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Abstract

The study of ergodic theorems from the viewpoint of computable analysis is a
rich field of investigation. Interactions between algorithmic randomness, com-
putability theory and ergodic theory have recently been examined by several
authors. It has been observed that ergodic measures have better computability
properties than non-ergodic ones. In a previous paper we studied the extent to
which non-ergodic measures inherit the computability properties of ergodic ones,
and introduced the notion of an effectively decomposable measure. We asked the
following question: if the ergodic decomposition of a stationary measure is fi-
nite, is this decomposition effective? In this paper we answer the question in
the negative.

Keywords: computable analysis, Martin-Löf randomness, ergodic
decomposition, Birkhoff’s ergodic theorem

1. Introduction

The ergodic decomposition theorem says the following: every stationary
process can be decomposed into ergodic processes, such that almost every real-
ization of the original process can be seen as a realization of one of the ergodic
processes, chosen at random. Ergodic processes are in a sense the building
blocks of all the stationary processes. The question of the effectiveness of many
ergodic theorems has received much attention in recent years and it progressively
appeared that ergodic measures behave differently from non-ergodic ones. For
instance, the speed of convergence of Birkhoff averages is computable in the
ergodic case [1] while it is not computable in general [16]; Birkhoff ergodic the-
orem holds exactly at Schnorr random sequences in the ergodic case [8] and at
Martin-Löf random sequences in general [16, 4]. These examples suggest that
ergodic measures have better computability properties than non-ergodic ones.
In [10] we showed that the sticking point is not really ergodicity but the com-
putability of the ergodic decomposition. While every non-ergodic measure has a
unique decomposition into ergodic ones, this decomposition is not always com-
putable. The known examples of non-ergodic measures whose decomposition is
non-computable are infinite combinations of ergodic measures ([16, 1]). In [10]
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we raised the following question: if the decomposition of a non-ergodic mea-
sure is finite, is this decomposition computable? In the present paper we solve
the problem and show that it is not necessarily true. Before presenting this
new result, we review the results obtained in [10] and characterize the effective
compact classes of ergodic measures.

The paper is organized as follows. In Section 2 we give the necessary back-
ground on computability and randomness. In Section 3 we develop results about
randomness and combinations of measures that will be applied in the sequel,
but are of independent interest (i.e., outside ergodic theory). We start Section
4 with a reminder on the ergodic decomposition and then relate it to random-
ness. In Section 5 we study the particular case of effective compact classes of
ergodic measures. We finish in Section 6 by our main result: there exist ergodic
measures P and Q whose average is not effectively decomposable.

2. Preliminaries

We assume familiarity with algorithmic randomness and computability the-
ory. For more details on computable analysis we refer the reader to [17].

2.1. Computability
A computable metric space is a triple (X, d, S) where (X, d) is a complete

separable metric space and S is a countable dense subset together with a fixed
numbering such that for all s, s′ ∈ S, d(s, s′) is a computable real number,
uniformly in the indices of s and s′. The basic metric balls B(s, q) with s ∈ S
and q ∈ Q>0 form a countable basis of the topology induced by the metric d.
We fix a canonical effective numbering (Bi)i∈N of this basis.

LetX be a computable metric space. A name for x ∈ X is a sequence sn ∈ S
such that d(sn, x) < 2−n. A point x is computable if it has a computable name.
A set U ⊆ X is an effective open set if there is r.e. set E ⊆ N such that
U =

⋃
i∈E Bi. A function f : X → Y is computable if there is a machine that,

provided a name for x as oracle, computes a name for f(x). Equivalently, f is
computable if the pre-images f−1(Bi) are effective open sets, uniformly in i. Let
A ⊆ X. A function f : A→ Y is computable on A if there is a machine that,
provided a name for x ∈ A as oracle, computes a name for f(x). Equivalently, f
is computable on A if the pre-images f−1(Bi)∩A are intersections of uniformly
effective open sets with A. A point y ∈ Y is computable relative to x ∈ X
if the function x 7→ y is computable on {x}. A function f : X → [0,+∞] is
lower semi-computable if there is a machine that, provided a name for x as
oracle, computes a nondecreasing sequence of rational numbers converging to
f(x). Equivalently f is lower semi-computable if the pre-images f−1(q,+∞] are
effective open sets, uniformly in q ∈ Q. A compact set K ⊆ X is effectively
compact if the set of finite unions of balls covering K is r.e.

We will use the following simple results that are the effective counterparts
of basic topological properties.

Fact 1 (Folklore).
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1. The complement of an effective compact set is an effective open set.

2. If K is effectively compact and U effectively open then K \U is effectively
compact.

Proof. 1. Let K ⊆ X be effectively compact. Let B be a basic metric ball and
B be the corresponding closed ball. As the complement of B is effectively
open so K ∩B = ∅ can be semi-decided. Hence X \K is the r.e. union of
all basic balls B such that K ∩B = ∅.

2. K\U is compact and K\U ⊆ (B1∪. . .∪Bn) ⇐⇒ K ⊆ U∪(B1∪. . .∪Bn)
which can be semi-decided.

Let K ⊆ X be an effective compact set and f : K → Y a function com-
putable on K.

Fact 2 (Folklore). f(K) is an effective compact set.

Proof. Let B1, . . . , Bn be basic balls of Y . f(K) is contained in B1 ∪ . . . ∪ Bn
if and only if K is contained in f−1(B1 ∪ . . . ∪ Bn), which is an effective open
set. As K is effectively compact the latter inclusion can be semi-decided.

Fact 3 (Folklore). If f is moreover one-to-one then f−1 : f(K) → K is com-
putable on f(K).

Proof. For the sake of clarity, we denote f−1 by g.
Let B ⊆ X be a basic ball. We have to prove that there is an effective open

set V ⊆ Y such that g−1(B) = V ∩ f(K). The set C := K \ B is an effective
compact set. g−1(B) = g−1(K \ C) = g−1(K) \ g−1(C) = f(K) \ f(C). As
C is an effective compact set, its complement V is an effective open set and
g−1(B) = f(K) ∩ V . As everything is uniform in B, g is computable.

The product of two computable metric spaces has a natural structure of
computable metric space.

Fact 4 (Folklore). If K ⊆ X is an effective compact set and f : K × Y → R
is lower semi-computable, then the function g : Y → R defined by g(y) =
infx∈K f(x, y) is lower semi-computable.

Proof. Let us prove that g−1(q,+∞] = {y : K × {y} ⊆ f−1(q,+∞]} is an
effective open set, uniformly in q. Let q be some fixed rational number. The
effective open set Uq = f−1(q,+∞] can be expressed as an effective union of
product balls Uq =

⋃
i∈N B

X
i ×BYi . The set Eq = {(i1, . . . , ik) : K ⊆ BXi1 ∪ . . .∪

BXik} is r.e. and it is easy to prove that g−1(q,+∞] =
⋃

(i1,...,ik)∈Eq
BYi1∩. . .∩B

Y
ik

,
which is an effective open set. The argument is uniform in q.
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If X is a computable metric space then the set of Borel probability measures
overX can be endowed with a structure of computable metric space (see [6], e.g.)
inducing the weak∗-topology: measures Pn converge to P if for every bounded
continuous f : X → R,

∫
f dPn converge to

∫
f dP . If X is effectively compact

then so is P(X). With this computability structure, a probability measure P
is computable if for every lower semi-computable function f : X → [0,+∞],∫
f dP is lower semi-computable, uniformly in f . Equivalently, P is computable

if for every bounded computable function f ,
∫
f dP is computable, uniformly in

f .

Notation. The Cantor space of infinite binary sequences will be denoted by
2N. It can be made a computable metric space with the metric d(x, y) =
2−min{n:xn 6=yn}, where x = x0x1x2 . . . and y = y0y1y2 . . .. This space is ef-
fectively compact.

If f, g are real-valued functions, f
∗
≤ g means that there exists c ≥ 0 such

that f ≤ cg. f ∗= g means that f
∗
≤ g and g

∗
≤ f .

2.2. Effective randomness
Martin-Löf [13] was the first one to define a sound individual notion of

random infinite binary sequence. He developed his theory for any computable
probability measure on the Cantor space. This theory was then extended to
non-computable measures by Levin [12], and later by [6, 11] on general spaces
([9] was an extension to topological spaces, but for computable measures).

We will use the most general theory: we will be consider infinite binary se-
quences and probability measures that are random w.r.t. non-computable mea-
sures, over 2N and P(2N) respectively. We will use the notion of uniform test of
randomness, introduced by Levin [12] and further developed in [6, 7, 11].

On a computable metric space X endowed with a probability measure P ,
there is a set MLP of P -random elements satisfying P (MLP ) = 1, together with
a canonical decomposition (coming from the universal P -test) MLP =

⋃
n MLnP

where MLnP are uniformly effective compact sets relative to P , MLnP ⊆ MLn+1
P

and P (MLnP ) > 1−2−n. The sets X\MLnP constitute a universal Martin-Löf test.
A test is a function t : P(X)×X → [0,+∞] which is lower semi-computable and
such that

∫
tP dP ≤ 1 for all P ∈ P(X), where tP (x) is a notation for t(P, x).

A function f : X → Y is P -layerwise computable if there is an oracle
machine that, given n as input and a name of x ∈ MLnP as an oracle, outputs
a name of f(x). Nothing is required to the machine when x is not P -random.
In other words, f is P -layerwise computable if it is computable on each MLnP ,
uniformly in n. When f is P -layerwise computable, for every P -random x, f(x)
is computable relative to x in a way that is not fully uniform, but uniform on
each set MLnP .

Lemma 2.1. Let P be a computable measure, f : X → Y a P -layerwise com-
putable function and Q = f∗P the push-forward of P under f .

1. Q is computable and f : MLP → MLQ is onto.
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2. If f : X → Y is moreover one-to-one then f : MLP → MLQ is one-to-one
and f−1 is Q-layerwise computable.

3. Randomness and continuous combination of measures

The material developed here will be used to investigate the algorithmic con-
tent of the ergodic decomposition.

Given a countable class of probability measures Pi over 2N and real numbers
αi ∈ [0, 1] such that

∑
i αi = 1, the convex combination P =

∑
i αiPi is again a

probability measure. This can be generalized to continuous classes of measures,
as we briefly recall now.

Let m be a probability measure over P(2N). The set function P defined by
P (A) =

∫
Q(A) dm(Q) for measurable sets A ⊆ 2N is a probability measure over

2N, called the barycenter of m. It satisfies∫
f(x) dP (x) =

∫ (∫
f(x) dQ(x)

)
dm(Q) (1)

for f ∈ L1(2N, P ). We can think of P as the measure describing the following
process: first pick some measure Q at random according to m; then run the
process with distribution Q.

Probabilistically, picking a sequence according to P or decomposing into
these two steps are equivalent. We are interested in whether the algorithmic
theory of randomness fits well with this intuition: are the P -random sequences
the same as the sequences that are Q-random for some m-random Q?

The answer is positive when m is computable. Observe that in this case P
is also computable: (1) gives a formula to compute P knowing m. Actually, the
function which maps m to its barycenter P is itself computable.

Theorem 3.1. Let m ∈ P(P(2N)) be computable, and P be the barycenter of
m. For x ∈ X, the following are equivalent:

1. x is P -random,

2. x is Q-random for some m-random Q.

In other words,
MLP =

⋃
Q∈MLm

MLQ.

4. Randomness and ergodic decomposition

4.1. Background from ergodic theory
We consider the shift transformation T : 2N → 2N defined by T (x0x1x2 . . .) =

x1x2x3 . . .. A measure P over 2N is stationary, or shift-invariant, if P (T−1(A)) =
P (A) for all Borel sets A ⊆ 2N. A stationary measure P is ergodic if for every
Borel set A satisfying T (A) ⊆ A, P (A) = 0 or 1.
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A sequence x ∈ {0, 1}N is generic if for each w ∈ {0, 1}∗, the frequency
of occurrences of w in x converges. If x is generic, we denote by Qx the set
function which maps each cylinder [w] to the limit frequency of occurrences of
w in x. Qx extends to a probability measure over the Cantor space, which we
also denote by Qx. If x is generic then Qx is stationary. Birkhoff’s ergodic
theorem states that given a stationary measure P , P -almost every x is generic.
If P is moreover ergodic then Qx = P for P -almost every x.

There is a geometrical way of describing the ergodic measures. The set
of stationary measures is a compact convex subset of P(2N) whose extremal
points are exactly the ergodic measures. A theorem of Choquet from convex
analysis (see [15], e.g.) can then be applied to get the ergodic decomposition
theorem: every stationary measure can be uniquely decomposed into a convex
combination of ergodic measures. Formally, for every stationary measure P
there exists a unique probability measure mP over P(2N) such that (i) mP gives
full weight to the set of ergodic measures and (ii) mP is the barycenter of mP

as defined in (1). We will call mP the Choquet measure associated to P .
The measuremP can be obtained in the following way: let φ be the P -almost-

everywhere defined function which maps x to Qx. mP is the push-forward
measure φ∗P , i.e. mP (A) = P ({x : Qx ∈ A}) for all Borel sets A ⊆ P(2N). As
mP is concentrated on the ergodic measures, Qx is ergodic for P -almost every
x.

We will need the following effective topological properties of the set of sta-
tionary measures. The class of stationary measures is an effective compact
subset of P(2N). The class of ergodic stationary measures is an effective Gδ-
set, i.e. an intersection of uniformly effective open sets, which is dense in the
set of stationary measures: every stationary measure can be approached by er-
godic measures with finite memory, also called Markov measures (see [14] for
instance).

4.2. Randomness and ergodic theorems
An algorithmic version of Birkhoff’s ergodic theorem was eventually proved

by V’yugin [16]: given a stationary measure P , every P -random sequence is
generic, and if P is moreover ergodic then Qx = P for every P -random sequence
x (it was proved for computable measures, but it still works for non-computable
measures). The proof was not immediate to obtain from the classical proof
of Birkhoff’s theorem, which is in a sense not constructive. In this paper we
are interested in an algorithmic version of the ergodic decomposition theorem,
which again cannot be proved directly.

More precisely, given a stationary measure P , we are interested in the fol-
lowing questions:

• if x is P -random, is Qx ergodic?

• if x is P -random, is x also Qx-random?

• if x is P -random, is Qx an mP -random measure?
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• does any converse implication hold?

We give positive partial answers to these questions, leaving the general prob-
lem open. We will use the following lemmas (the first one was proved in [16]).

Lemma 4.1. Let P be an ergodic stationary probability measure. For every
x ∈ MLP , Qx = P .

Lemma 4.2. Let P be a stationary probability measure and mP the associated
Choquet measure. Every mP -random measure is ergodic and stationary.

4.3. Effective decomposition
A stationary probability measure P is always computable relative to its

associated Choquet measure mP . The converse does not always hold (V’yugin
[16] constructed a counter-example).

Definition 4.1. A stationary probability measure P is effectively decompos-
able if its Choquet measure is computable relative to P .

When P is computable. As an application of Theorem 3.1, we directly get a
result when P is computable and effectively decomposable (i.e. when m := mP

is computable).

Corollary 4.1. Let P be a computable stationary probability measure that is
effectively decomposable. For x ∈ X, the following are equivalent:

1. x is P -random,

2. x is Q-random for some m-random Q.

In other words, the following are equivalent:

1. x is P -random,

2. x is generic, Qx-random and Qx is m-random.

We also have the following characterization. For f ∈ L1(X,P ), we denote
by f∗ the limit of the Birkhoff averages of f .

Theorem 4.1. Let P be a computable stationary probability measure. The
following are equivalent.

1. P is effectively decomposable,

2. the function X → P(X), x 7→ Qx is P -layerwise computable,

3. the function L1(X,P )→ L1(X,P ), f 7→ f∗ is computable.
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When P is not computable. If P is not computable but still effectively decom-
posable, one implication in Corollary 4.1 remains, with the same proof.

Theorem 4.2. Let P be a stationary probability measure that is effectively
decomposable. For every P -random x, Qx is mP -random, hence ergodic, and x
is Qx-random.

The converse implication does not hold in general, as illustrated by the
following counter-example. Let x be a sequence that is random w.r.t. the uni-
form measure λ. Let px be the real number whose binary expansion is 0.x and
Bx be the Bernoulli measure with parameter px. Let P = 1

2 (λ + Bx). P is
not computable as x, which is not computable, is computable relative to P :
x = 2P [1] − 1/2. P is effectively decomposable: indeed, mP = 1

2 (δλ + δBx) is
computable relative to x which is computable relative to P . Now, x is λ-random
and λ is mP -random, but x is not P -random as it is computable relative to P
and P ({x}) = 0.

The effectivity of the ergodic decomposition enables one to extend results
from ergodic systems to non-ergodic ones. Let us illustrate it. It was proved
in [2] that when P is an ergodic measure, every P -random sequence eventually
visits every effective compact set of positive measure under shift iterations.
When the decomposition is effective, this theorem can be generalized to non-
ergodic measures, giving a version of Poincaré recurrence theorem for random
sequences.

Corollary 4.2. Let P be a stationary measure that is effectively decomposable.
Let F be an effective compact set such that P (F ) > 0. Every P -random x ∈ F
falls infinitely often in F under shift iterations.

The result actually holds as soon as for every P -random x, Qx is ergodic
and x is Qx-random.

5. Effective compact classes of ergodic measures

When restricting to some classes of ergodic measures, as the Bernoulli mea-
sures, the ergodic decomposition is computable.

Proposition 5.1. Let P be a stationary probability measure. If mP is sup-
ported on an effective compact class of ergodic measures, then P is effectively
decomposable.

The above proposition implies the computability of De Finetti measures on
the Cantor space (see [5]).

Example 1. Let m be a computable probability measure over the real interval
[0, 1]. Pick a real number p at random according to m, and then generate
an infinite binary sequence tossing a coin with probability of heads p. As an
application of the preceding proposition, we get that the function which maps a
random sequence generated by the process to the number p that was picked is
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P -layerwise computable: it can be computed from the observed outcomes with
high probability.

We also learn that the algorithmic theory of randomness fits well with this
example: obviously, we expect a sequence that is random w.r.t. the measure
underlying the whole process to be random for some Bernoulli measure Bp,
which is not immediate.

In Section 2.2, we defined P -layerwise computable functions when P is a
computable probability measure. This can be extended to any effective compact
class of measures C . The class C admits a universal test, which gives a canonical
decomposition of the set of points that are random w.r.t. to some measure in
C : MLC =

⋃
n MLnC where MLnC =

⋃
P∈C MLnP . The effective compactness of

C implies the effective compactness of all the sets MLnC . A function f : X → Y
is C -layerwise computable if it is computable on each MLnC , uniformly in n. It
means that one can compute f(x) if x is random for some measure P ∈ C , with
probability of error bounded by 2−n, whatever P is (as long as it is in C ), and
for any n.

From Proposition 5.1 and Corollary 4.1 we know that every point that is
random w.r.t. some measure in IC is already random w.r.t. to some ergodic
measure in C , namely Qx. In other words, MLC = MLIC while C ( IC in
general. We now prove a quantitative version of this fact. We recall that if A

is an effective compact class of measures, tA := infP∈A tP is a universal A-test,
i.e. (i) it is lower semi-computable, (ii)

∫
tA dP ≤ 1 for every P ∈ A and (iii) tA

multiplicatively dominates every function satisfying (i) and (ii) (see [7] for more
details about such class tests). We will consider the class tests tC and tIC .

Theorem 5.1. Let C be an effective compact class of stationary ergodic prob-
ability measures. One has:

1. tC (x) ∗= tIC (x)

2. The function x 7→ Qx is IC -layerwise computable and C -layerwise com-
putable.

Observe that for generic sequences x, tC (x) = tQx
(x). Indeed, tC (x) =

infP∈C tP (x) = tQx
(x) as tP (x) = +∞ for every P ∈ C \ {Qx}.

Theorem 5.1 tells us in particular that if the ergodic measure P belongs to
an effective compact class of ergodic measures then it is computable relative
to its random points. In the language of [3], P is learnable. Given an ergodic
measure P it is not clear how to check whether it can be embedded in such an
effective compact class of ergodic measures: Theorem 5.2 below identifies the
property of the measure that makes it possible.

It was proved in [1] that when P is an ergodic measure, the convergence
of the Birkhoff averages is computable relative to P . There exist ergodic mea-
sures P for which the convergence is plainly computable, i.e. for which the
oracle P can be avoided. We prove that these measures are precisely the mem-
bers of effective compact classes of ergodic measures. To state and prove this
characterization, we consider an effective enumeration fi of a class of bounded
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computable functions from X to R, that determine the probability measures: if∫
fi dP =

∫
fi dP ′ for all i then P = P ′.

Theorem 5.2. Let P be an ergodic probability measure. The following are
equivalent:

1. P belongs to an effective compact class of ergodic measures,

2. the convergence of Afi
n to

∫
fi dP is effective, uniformly in i.

Proof. 1.⇒ 2. As mentioned above it was proved in [1] that the convergence of
Birkhoff averages is effective relative to P when P is ergodic. More precisely,
there exists an upper semi-computable function n(P, i, δ, ε) defined on ergodic
measures P , such that for all ergodic measures P , all positive rationals δ, ε and
all i ∈ N,

P
{
x : sup

n≥n(P,i,δ,ε)

|Afi
n (x)−

∫
fi dP | > δ

}
≤ ε.

Let C be an effective compact class of ergodic measures and let m(i, δ, ε) =
maxP∈C n(P, i, δ, ε) (which is finite as C is compact and n upper semi-continuous).
The function m is upper semi-computable and for all P ∈ C ,

P
{
x : sup

n≥m(i,δ,ε)

|Afi
n (x)−

∫
fi dP | > δ

}
≤ ε. (2)

2.⇒ 1. Let P0 be a measure satisfying 2.. There exists a computable function
m(i, δ, ε) such that (2) holds for P0. Let C the class of measures P satisfying
(2) for all i, δ > 0 and ε > 0. We prove that the complement of C is effectively
open, which implies that C is effectively compact. Let i, δ, ε be fixed. The
function f(x, P ) = supn≥m(i,δ,ε) |Afi

n (x) −
∫
fi dP | is lower semi-computable so

the set {x : f(x, P ) > δ} is effectively open in P , hence the function P 7→ P{x :
f(x, P ) > δ} is lower semi-computable. As a result, the set of measures P for
which (2) does not hold is effectively open, and this is uniform in i, δ, ε. The
complement of C is the union over i, δ, ε of these uniformly effective open set,
so it is effectively open.

Now, if P ∈ C then P is ergodic, as for each i, the Birkhoff averages Afi
n

converge P -almost everywhere to
∫
fi dP . By assumption, P0 belongs to C .

6. Finitely decomposable measures

V’yugin [16] constructed a non-effectively decomposable measure, given by
an infinite convex combination of ergodic measures. We now prove that finitely
but non-effectively decomposable measures also exist, which settles a problem
left open in [10].

The set of probability measures is endowed with the weak∗-topology, which
is induced by the following metric:

d(P,Q) =
∑

w∈{0,1}∗
2−|w||P [w]−Q[w]|.
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This metric makes the set of probability measures a complete metric space,
hence a Baire space.

The subset of stationary measures is closed in this topology, as P is sta-
tionary if and only if for every finite string w, P [w] = P [0w] + P [1w]. As a
result, the metric subspace S of stationary measures is also complete and is also
a Baire space. The set of ergodic measures is a dense Gδ-set in the subspace of
stationary measures (see [14] for a proof). We endow S × S with the product
topology.

Theorem 6.1. There exist ergodic measures P,Q such that neither P nor Q is
computable relative to P +Q.

The set of such pairs (P,Q) is even co-meager in S× S.

Intuitively, the existence of such measures is possible because P and Q do not
depend continuously on P +Q: even a very good approximation of P +Q does
not give much information about P and Q. In particular a machine M cannot
uniformly compute P from P + Q for all stationary measures P,Q, as it can
only compute continuous functions. The following lemma tells us much more:
in the sense of Baire category, the set of pairs (P,Q) such that the machine M
computes P from P +Q is small, i.e. nowhere dense.

Let us first recall that M computes P from P +Q if for every name of P +Q
provided as an oracle to M , it computes a name for P , which equivalently means
that on inputs w ∈ {0, 1}∗ and δ ∈ Q>0, the machine outputs a rational q such
that |q − P [w]| < δ. We will say for short that MP+Q computes P .

Lemma 6.1. Let M be a machine. In S× S, the interior of the set

CM := {(P,Q) ∈ S× S : MP+Q does not compute P}

is dense.

Proof. We prove that the interior of CM intersects every non-empty basic open
set U × V of the product topology on S× S. We can assume that U is disjoint
from V , otherwise we replace them by disjoint open subsets U ′ ⊆ U and V ′ ⊆ V
(no stationary measure is isolated in S so neither U nor V is a singleton).

If U × V is contained in CM then we are done. Otherwise there exist sta-
tionary measures P0 ∈ U and Q0 ∈ V such that MP0+Q0 computes P0. As
U is disjoint from V , P0 6= Q0. Let w ∈ {0, 1}∗ and δ > 0 be such that
|P0[w] − Q0[w]| > δ. As U and V are open there exists r > 0 such that
B(P0, r) ⊆ U and B(Q0, r) ⊆ V . Let η ∈ (0, 1) be such that ηd(P0, Q0) < r.

We define a pair (P1, Q1) of stationary measures lying in U × V and in the
interior of CM . This pair is defined as

P1 = (1− η)P0 + ηQ0,

Q1 = (1− η)Q0 + ηP0.

First, d(P0, P1) = d(Q0, Q1) = ηd(P0, Q0) < r so P1 ∈ U and Q1 ∈ V . Let
ε < ηδ be a positive rational number. Let us consider the open set

W = {(P,Q) : MP+Q(w, ε/2) halts and outputs some q with |q − P [w]| > ε/2}.
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More precisely, (P,Q) belongs to W if there exists a representation of P +Q on
which the machine behaves as specified. First observe that W is contained in
CM . We claim that (P1, Q1) ∈ W . As P1 + Q1 = P0 + Q0, MP1+Q1 computes
P0 so on input (w, ε/2) it halts and outputs some q with |q − P0[w]| < ε/2. As
|P0[w]−P1[w]| = η|P0[w]−Q0[w]| > ηδ > ε, |q−P1[w]| > ε/2, so (P1, Q1) ∈W .
As a result, U × V intersects W which is contained in the interior of CM .

Proof of Theorem 6.1. On S, the set of ergodic measures is a dense Gδ-set, so
on S × S the set of pairs of ergodic measures is also a dense Gδ-set. From the
preceding lemma, the set of pairs (P,Q) such that P is not computable relative
to P +Q contains a dense Gδ-set, namely the intersection of the interiors of the
sets CM , for M varying among all the machines. As a result, the intersection
of these two sets is co-meager in S×S. By symmetry, the set of pairs of ergodic
measures (P,Q) such that Q is not computable relative to P + Q is also co-
meager in S × S. Therefore the intersection of the three sets is co-meager in
S× S.

6.1. Positive results
Let P be a finite combination of ergodic measures. Even if Theorem 6.1

shows that its decomposition may not be computable, its finite character still
have interesting consequences.

Proposition 6.1. Let P be a stationary measure such that mP is supported on
a closed set C of stationary ergodic measures. For every P -random x, Qx is
ergodic.

To prove it we use the following lemma.

Lemma 6.2. Let X,Y be computable metric spaces. Let fn : X → Y be
uniformly computable functions that converge P -a.e. to a function f . Let A ⊆ Y
be a closed set such that f(x) ∈ A for P -a.e. x. For every P -random x,
lim fn(x) ∈ A.

Proof. It is already known if f is constant P -almost everywhere. Let x0 be a P -
random point such that lim fn(x0) /∈ A. Let B(y, r) be a ball with computable
center and radius, containing lim fn(x0) and disjoint from A. Let gn(x) =
max(0, r − d(fn(x), y)). For P -almost every x, the sequence gn(x) converges to
0, but lim gn(x0) = r − d(lim fn(x0), y) > 0, which is impossible.

Proof of Proposition 6.1. For every n, define Qn : X → P(X) by Qn(x) =
1
n (δx + . . . + δTn−1x). A sequence x is generic if and only if Qn(x) is weakly
convergent, and in that case Qx is the limit of Qn(x). The functions Qn are
uniformly computable. As Qx ∈ C for P -almost every x, Qx ∈ C for every
P -random x by Lemma 6.2.

As a direct application of Proposition 6.1, if P has a finite decomposition,
i.e. if P =

∑n
i=1 αiPi where αi ∈ [0, 1],

∑
i αi = 1 and all Pi are ergodic,

then regardless of the computability of P, αi, Pi, for every P -random x, Qx ∈
{P1, . . . , Pn} as the latter set is closed. In this particular case, Qx is always
mP -random as mP is concentrated on the Pi’s.

12



7. Open questions

As mentioned in the introduction, ergodic measures have better computabil-
ity properties than non-ergodic ones. Theorem 6.1 shows that finite combina-
tions of ergodic measures may not be effectively decomposable, but Proposition
6.1 shows that they still have some of the interesting properties of effectively
decomposable measures. Many other computability properties of finitely decom-
posable measures could be investigated. For instance, if P and Q are ergodic
and x is Martin-Löf random w.r.t. P+Q

2 , is x random w.r.t. P or Q?
Another open question is whether Theorem 6.1 has a constructive version

making P +Q computable.
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