the subclass of coPolish
spaces (Proposition 66 in [dBPS19], where S2 is called Smin).

Proof of Proposition 5.1. The proof takes inspiration from the proof of Propo-
sition 3.3.2 in [Sch02].

If X is not Fréchet-Urysohn, then there exist points x, xn, xn,k ∈ X such
that limn xn = x and limk xn,k = xn, but x is not the limit of a sequence of
points in {xn,k : n, k ∈ N}. Those points taken together are a candidate for
being a copy of S2 in X. However, they might not form a closed set. We show
how to extract subsequences which form a closed set. First, we can assume
w.l.o.g. that all these points are pairwise distinct, using that X is Hausdorff.

Let (Ci)i∈N be a countable pseudobase of X (for instance, Ci is the image
under δX of the cylinder number i in N ). As in the proof of Proposition 3.3.2
in [Sch02], let

J = {(i, j) ∈ N× N : ∃U, V disjoint open sets, Ci ⊆ U,Cj ⊆ V },

and for (i, j) ∈ J , choose disjoint open sets Ui,j and Vi,j such that Ci ⊆ Ui,j
and Cj ⊆ Vi,j .

One can extract subsequences so that every Ui,j containing x contains xn
and xn,k for almost every n and all k. Indeed, if x ∈ Ui,j then for almost
every n, xn ∈ Ui,j and for each such n, xn,k ∈ Ui for almost every k. We now
rename the sequences so that we work with the extracted subsequences.

Let C = {x}∪{xn : n ∈ N}∪{xn,k : n, k ∈ N}. Let us show that C is closed.
The sets Kx = {x} ∪ {xn : n ∈ N} and Kxn = {xn} ∪ {xn,k : n, k ∈ N}

are closed, because they are compact and X is Hausdorff. One has C = Kx ∪⋃
nKxn , so it is sufficient to show that

⋃
nKxn = {x} ∪

⋃
nKxn .

Of course, the right-hand side is contained in the left-hand side. Conversely,
let y ∈

⋃
nKxn with y 6= x. As X is Hausdorff and y 6= x, there exist disjoint

open sets U, V with x ∈ U and y ∈ V . There exist pseudobasic sets Ci, Cj such
that x ∈ Ci ⊆ U and y ∈ Cj ⊆ V , so (i, j) ∈ J . One has x ∈ Ui,j , so for
almost every n, Kxn ⊆ Ui,j which is disjoint from the neighborhood Vi,j of y.

As a result, there exists n0 such that y /∈
⋃
n≥n0

Kxn , so y ∈
⋃
n<n0

Kxn =⋃
n<n0

Kxn .
The obvious injection e : S2 → C is continuous. We show that its inverse is

continuously realizable.
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For each compact subset of S2, the restriction of e has a continuous, hence
continuously realizable inverse. We show that given a name of y ∈ C, we can
find in finite time a compact set containing y, which we then use to produce a
name of e−1(y).

Let

U = N \ δ−1
X (C \Kx),

V = N \ δ−1
X (x).

One has δ−1
X (x) ⊆ U because x /∈ [C \ Kx]seq, so dom(δX) ⊆ U ∪ V . More-

over, δX(U) ∩ C ⊆ Kx.
Let p be a name of y ∈ C. Test in parallel whether p ∈ U and p ∈ V .

If p ∈ U answers first, then we know that y ∈ Kx.
If p ∈ V answers first, then one can find n such that y ∈ Kxn . In-

deed, find (i, j) ∈ J such that x ∈ Ui,j and y ∈ Vi,j , and take n0 such
that

⋃
n≥n0

Kxn ⊆ Ui,j , which implies that y ∈
⋃
n<n0

Kn. Reject all n < n0

such that y /∈ Kxn , and the only remaining one is such that y ∈ Kxn .
As X is sequential and C ⊆ X is closed, the topology on C is the subspace

topology, so e is a topological embedding of S2 into X.

6 Spaces of open sets

We now focus on a particular class of spaces, namely the spaces of open subsets of
a represented space. We first show that for such spaces, symbolic complexity and
topological complexity coincide for the finite levels of the difference hierarchy. It
implies in particular that the assumption that the space is Hausdorff in Theorem
5.1 cannot be dropped.

6.1 Finite levels of the difference hierarchy

The results of this section are reminiscent of results by Grassin [Gra74] and
Selivanov [Sel84] about numbered sets.

Theorem 6.1. For any admissibly represented space X, one has for all n ∈ N,

[˜Dn](O(X)) = ˜Dn(O(X)).

The section is devoted to the proof of this result. We first need to isolate
one of the two conditions for a set to be Scott open.

Definition 6.1. Say that A ⊆ O(X) is approximable if for every directed
set ∆ ⊆ O(X) such that

⋃
U∈∆ U ∈ A, there exists U ∈ ∆ ∩A.

The poset O(X) has additional properties which imply a simpler character-
ization of this notion.

Proposition 6.1. Let A ⊆ O(X). The following conditions are equivalent:
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• A is approximable,

• For every growing sequence (Ui)i∈N such that
⋃
i∈N Ui ∈ A, there exists i

such that Ui ∈ A,

• For every growing sequence (Ui)i∈N such that
⋃
i∈N Ui ∈ A, one has Ui ∈ A

for almost all i.

Proof. The space X is hereditarily Lindelöf, so from ∆ one can extract a count-
able subset with the same union, from which we can define a growing sequence
using the fact that ∆ is directed.

If Ui /∈ A for infinitely many i, then one can extract an infinite subse-
quence Uϕ(i) /∈ A which contradicts the approximability condition.

We follow the same strategy as in [Gra74]. We show that if A ∈ [˜Dn](O(X)),
then A and Ac are approximable and A has no n+1-chain, i.e. no sequence U0 ⊆
U1 ⊆ . . . ⊆ Un with Ui ∈ A exactly when i is even, and we show that these
properties characterize the sets in ˜Dn(O(X)).

Lemma 6.1. If A ⊆ O(X) is not approximable then A is ˜Π0
2-hard.

If A ⊆ O(X) has an n+ 1-chain then A is ˇ˜Dn-hard.

Proof. In the space N< = N ∪ {∞} with the admissible representation δ(p) =
sup{p(n) : n ∈ N}, one easily shows that the set {∞} is Π0

2-complete. In the
space [0, n] < with the admissible representation δ′(p) = min(n, δ(p)), one can
show that En := {i ≤ n : is even} is ˇ˜Dn-complete.

If A is not approximable then there exists a growing sequence Ui ∈ O(X)
such that Ui /∈ A but U∞ :=

⋃
i Ui ∈ A. Let f : N< → O(X) be defined

by f(x) = Ux. The function f is Scott continuous and it reduces {∞} in N<
to A, so A is ˜Π0

2-hard.
If A has an n+ 1-chain U0 ⊆ U1 ⊆ . . . ⊆ Un then the function g : [0, n]< →

O(X) defined by g(i) = Ui is Scott continuous and reduces En to A, so A
is ˇ˜Dn-hard.

In particular, if A ∈ [˜∆0
2](O(X)) then A and Ac are approximable, and

if A ∈ [˜Dn](O(X)) then A has no n+ 1-chain.
The first part of the argument is completed. We now show the second part,

which needs more development, in particular a reformulation of chains. To a
set A ⊆ O(X), we associate a decreasing sequence of upwards closed sets as
follows:

U0(A) = O(X)

Un+1(A) =

{
↑ (A ∩ Un(A)) if n is even,

↑ (Ac ∩ Un(A)) if n is odd.

Observe that A has no n+ 1-chain if and only if Un+1(A) = ∅.
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Observe that Un+1(A) = Un(Ac ∩ ↑A). One easily has

Un(A) \ Un+1(A) ⊆ A if n odd,

Un(A) \ Un+1(A) ⊆ Ac if n even.

We first show that if A and Ac are approximable, then these sets are Scott
open.

Lemma 6.2. If A ⊆ O(X) is approximable and B is Scott open, then

• ↑A is approximable, hence Scott open,

• A ∩B is approximable, so ↑ (A ∩B) is Scott open.

Proof. Let (Ui)i∈N be a growing sequence whose union U belongs to ↑A. Let V ∈
A be contained in U . Let Vi = V ∩ Ui. As A is approximable, there exists i
such that Vi ∈ A. Therefore, Ui ∈ ↑A.

Let (Ui)i∈N be a growing sequence whose union U belongs to A ∩ B. As B
is Scott open, then exists i0 such that Ui ∈ B for all i ≥ i0. Using the fact
that A is approximable, applied to the sequence (Ui)i≥i0 , gives some i ≥ i0 such
that Ui ∈ A, and we know that Ui ∈ B.

Corollary 6.1. Let A ⊆ O(X)). If both A and Ac are approximable, then the
sets Uα(A) are Scott open.

Proof. Easy induction using Lemma 6.2 .

We can now prove the characterization of the class ˜Dn(O(X)).

Proposition 6.2. Let n ∈ N. For A ⊆ O(X), the following conditions are
equivalent:

1. A ∈ ˜Dn(O(X)),

2. A ∈ [˜Dn](O(X)),

3. A and Ac are approximable and Un+1(A) = ∅.

Proof. We have already proved 1. =⇒ 2. =⇒ 3.
Assume that Un+1(A) = ∅. If n is even then A = (U1 \U2)∪ . . .∪(Un−1 \Un).

If n is odd then A = (U1\U2)∪ . . .∪Un. If A and Ac are moreover approximable,
then the sets Ui are Scott open, so A ∈ ˜Dn(O(X)).

This result is similar to a characterization of ˜Dα proved in [CH20] using
sets Hα+1(A): A ∈ ˜Dα(X) ⇐⇒ Hα+1(A) = ∅, in any topological space X.
One may ask whether the result presented here could be proved using the
sets Hn(A) rather than Un(A). It is probably not possible, because the re-
sult does not extend to levels higher than ω (Theorem 7.3 below), whereas the
result in [CH20] holds for all α < ω1.
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6.2 Higher levels

At least, we can extend the coincidence result to the very first level of the infinite
difference hierarchy.

Proposition 6.3. One has

[˜Dω](O(X)) ∩ [ ˇ˜Dω](O(X)) = ˜Dω(O(X)) ∩ ˇ˜Dω(O(X))

=
⋃
n∈N ˜Dn(O(X)).

Proof. Let A ∈ [˜Dω](O(X)) ∩ [ ˇ˜Dω](O(X)). Let p0 be a name of ∅. After
reading some finite prefix σ, one obtains an upper bound n on the number of
mind-changes. The restriction of the representation to [σ] is equivalent to the
representation, so A ∈ [˜Dn](O(X)) = ˜Dn(O(X)).

Another consequence of the preceding development is a characterization of
the class [˜∆0

2] in certain cases.

Proposition 6.4. Let X be countably-based. The class [˜∆0
2](O(X)) is the class

of approximable and co-approximable sets.

Proof. We know from Lemma 6.1 that if A ∈ [˜∆0
2](O(X)) then both A and Ac

are approximable.
Conversely, assume that A ⊆ O(X) and its complement are approximable.

Observe that if Ui is a growing sequence of open sets with union U , then 1A(Ui)
converges to 1A(U) as i→∞, as both A and Ac are approximable. Let (Bi)i∈N
be a countable basis of X, closed under finite intersections and unions. Let E =
{i ∈ N : Bi ∈ A}. From a name of an open set U ∈ O(X), one can continuously
derive a sequence (in)n∈N such that Bin ⊆ Bin+1

and
⋃
nBin = U . Therefore,

whether U ∈ A can be tested with finitely mind changes, by testing whether in ∈
E.

6.3 Effectiveness

The proof of Theorem 6.1 is not effective. We show that there is no effective
argument by proving that [D2](O(X)) * D2(O(X)) for some particular X.

Theorem 6.2. One has

[D2](O(N1)) * D2(O(N1)).

The argument is based on the proof of a result in [CH20], stating that when X
is not countably-based, for sets A ∈ ˜D2(X), there is no continuous way of
converting a ˜D2-description of δ−1(A) into a ˜D2-description of A in X.

From the argument, we can extract the following:

Proposition 6.5. There exists a computable fixed-point free multifunction h :

˜D2(O(N1)) ⇒ [˜D2](O(N1)).
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Proof. Given names of two open sets U ,V ∈ O(O(N1)), we describe some
set A ∈ [˜D2](O(N1)) such that A 6= U \ V. A name of A consists in names
of two open sets E0, E1 ∈ O(N ) such that δ−1(A) = E1 \ E0, where δ is the
representation of O(N1).

Let f0 ∈ N1 be the null function. We start with A = U0 = {U ∈ O(N1) : f0 ∈
U}, E1 = δ−1(A) and E0 = ∅. If we eventually see that N1 ∈ U , then we stop
our enumeration of E1, so that E1 is a finite union C of cylinders, and let E0 = C
and A = ∅. If we eventually see that N1 ∈ V, then we can find some V ∈ O(N1)
such that V ∈ V \ δ(C). The set δ(C) is upwards closed, so no open subset
of V belongs to δ(C). We let then A = {U ∈ O(N1) : U ⊆ V }, E1 = N
and E0 = δ−1(Ac), which is possible as E1 and E0 both contain C (which has
already being enumerated in them).

We can do that because δ(C) has empty interior: there exists n such that
every element of δ(C) contains [0n], however in every non-empty open subset
of O(N1), there exist V that does not contain [0n]. Moreover, we can choose V
so that it is a finite union of cylinders from N1, so that we can effectively
enumerate E0.

Proof of Theorem 6.2. We first use h from Proposition 6.5 to perform a diago-
nalization and build a set in [D2](N ×O(N1)) which is not in D2(N ×O(N1)).
As N is contained inO(N) as a D2-set, andO(N)×O(N1) ∼= O(NtN1) ∼= O(N1),
we can include N × O(N1) as a D2-subset of O(N1) and transfer the result
from N×O(N1) to O(N1) by applying Proposition 3.5.

Observe that D2(N × O(N1)) ∼= C(N,D2(O(N1))), so we can identify a
set A ∈ D2(N × O(N1)) with a computable function n 7→ A(n) ∈ D2(O(N1)).
Let (Ai)i∈N be an effective enumeration of D2(N × O(N1)). We can build
some B ∈ [D2](N × O(N1)) such that for all i, B(i) ∈ h(Ai(i)). Indeed,
let H :⊆ N → N be a computable realizer of h. Let pi be a name of Ai(i),
which is computable uniformly in i. We define B(i) as the element whose name
is H(pi). Finally, one has B /∈ D2(N × O(N1)), otherwise B = Ai for some i,
so Ai(i) = B(i) ∈ h(Ai(i)), contradicting the fact that h has no fixed-point.

Corollary 6.2. If N1 embeds as a D2-subset of X, then

[D2](O(X)) * D2(O(X)).

Proof. O(N1) is a computable retract of O(X), so the separation result (Theo-
rem 6.2) about O(N1) extends to O(X) by Proposition 3.4.

7 Open subsets of Polish spaces

We now focus on spaces of open subsets of Polish spaces, for which we can estab-
lish a rather precise picture of the relationship between symbolic and topological
complexity, depending on the compactness properties of the space.
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7.1 The 4 classes

The first observation is that when X is locally compact, for instance X =
R, O(X) is countably-based so it behaves very well in terms of descriptive
complexity: symbolic and topological complexity coincide. We split the whole
class of Polish spaces into 4 disjoint classes, ranging from the locally compact
spaces to the non σ-compact spaces.

Let Xnk = {x ∈ X : x has no compact neighborhood}, which is a closed
subset of X.

Definition 7.1. Let X be a Polish space.

1. X ∈ Class I if Xnk = ∅, i.e. X is locally compact,

2. X ∈ Class II if Xnk 6= ∅ is finite,

3. X ∈ Class III if Xnk 6= ∅ is infinite and X is σ-compact,

4. X ∈ Class IV if X is not σ-compact.

Observe that the union of Classes I, II, III is the class of σ-compact spaces.

Example 7.1. Let us give one example for each class:

1. R belongs to Class I,

2. N1 = {f ∈ N : f takes at most one positive value} belongs to Class II,
with one element having no compact neighborhood, namely the zero func-
tion f0,

3. N ×N1 belongs to Class III, where the elements with no compact neigh-
borhood are the pairs (n, f0),

4. N belongs to Class IV.

Moreover, the three latter spaces are minimal in their respective classes,
i.e. embed into every space of their classes.

Proposition 7.1. Let X be Polish.

• X /∈ Class I ⇐⇒ X contains a closed copy of N1,

• X /∈ Classes I or II ⇐⇒ X contains a ˜D2 copy of N×N1,

• X /∈ Classes I, II or III ⇐⇒ X contains a closed copy of N .

Proof. The backwards implications are easy, because if C is a closed subset,
or even a ˜D2-subset of X and x ∈ C has no compact neighborhood in the
subspace C, then x has no compact neighborhood in X.

Assume that X is not locally compact and let x0 ∈ Xnk. We define a double-
sequence xi,n by induction on i. Let B0 be a basic neighborhood of x0. As B0

is not compact, it contains a sequence x0,n with no converging subsequence. In
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particular, there exists a neighborhood B1 of x0 such that B1 does not con-
tain any x0,n. Again, B1 is not compact so it contains a sequence xi,n with
no converging subsequence. We continue, making sure that the radius of Bi
converges to 0. One easily checks that the set {x0} ∪ {xi,n : i, n ∈ N} is closed
and homeomorphic to N1, by sending x0 to the zero function, and xi,n to the
function f such that f(i) = n.

Assume that Xnk is infinite. It contains a copy D of N with D ∈ ˜D2(X).
Each point x ∈ D is contained in a neighrbohood Bx such that Bx ∩ By = ∅
for x 6= y. Around each point x of D and inside Bx we can build a closed copy
of N1 as in the previous case. Their union is a copy of N × N1 and belongs
to ˜D2(X).

The third statement is a particular case of Hurewicz theorem (Theorem 7.10
in [Kec95]).

7.2 Classification

We now relate the behavior of symbolic complexity on O(X) to the class of X.
We first locate the symbolic complexity classes.

Theorem 7.1 (Classification – Positive results). Let X be Polish.

1. If X ∈ Class I, then [˜Σ0
k](O(X)) = ˜Σ0

k(O(X)) for all k,

2. If X ∈ Class II, then [˜Σ0
k](O(X)) = ˜Σ0

k(O(X)) for k ≥ 3,

3. If X ∈ Class III, then [˜Σ0
k](O(X)) ⊆ ˜Σ0

k+2(O(X)) for k ≥ 2.

We then identify gaps between symbolic and topological complexity.

Theorem 7.2 (Classification – Negative results). Let X be Polish.

1. If X /∈ Class I, then [˜Dω](O(X)) contains a ˜∆0
3-complete* set,

2. If X /∈ Class II, then [˜Σ0
k](O(X)) contains a ˜Σ0

k+1-complete*-set for k ≥
2,

3. If X /∈ Class III, then [˜Σ0
2](O(X)) contains a non-Borel set.

We observe that two phenomena are possible. For some spaces X, the
classes [˜Σ0

k](O(X)) and ˜Σ0
k(O(X)) differ for low values of k and then coincide

after some rank. For other spaces, the classes never coincide.
It is open whether ˜Σ0

k(O(X)) ⊆ ˜Σ0
k+1(O(X)) when X belongs to Class III.

A similar study should be done when X is not Polish.

Proof of Theorem 7.1. Let X be σ-compact, i.e. belong to Class I, II or III. X
has a countable network of compact sets: if X =

⋃
nXn with Xn compact, then

the intersections of the rational closed balls with the Xn’s give such a network.

Claim 7.1. For each open set U , the set ↑U = {O ∈ O(X) : U ⊆ O} belongs
to ˜Π0

2(O(X)).
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Proof of Claim 7.1. Let (Ki)i∈N be a countable network of compact sets. For
each i, the set UKi = {O ∈ O(X) : Ki ⊆ O} is open. Define E = {i ∈ N : Ki ⊆
U}. One has ↑U =

⋂
i∈E UKi which belongs to ˜Π0

2(O(X)).

Let (Ui)i∈N be an enumeration of the finite unions of basic open subsets of X.
The sets ↑Ui form a countable network of O(X) and they belong to ˜Σ0

3(O(X)).
Proposition 3.3 implies that [˜Σ0

k](O(X)) ⊆ ˜Σ0
k+2(O(X)) for all k.

Let Xk = X \ Xnk. Xk is locally compact. For each open set U ⊆ X,
let OU (X) = {O ∈ O(X) : U ⊆ O and O ∩ Xnk = U ∩ Xnk}. First, O(X) =⋃
U OU (X), for the obvious reason that each open set U belongs to OU (X). We

will later see that when X is in Class II, this union can be reduced to a countable
union. For the moment, X is just σ-compact.

Claim 7.2. For each U , one has OU (X) ∈ ˜Π0
2(O(X)).

Proof of Claim 7.2. Let (Ki)i∈N be a countable network of compact sets. De-
fine E = {i ∈ N : Ki ⊆ U} and F = {i ∈ N : Ki ∩ Xnk * U}. One
has O ∈ OU (X) iff ∀i ∈ E, Ki ⊆ O and ∀i ∈ F , Ki ∩ Xnk * O. There-
fore, OU (X) is a countable intersection of open and closed subsets of O(X).

Claim 7.3. For each U , OU (X) is countably-based.

Proof of Claim 7.3. Indeed, OU (X) is a continuous retract of O(Xk), via the
retraction r(O) = O ∪ U and the section s(O) = O \ Xnk. As Xk is locally
compact, O(Xk) is countably-based, so OU (X) is countably-based as well.

Let now A ∈ [˜Σ0
k](O(X)). For each open set U , A∩OU (X) ∈ [˜Σ0

k](OU (X)) =

˜Σ0
k(OU (X)) as OU (X) is countably-based. As OU (X) ∈ ˜Π0

2(O(X)), one has A∩
OU (X) ∈ ˜Σ0

k(O(X)) for k ≥ 3.
Now assume that X is in Class II. Xnk is finite. Let (Ui)i∈N be an enumera-

tion of the finite unions of basic balls of X. One has O(X) =
⋃
iOUi(X), which

is a countable union. Indeed, if O ∈ O(X) then O∩Xnk is finite so when express-
ing O as a union of basic balls, this finite part is already covered by some finite
union Ui. Therefore, for k ≥ 3, if A ∈ [˜Σ0

k](O(X)) then A =
⋃
iA ∩ OUi(X)

which is a countable union of sets in ˜Σ0
k(O(X)), so A ∈ ˜Σ0

k(O(X)).

Proof of Theorem 7.2. In the next sections, we will prove the separation results
for the spaces N1 (Theorem 7.3), N × N1 (Proposition 7.2) and N (Theorem
7.4). As they embed as ˜D2-subsets of spaces of each corresponding class by
Proposition 7.1, these spaces inherit the separation results. Indeed, if D ∈

˜D2(X) then O(D) is a continuous retract of O(X): the retraction is r(O) =
O ∩D and the section is s(O) = O ∪ V if D = U \ V with U, V open.

7.3 Open subsets of N1

The next result implies in particular that Theorem 6.1 does not extend to higher
levels of the difference hierarchy.

Theorem 7.3. The class [Dω](O(N1)) contains a ˜∆0
3-complete* set.
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We need two preliminary results. The first one will help defining the set.

Lemma 7.1. N is a [Σ0
2]-retract of O(N): there exists r : O(N) → N which

is [Σ0
2]-measurable, s : N → O(N) which is computable, such that r ◦ s = idN .

Proof. Let 〈., .〉 : N2 → N be a computable bijection. Let r(E) = fE be defined
by

fE(i) =

{
min{j ∈ N : 〈i, j〉 ∈ E} if that set is non-empty,

0 otherwise.

Let s(f) = {〈i, f(i)〉 : i ∈ N, f(i) ≥ 1}. One easily checks that r and s satisfy
the required conditions.

The next result helps showing that the set is hard*. For h ∈ N , we define
the compact set Kh = {f ∈ N1 : f ≤ h}.

Lemma 7.2. Let τ ′ ⊆ τ be a countably-based topology containing the point-open
sets U{x} = {U ∈ O(N1) : x ∈ U}, for all x ∈ N1. There exists h such that
on UKh = {U ∈ O(N1) : Kh ⊆ U}, the bijection O(N1) → O(N1 \ {0ω}) is a
homeomorphism.

Observe that N1 \ {0ω} ∼= N so O(N1 \ {0ω} ∼= O(N).

Proof. As N1 is Polish, it is consonant, i.e. the Scott topology on O(N1) is
the compact-open topology. As a result, there exists a sequence of compact
sets (Ki)i∈N such that the corresponding sets UKi = {U ∈ O(N1) : Ki ⊆ U}
generate τ ′. For each i, there exists a function fi ∈ N such that for all f ∈
Ki, f ≤ fi. Let h eventually dominate each fi: h(i) = max{f0(i), . . . , fi(i)}.
For each i, the set Fi := Ki \ Kh is finite hence compact, so UFi is open
in O(N1 \ {0ω}) and UKi ∩ UKh = UFi ∩ UKh , so on UKh , the τ ′-open set UKi
coincides with UFi .

Proof of Theorem 7.3. Let A ⊆ O(N1) be defined as follows. To E ∈ O(N) one
can associate a function fE = r(E) : N → N by Lemma 7.1. For U ∈ O(N1),
let Ui = {f(i) : f ∈ U}. Let

A = {U ∈ O(N1) : 0ω ∈ U and |{i : [0, fU0
(i)] * Ui}| is even}.

We first show that A ∈ [∆0
2](O(N1)). We are given the jump of a name

of U . We first decide whether 0ω ∈ U . In that case, we get some n0 such
that [0n0 ] ⊆ U , which implies that Un = N for all n ≥ n0. For each n < n0, we
can compute fU0

(i) and decide whether [0, fU0
(i)] is contained in Ui, and then

compute the parity of the corresponding set.
We now observe that one even has A ∈ [Dω](O(N1)), which means that there

is an algorithm taking a name of U ∈ O(N1), immediately outputs “false” and
may eventually produce some number n and change its mind at most n times.
Indeed, given a name of U , either 0ω /∈ U , which implies U /∈ A, or 0ω ∈ U , in
which case we obtain some n0, from which we can decide in the limit where U ∈
A with at most 2n0 mind-changes, because of the following claim.
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Claim 7.4. For each i, the predicate [0, fU0(i)] ⊆ Ui is decidable with at most 2
mind-changes.

Proof of the claim. We start with a guess fU0
(i) = 0, in which case we declare

the predicate as true. If the value of fU0
(i) eventually changes, then we change

our mind and declare the predicate as false. From now, we can converge from
above to the actual value of fU0(i) and enumerate Ui at the same time, so
the truth of the predicate [0, fU0(i)] ⊆ Ui can only change from false to true.
Therefore, we will change our mind at most once.

Therefore, we can compute the number |{i < n0 : [0, fU0
(i)] * Ui}| with at

most 2n0 mind changes, and decide whether U ∈ A with this number of mind
changes.

AsN1 is in Class II, one has [˜∆0
3](O(N1)) = ˜∆0

3(O(N1)), so A ∈ ˜∆0
3(O(N1)).

We now show that for any countably-based topology τ ′ ⊆ τ , A is ˜∆0
3-hard. We

reduce the problem of computing the parity of a finite ˜Π0
1-subset of N \ {0}

to A. We can enrich τ ′ so that it contains the point-open sets and use Lemma
7.2 giving a function h, and work in UKh , so that the topology τ ′ coincides
with the topology on O(N \ {0ω}) ∼= O(N). We can assume that h(0) = 0 for
simplicity.

Given P ∈ ˜Π0
1(N) finite, we define U ∈ O(N1) containing Kh, by defining Ui

for each i ∈ N as follows:

U0 = {〈i, j〉 : i /∈ P or j ≥ h(i) + 1},

and for i ≥ 1,

Ui =

{
N \ {h(i) + 1} if i ∈ P,
N if i /∈ P.

One can check that

fU0(i) =

{
h(i) + 1 if i ∈ P,
0 if i /∈ P.

so [0, fU0
(i)] ⊆ Ui if and only if i /∈ P . As a result, U ∈ A if and only if |P | is

even.
Observe that U indeed contains Kh so the reduction, which is continuous for

the topology on O(N1 \ {0ω}), is continuous for τ ′. Therefore, we have shown
that A is ˜∆0

3-hard*.

7.4 Open subsets of N×N1

Using Theorem 7.3, we can build a set in [Σ0
2] which is ˜Σ0

3-hard*, and then
iterate the construction in order to climb the finite levels of the Borel hierarchy,
giving the following result.

Proposition 7.2. Let X = N × N1. For each n ≥ 2, the class [Σ0
n](O(X))

contains a ˜Σ0
n+1-complete* set.
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The iteration is given by the next result.

Lemma 7.3. Let X be quasi-Polish and n ∈ N. If A ⊆ O(X) is ˜Σ0
n-hard*,

then BA := {(Ui)i∈N : ∃i, Ui /∈ A} is ˜Σ0
n+1-hard* in O(X)N.

Proof. Let τ be a countably-based topology on O(X)N. Observe that X is
quasi-Polish, so the topology on O(X)N is the product topology by Proposition
2.1. As a result, there is a countably-based topology τ ′ on O(X) such that τ is
contained in the product topology of τ ′. We can define a τ -continuous reduction
from a set in ˜Σ0

n+1(N ) to BA, by using the fact that A is ˜Σ0
n-hard in the

topology τ ′. Indeed, let C ∈ ˜Σ0
n+1(N ). There exists a sequence Ci ∈ ˜Π0

n(N )
such that C =

⋃
i Ci. Each Ci is reducible to Ac, so there exists continuous

functions fi : N → (O(X), τ ′) such that Ci = f−1
i (Ac). Let f : N → (O(X)N, τ)

be defined by f(p) = (fi(p))i∈N. One has C = f−1(BA) and f is continuous,
because it is continuous for the product of τ ′, which contains τ .

Proof of Proposition 7.2. The key observation is that we can iterate Lemma 7.3
because X ∼= N×X so O(X) ∼= O(X)N.

We prove the result by induction on n ≥ 2.
For n = 2, we apply Lemma 7.3 to the set A provided by Theorem 7.3, which

belongs to [∆0
2](O(N1)) and is ˜∆0

3-complete*. In particular, it is ˜Σ0
2-hard*. The

set BA belongs to [Σ0
2](O(X)) and ˜Σ0

3(O(X)) and is ˜Σ0
3-hard* by Lemma 7.3.

Let n ≥ 2 and assume that A ∈ [Σ0
n](O(X)) is ˜Σ0

n+1-complete*. The set BA
belongs to [Σ0

n+1](O(X)) and ˜Σ0
n+2(O(X)), and is ˜Σ0

n+2-hard* by Lemma 7.3.
Therefore the induction step is proved.

Observe that Lemma 7.3 relies on the fact that for the space Y := O(X),
the topology on the space YN of sequences is the product topology. It would
be interesting to know whether the result fails for some Y that does not satisfy
this condition, or for some Y = O(X) where X is not quasi-Polish.

7.5 Open subsets of N
Here we show that for the space X = O(N ), the class [Σ0

2](X) contains a set
that is not Borel.

Theorem 7.4. There is a set in [Σ0
2](O(N )) which is not Borel.

To build this set, we first work on an intermediate space.
We have seen that two represented spaces X and Y naturally induce a third

represented space X ×Y. The topology induced by that representation is not
in general the product topology, but its sequentialization.

A simple example is given by X = N and Y = O(N ). The evaluation
map N ×O(N )→ S is continuous (and computable), however it is not continu-
ous w.r.t. the product topology, becauseN is not locally compact (see [EH02] for
more details on this topic). In other words the set {(f,O) ∈ N ×O(N ) : f ∈ O}
is not open for the product topology (but it is sequentially open, or open for
the topology induced by the representation). It is even worse.
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Proposition 7.3. E = {(f,O) ∈ N × O(N ) : f ∈ O} is not Borel for the
product topology.

Proof. We prove that for every Borel set A, there exists a dense Gδ-set G ⊆ N
such that for every f ∈ G, (f,N \ {f}) ∈ A ⇐⇒ (f,N ) ∈ A. It implies the
result as it is obviously false for the set E. To prove it, we show that the class
of sets satisfying this condition contains the open sets in the product topology
and is closed under taking complements and countable unions, which implies
that this class contains the Borel sets.

First, consider a basic open set A = [u]×UK where u is a finite sequence of
natural numbers, K is a compact subset of N and UK = {O ∈ O(N ) : K ⊆ O}.
Define G = [u]c ∪ [u] \ K, which is a dense open set. For f ∈ [u]c, no (f,O)
belongs to A. For f ∈ [u] \K, both (f,N \ {f}) and (f,N ) belong to A.

If A satisfies the condition with a dense Gδ-set G, then Ac satisfies the
condition with the same G. If Ai satisfy the condition with dense Gδ-sets Gi
then

⋃
iAi satisfies the condition with G =

⋂
iGi.

Proof of Theorem 7.4. We show that N ×prod O(N ), which is the topological
space endowed with the product topology, is a [Σ0

2]-retract of O(N ). We build:

• A continuous function s : N ×prod O(N )→ O(N ),

• A [Σ0
2]-measurable function r : O(N )→ N ×O(N ),

• Such that r ◦ s = id.

First, these ingredients enable us to derive the result. Indeed, let E be the set
from Proposition 7.3 and F := r−1(E) ⊆ O(N ). As E is open in N ×O(N ), F
is Σ0

2. However F is not Borel, otherwise E = s−1(F ) would be Borel inN ×prod

O(N ).
Let us now build s and r. We identify O(N ) with O(N )×O(N ) and use the

fact that the topology on O(N ) × O(N ) coincides with the product topology
by Proposition 2.1.

By Lemma 7.1, N is a [Σ0
2]-retract of O(N), which is a computable retract

of O(N ), so N is a [Σ0
2]-retract of O(N ). It is witnessed by two functions r0 :

O(N )→ N and s0 : N → O(N ) such that r0 ◦ s0 = idN .
Let us simply pair s0 and r0 with the identity on O(N ): let s(f,O′) =

(s0(f), O′) and r(O,O′) = (r0(O), O′).

In particular, that set is not a countable union of differences of open sets,
as it should be on Polish or quasi-Polish spaces. More generally, it is not a
countable boolean combination of open sets.

In order to overcome the mismatch between the hierarchy inherited from N
via the representation and the class of Borel sets, one may attempt to change the
definition of Borel sets. In [NV97] the Borel sets are redefined as the smallest
class containing the open sets and the saturated compact sets, and closed under
countable unions and complements. We observe here that this class is too large
in the space O(N ). First, if U ⊆ N is open then the set {V ∈ O(N ) : U ⊆ V }
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is compact and saturated in O(N ). From this it is easy to see that the set built
above is Borel in this weaker sense. However this notion of Borel sets is too
loose, because compact saturated sets do not usually have a Borel pre-image.
For instance, the singleton {N} is compact saturated but its pre-image under
the representation is a ˜Π1

1-complete set, hence is not Borel.

7.6 Open questions

We leave the following questions open:

• If X is admissibly represented and Fréchet-Urysohn, does [˜D2](X) =

˜D2(X) hold?

• When X is in Class III, in particular for X = N×N1, we know the inclu-
sion [˜Σ0

k](O(X)) ⊆ ˜Σ0
k+2(O(X)). Can it be improved to [˜Σ0

k](O(X)) ⊆

˜Σ0
k+1(O(X))?

• When X is in Class IV, in particular for X = N , does [˜∆0
2](O(X)) ⊆

B(O(X)) hold? In that case, is [˜∆0
2](O(X)) contained in some level of the

Borel hierarchy? The same questions can be asked for [˜Dω](O(X)).

• What can be said about effective classes [Dω], [∆0
2], [Σ0

k]?

• Can we extend the classification theorem when X is not Polish?

• Is there a Hausdorff admissibly represented space X such that [˜Σ0
2](X) *

˜Σ0
2(X)?

• What do the sets in [˜Σ0
2](O(N )) look like?

• Is it possible to modify the definition of Borel sets on O(N ) to match
exactly the sets that have a Borel pre-image under the representation?
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