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Abstract. In this paper we investigate algorithmic randomness on more gen-

eral spaces than the Cantor space, namely computable metric spaces. To do
this, we first develop a unified framework allowing computations with probabil-

ity measures. We show that any computable metric space with a computable

probability measure is isomorphic to the Cantor space in a computable and
measure-theoretic sense. We show that any computable metric space admits

a universal uniform randomness test (without further assumption).
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1. Introduction

The theory of algorithmic randomness begins with the definition of individual
random infinite sequence introduced in 1966 by Martin-Löf [ML66]. Since then,
many efforts have contributed to the development of this theory which is now
well established and intensively studied, yet restricted to the Cantor space. In
order to carry out an extension of this theory to more general infinite objects
as encountered in most mathematical models of physical random phenomena, a
necessary step is to understand what means for a probability measure on a general
space to be computable (this is very simple expressed on the Cantor Space). Only
then algorithmic randomness can be extended.

The problem of computability of (Borel) probability measures over more general
spaces has been investigated by several authors: by Edalat for compact spaces
using domain-theory ([Eda96]); by Weihrauch for the unit interval ([Wei99]) and
by Schröder for sequential topological spaces ([Sch07]) both using representations;
and by Gács for computable metric spaces ([Gác05]). Probability measures can
be seen from different points of view and those works develop, each in its own
framework, the corresponding computability notions. Mainly, Borel probability
measures can be regarded as points of a metric space, as valuations on open sets
or as integration operators. We express the computability counterparts of these
different views in a unified framework, and show them to be equivalent.

Extensions of the algorithmic theory of randomness to general spaces have pre-
viously been proposed: on effective topological spaces by Hertling and Weihrauch
(see [HW98],[HW03]) and on computable metric spaces by Gács (see [Gác05]), both
of them generalizing the notion of randomness tests and investigating the problem
of the existence of a universal test. In [HW03], to prove the existence of such a test,
ad hoc computability conditions on the measure are required, which a posteriori
turn out to be incompatible with the notion of computable measure. The second
one ([Gác05]), carrying the extension of Levin’s theory of randomness, considers
uniform tests which are tests parametrized by measures. A computability condition
on the basis of ideal balls (namely, recognizable Boolean inclusions) is needed to
prove the existence of a universal uniform test.

In this article, working in computable metric spaces with any probability mea-
sure, we consider both uniform and non-uniform tests and prove the following
points:

• uniformity and non-uniformity do not essentially differ,
• the existence of a universal test is assured without any further condition.

Another issue addressed in [Gác05] is the characterization of randomness in
terms of Kolmogorov Complexity (a central result in Cantor Space). There, this
characterization is proved to hold (for a compact computable metric space X with a
computable measure) under the assumption that there exists a computable injective
encoding of a full-measure subset of X into binary sequences. In the real line
for example, the base-two numeral system (or binary expansion) constitutes such
encoding for the Lebesgue measure. This fact was already been (implicitly) used
in the definition of random reals (reals with a random binary expansion, w.r.t the
uniform measure).
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We introduce, for computable metric spaces with a computable measure, a notion
of binary representation generalizing the base-two numeral system of the reals, and
prove that:

• such a binary representation always exists,
• a point is random if and only if it has a unique binary expansion, which is

random.
Moreover, our notion of binary representation allows to identify any computable

probability space with the Cantor space (in a computable-measure-theoretic sense).
It provides a tool to directly transfer elements of algorithmic randomness theory
from the Cantor space to any computable probability space. In particular, the
characterization of randomness in terms of Kolmogorov complexity, even in a non-
compact space, is a direct consequence of this.

The way we handle computability on continuous spaces is largely inspired by
representation theory. However, the main goal of that theory is to study, in general
topological spaces, the way computability notions depend on the chosen representa-
tion. Since we focus only on Computable Metric Spaces (see [Hem02] for instance)
and Enumerative Lattices (introduced in setion 2.2) we shall consider only one
canonical representation for each set, so we do not use representation theory in its
general setting.

Our study of measures and randomness, although restricted to computable met-
ric spaces, involves computability notions on various sets which do not have natural
metric structures. Fortunately, all these sets become enumerative lattices in a very
natural way and the canonical representation provides in each case the right com-
putability notions.

In section 2, we develop a language intended to express computability concepts,
statements and proofs in a rigorous but still (we hope) transparent way. The
structure of computable metric space is then recalled. In section 3, we introduce
the notion of enumerative lattices and present two important examples to be used in
the paper. Section 4 is devoted to the detailed study of computability on the set of
probability measures. In section 5 we define the notion of binary representation on
any computable metric space with a computable measure and show how to construct
such a representation. In section 6 we apply all this machinery to algorithmic
randomness.

2. Basic definitions

2.1. Recursive functions. The starting point of recursion theory was the math-
ematization of the intuitive notion of function computable by an effective procedure
or algorithm. The different systems and computation models formalizing mechan-
ical procedures on natural numbers or symbols have turned out to coincide, and
therefore have given rise to a robust mathematical notion which grasps (this is
Church-Turing thesis) what means for a (partial) function ϕ : N → N to be algo-
rithmic, and which can be made precise using any one of the numerous formalisms
proposed. Following the usual denomination, we call such a function a (partial)
recursive function. To show that a function ϕ : N → N is recursive, we will
exhibit an algorithm A which on input n halts and outputs ϕ(n) when it is defined,
runs forever otherwise.

In the same vein, a robust notion of (partial) recursive function F : NN → NN

can be characterized by different formal definitions:
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Via domain theory: (see [AJ94]). This approach takes the notion of recur-
sive function as primitive, which avoids the definition of a new computation
model. A partial function F : NN → NN is recursive if there is a recursive
function F ′ : N∗ → N∗ which is monotone for the prefix ordering, such that
for all σ ∈ dom(F ), F (σ) is the infinite sequence obtained at the limit by
computing F ′ on the finite prefixes of σ (precisely, the Baire space can be
embedded into the set of finite and infinite sequences of integers ordered
by the prefix relation, which is an ω-algebraic domain).

Via oracle Turing machines: (used by Ko and Friedman, see [KF82], [Ko91]).
An oracle Turing machine M[σ] is a Turing machine which works with a
sequence σ ∈ NN provided as oracle and is allowed to read elements σn of
the oracle sequence. On an input n ∈ N, it may stop and output a natural
number, interpreted as F (σ)n.

Via type-two Turing machines: (defined by Weihrauch, see [Wei00]). Ex-
pressed differently, it is essentially the same computation model (it works
on symbols instead of integers).

Again, to show that a function F : NN → NN is recursive, we will exhibit an
algorithm A which given σ ∈ NN as oracle and n as input, halts and outputs
F (σ)n. The algorithm together with σ in the oracle is denoted A[σ].

A sequence σ ∈ NN is recursive if the function n 7→ σn is recursive. Given
a family (σi)i∈N of recursive sequences, σi is recursive uniformly in i if the
function 〈i, n〉 7→ σi,n is recursive, where 〈, 〉 denotes some computable bijection
between tuples and natural numbers.

2.2. Representations and constructivity. A representation on a set X is a
surjective (partial) function ρ : NN → X. Let X and Y be sets with fixed represen-
tations ρX and ρY .

Definition 2.2.1 (Constructivity notions).
(1) An element x ∈ X is constructive if there is a recursive sequence σ such

that ρX(σ) = x.
(2) The elements of a sequence (xi)i∈N are uniformly constructive if there

is a family (σi)i of uniformly recursive sequences such that ρX(σi) = xi for
all i.

(3) A function f :⊆ X → Y is constructive on D ⊆ X if there exists a
recursive function F : NN → NN such that the following diagram commutes
on ρ−1

X (D):

NN F−→ NN

ρX ↓ ↓ ρY
X

f−→ Y

(that is, f ◦ ρX = ρY ◦ F on ρ−1
X (D))

We say that y is x-constructive if there is a function f :⊆ X → Y constructive
on {x} with f(x) = y. If x is constructive, x-constructivity and constructivity are
equivalent. Note that two sequences of natural numbers can be merged into a single
one, so the product X × Y of two represented sets has a canonical representation.
In particular, it makes sense to speak about (x, y)-constructive elements.

2.3. Objects. There is a canonical way of defining a representation on a set X
when 1) some collection of elementary objects of X can be encoded into natural
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numbers and 2) an element of X can be described by a sequence of these elementary
objects. Once encoded into natural numbers, the elementary objects inherit their
finite character and may be output by algorithms. Let us make it precise:

Definition 2.3.1. A numbered set O is a countable set together with a total
surjection νO : N → O called the numbering. We write on for ν(n).

A numbered set O and a (partial) surjection δ : ON → X induce canonically
a representation ρ = δ ◦ νO. At least in this paper, all representations will be
obtained in this way. A sequence of finite objects which is mapped by δ to x is
called a description of x.

An algorithm may then be seen as outputting objects:
Given a numbered set O, we say that an algorithm (plain or with oracle) enu-

merates a sequence of objects (oni)i∈N if on input i it outputs ni. Given a rep-
resentation (O, δ) on a set X, an algorithm enumerating a description of x ∈ X is
said to describe x.

An algorithm may also take objects as inputs, with a restriction:

Definition 2.3.2. An algorithm A is said to be extensional on an element x ∈ X
if for all σ such that ρX(σ) = x, A[σ] describes the same element y ∈ Y .

We then say that A x-describes y or that A[x] describes y.
The constructivity notions of definition 2.2.1 can then be expressed using this

language, which will be used throughout this paper.
(1) An element x ∈ X is constructive if there is an algorithm describing x,
(2) The elements of a sequence (xi)i∈N are uniformly constructive if there is an

algorithm A such that A(〈i, .〉) describes xi,
(3) A function f :⊆ X → Y is constructive on D ⊆ X if there exists an

algorithm which x-describes f(x) for all x ∈ D.
A x-constructive element y may be x-described by an algorithm which is exten-

sional only on x, and thus induce a function which is defined only at x.

2.4. Computable Metric Spaces.

Definition 2.4.1. A computable metric space is a triple X = (X, d,S), where:
• (X, d) is a separable complete metric space (polish metric space),
• S = {si : i ∈ N} is a countable dense subset of X,
• The real numbers d(si, sj) are all computable, uniformly in 〈i, j〉.

The elements of S are called the ideal points. The numbering νS defined
by νS(i) := si makes S a numbered set. Without loss of generality, νS can be
supposed to be injective: as d(si, sj) > 0 can be semi-decided, νS can be effectively
transformed into an injective numbering. Then a sequence of ideal points can be
uniquely identified with the sequence of their names.

The numbered sets S and Q>0 induce the numbered set of ideal balls B :=
{B(si, qj) : si ∈ S, qj ∈ Q>0}, the numbering being νB(〈i, j〉) := B(si, qj). We
write B〈i,j〉 for νB(〈i, j〉). The closed ball {x ∈ X : d(s, x) ≤ r} is denoted B(s, q)
and may not coincide with the closure of the open ball B(s, q) (typically, if the
space has disconnection).

We now recall some important examples of computable metric spaces:
examples:
1. the Cantor space (ΣN, d,S) where Σ is a finite alphabet, d(ω, ω′) := 2−min{n∈N:ωn 6=ω′

n}
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and S := {w000 . . . : w ∈ Σ∗} where Σ∗ is the set of finite words on Σ,
2. (Rn, dRn ,Qn) with the euclidean metric and the standard numbering of Qn,
3. if (X, dX ,SX) and (Y, dY ,SY ) are two computable metric spaces, (X×Y, d,SX×
SY ) has a canonical computable metric space structure, with d((x, y), (x′, y′)) =
max{dX(x, x′), dY (y, y′)}.

For further examples, like functions spaces C[0, 1] and Lp for computable p ≥ 1
we refer to [Weihrauch]. A sequence (xn)n∈N of points is said to be a fast Cauchy
sequence, or simply a fast sequence if d(xn, xn+1) < 2−n for all n.

Definition 2.4.2. On a computable metric space (X, d,S), the canonical repre-
sentation is the Cauchy representation (S, δC) defined by δC(−→s ) = x for all fast
sequence −→s of ideal points converging to x.

Again, each set X with a computable metric structure (X, d,S) will be implicitly
represented using the Cauchy representation. Then canonical constructively notions
derive directly from definition 2.2.1. It is usual to call a constructive element of
X a computable point, and a constructive function between computable metric
space, a computable function. Remark that the computable real numbers are
the computable points of the computable metric space (R, d,Q).

The choice of this representation is justified by the classical result: every com-
putable function between computable metric spaces is continuous (on its domain
of computability).

Proposition 2.4.1. The distance d : X ×X → R is a computable function.

Proposition 2.4.2. For a point x ∈ X, the following statements are equivalent:
• x is a computable point,
• all d(x, si) are upper semi-computable uniformly in i,
• dx := d(x, .) : X → R is a computable function.

Several metrics and effectivisations of a single set are possible, and induce in
general different computability notions: two computable metric structures (s,S)
and (d′,S ′) are said to be effectively equivalent if id : (X, d,S) → (X, d′,S ′) is
a computable homeomorphism (with computable inverse). In this case, all com-
putability notions are preserved replacing one structure by the other (see [Hem02]
for details).

3. Enumerative Lattices

3.1. Definition. We introduce a simple structure using basic order theory, on
which a natural representation can be defined. The underlying ideas are those
from domain theory, but the framework is lighter and (hence) less powerful. Actu-
ally, it is sufficient for the main purpose: proposition 3.1.1. This will be applied in
the last section on randomness.

Definition 3.1.1. An enumerative lattice is a triple (X,≤,P) where (X,≤) is
a complete lattice and P ⊆ X is a numbered set such that every element x of X is
the supremum of some subset of P.

We then define P↓(x) := {p ∈ P : p ≤ x} (note that x = supP↓(x)). Any
element of X can be described by a sequence −→p of elements of P. Note that the
least element ⊥ need not belong to P: it can be described by the empty set, of
which it is the supremum.
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Definition 3.1.2. The canonical representation on an enumerative lattice (X,≤
,P) is the induced by the partial surjection δ≤(−→p ) = sup−→p (where the sequence
−→p may be empty).

From here and beyond, each set X endowed with an enumerative structure
(X,≤,P) will be implicitly represented using the canonical representation. Hence,
canonical constructivity notions derive directly from definition 2.2.1. Let us focus
on an example: the identity function from X to X is computed by an algorithm
outputting exactly what is provided by the oracle. Hence, when the oracle is empty,
which describes ⊥, the algorithm runs forever and outputs nothing, which is a de-
scription of ⊥.
examples:

(1) (R,≤,Q) with R = R ∪ {−∞,+∞}: the constructive elements are the
so-called lower semi-computable real numbers,

(2) (2N,⊆, {finite sets}): the constructive elements are the r.e sets from classi-
cal recursion theory,

(3) ({⊥,>},≤, {>}) with ⊥ < >.
We recall that a real number x is computable if both x and −x are lower semi-

computable.
Here is the main interest of enumerative lattices:

Proposition 3.1.1. Let (X,≤,P) be an enumerative lattice. There is an enu-
meration (xi)i∈N of all the constructive elements of X such that xi is constructive
uniformly in i.

Proof. there is an enumeration ϕ of the r.e subsets of N: for every r.e subset E
of N, there is some i such that E = Ei := {ϕ(〈i, n〉) : n ∈ N}. Moreover, we can
take ϕ such that whenever Ei 6= ∅ the function ϕ(〈i, .〉) : N → N is total (this
is a classical construction from recursion theory, see [Rog87]). Then consider the
associated algorithm Aϕ = νP ◦ ϕ: for every constructive element x there is some
i such that Aϕ(〈i, .〉) : N → P enumerates x (∅ is an enumeration of ⊥).

�

Remark 3.1.1. Observe that on every enumerative lattice the Scott topology can
be defined: a Scott open set O is an upper subset (x ∈ O, x ≤ y ⇒ y ∈ O) such
that for each sequence −→p = (pni

)i∈N such that sup−→p ∈ O, there is some k such
that sup{pn0 , . . . , pnk

} ∈ O.
If Y and Z have enumerative lattice structures, a function f : Y → Z is said to

be Scott-continuous if it is monotonic and commutes with suprema of increasing
sequences (one can prove that f is Scott-continuous if and only if it is continuous
for the Scott topologies on Y and Z) and is easy to see that a Scott-continuous
function f : Y → Z such that all f(sup{pn1 , . . . , pnk

}) are constructive uniformly
in 〈n1, . . . , nk〉, is in fact a constructive function.

3.2. Functions from a computable metric space to an enumerative lattice.
Given a computable metric space (X, d,S) and an enumerative space (Y,≤,P), we
define the numbered set F of step functions from X to Y :

f〈i,j〉(x) =
{
pj if x ∈ Bi
⊥ otherwise

We then define C(X,Y ) as the closure of F under pointwise suprema, with the
pointwise ordering v. We have directly:
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Proposition 3.2.1. (C(X,Y ),v,F) is an enumerative lattice.

example: the set R+
= [0,+∞) ∪ {+∞} has an enumerative lattice structure

(R+
,≤,Q+), which induces the enumerative lattice C(X,R+

) of positive lower semi-
continuous functions from X to R+

. Its constructive elements are the positive lower
semi-computable functions.

We now show that the constructive elements of C(X,Y ) are exactly the construc-
tive functions from X to Y .

To each algorithmA we associate a constructive element of C(X,Y ), enumerating
a sequence of step functions: enumerate all 〈n, i0, . . . , ik〉 with d(sij , sij+1) < 2−(j+1)

for all j < k (prefix of a super-fast sequence). Keep only those for which the
computation of A[i0,...,ik,0,0,...](n) halts without trying to read beyond ik. For each
one, the latter computation outputs some element pl: then output the step function
f〈i,l〉 where Bi = B(sik , 2

−k). We denote by fA the supremum of the enumerated
sequence of step functions.

Lemma 3.2.1. For all x on which A is extensional, fA(x) is the element of Y
described by A[x].

Proof. let y be the element described by A[x].
For all 〈n, i0, . . . , ik〉 for which some f〈i,j〉 is enumerated with x ∈ Bi, there is a

fast sequence −→s converging to x starting with si0 , . . . , sik , for which A[−→s ](n) = pj .
Then y ≥ pj = f〈i,j〉(x). Hence y ≥ fA(x).

There is a super-fast sequence −→s converging to x: for all n, A[−→s ](n) stops and
outputs some pjn , so there is some in with x ∈ Bin such that f〈in,jn〉 is enumerated.
Hence, y = supn pjn = sup f〈in,jn〉(x) ≤ fA(x).

�

Proposition 3.2.2. The constructive elements of C(X,Y ) are exactly the (total)
constructive functions from X to Y .

Proof. the supremum of a r.e subset E of F is a total constructive function: semi-
decide in dovetail x ∈ Bi for all f〈i,j〉 ∈ E, and enumerate pj each time a test
stops.

Given a total constructive function f , there is an algorithm A which on each
x ∈ X is extensional and describes f(x), so f = fA.

�

The proof even shows that the equivalence is constructive: the evaluation of any
f : X → Y on any x ∈ X can be achieved by an algorithm having access to any
description of f ∈ C(X,Y ), and any algorithm evaluating f can be converted into
an algorithm describing f ∈ C(X,Y ). More precisely:

Proposition 3.2.3. Let X,X ′ be computable metric spaces and Y be an enumer-
ative lattice:

Evaluation: The function Eval : C(X,Y )×X → Y is constructive,
Curryfication: If a function f : X ′ ×X → Y is constructive then the function

from X ′ to C(X,Y ) mapping x′ ∈ X ′ to f(x′, .) is constructive.

Lemma 3.2.1 and proposition 3.2.2 implie:
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Corollary 3.2.1. The x-constructive elements of Y are exactly the images of x by
total constructive functions from X to Y .

This is a particular property of the enumerative lattice structure: a partial con-
structive function from some represented space to another cannot in general be
extended to a total constructive one.

3.3. The Open Subsets of a computable metric space. Following [BW99],
[BP03], we define constructivity notions on the open subsets of a computable metric
space. The topology τ induced by the metric has the numbered set B of ideal
balls as a countable basis: any open set can then be described as a countable
union of ideal balls. Actually (τ,⊆,B) is an enumerative space (cf section 3), the
supremum operator being union. The canonical representation on enumerative
lattices (definition 3.1.2) induces constructivity notions on τ , a constructive open
set being called a recursively enumerable (r.e) open set.

On the integers, it may be unnatural to show that some subset is recursively enu-
merable, and the equivalent notion of semi-decidable set is often used. This notion
can be extended to subsets of a computable metric space, and it happens to be very
useful in the applications. We recall from section 3 that {⊥,>} is an enumerative
lattice, which induces canonically the enumerative lattice C(X, {⊥,>}).

Definition 3.3.1. A subset A of X is said to be semi-decidable if its indicator
function 1A : X → {⊥,>} (mapping x ∈ A to > and x /∈ A to ⊥) is constructive.

In other words, A is semi-decidable if there is a recursive function ϕ such that
for all x ∈ X and all description −→s of x, ϕ[−→s ] stops if and only if x ∈ A. It is a
well-known result (see [BP03]) that the two notions are effectively equivalent:

Proposition 3.3.1. A subset of X is semi-decidable if and only if it is a r.e open
set. Moreover, the enumerative lattices (τ,⊆,B) and C(X, {⊥,>}) are construc-
tively isomorphic.

The isomorphism is the function U 7→ 1U and its inverse f 7→ f−1(>). In other
words, f−1(>) is f -r.e uniformly in f and 1U is U -lower semi-computable uniformly
in U . It implies in particular that:

Corollary 3.3.1. The intersection (U, V ) 7→ U ∩V and union (U, V ) 7→ U ∪V are
constructive functions from τ × τ to τ .

For computable functions between computable metric spaces, we have the fol-
lowing useful characterization:

Proposition 3.3.2. Let (X, dX , SX) and (Y, dY , SY ) be computable metric spaces.
A function f : X → Y is computable on D ⊆ X if and only if the preimages of
ideal balls are uniformly r.e open (in D) sets. That is, for all i, f−1(Bi) = Ui ∩D
where Ui is a r.e open set uniformly in i.

We will use the following notion:

Definition 3.3.2. A Π0
2-set is a set of the form

⋂
n Un where (Un)n is a sequence

of uniformly r.e open sets.
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4. Computing with probability measures

4.1. Measures as points of the computable metric space M(X). Here, fol-
lowing [Gác05], we define computable measures in the following way: first the space
M(X) is endowed with a computable metric space structure compatible with the
weak topology and then computable measures are defined as the constructive points.

Given a metric space (X, d), the set M(X) of Borel probability measures over
X can be endowed with the weak topology, which is the finest topology for which
µn → µ if and only if

∫
fdµn →

∫
fdµ for all continuous bounded function f : X →

R. This topology is metrizable and when X is separable and complete, M(X) is
also separable and complete (see [Bil68]). Moreover, a computable metric structure
on X induces in a canonical way a computable metric structure on M(X).

Let D ⊂M(X) be the set of those probability measures that are concentrated in
finitely many points of S and assign rational values to them. It can be shown that
this is a dense subset ([Bil68]). The numberings νS of ideal points ofX and νQ of the
rationals numbers induce a numbering νD of ideal measures: µ〈〈n1,...,nk〉,〈m1,...,mk〉〉
is the measure concentrated over the finite set {sn1 , . . . , snk

} where qmi
is the weight

of sni
.

4.1.1. The Prokhorov metric. Let us consider the particular metric on M(X):

Definition 4.1.1. The Prokhorov metric ρ on M(X) is defined by:

(1) ρ(µ, ν) := inf{ε ∈ R+ : µ(A) ≤ ν(Aε) + ε for every Borel set A}.

where Aε = {x : d(x,A) < ε}.

It is known that it is indeed a metric, which induces the weak topology on M(X)
(see [Bil68]). Moreover, we have that:

Proposition 4.1.1. (M(X),D, ρ) is a computable metric space.

Proof. We have to show that the real numbers ρ(µi, µj) are all computable, uni-
formly in 〈i, j〉. First observe that if U is a r.e open subset of X, µi(U) is
lower semi-computable uniformly in i and U . Indeed, if (sn1 , qm1), . . . , (snk

, qmk
)

are the mass points of µi together with their weights (recoverable from i) then
µi(U) =

∑
snj

∈U qmj . As the snj which belong to U can be enumerated from any
description of U , this sum is lower-semi-computable. In particular, µi(Bi1∪. . .∪Bik)
is lower semi-computable and µi(Bi1 ∪ . . . ∪ Bik) is upper semi-computable, both
of them uniformly in 〈i, i1, . . . , ik〉

Now we prove that ρ(µi, µj) is computable uniformly in 〈i, j〉.
Observe that if µi is an ideal measure concentrated over Si, then (1) becomes

ρ(µi, µj) = inf{ε ∈ Q : ∀A ⊂ Si, µi(A) < µj(Aε) + ε}. Since µj is also an ideal
measure and Aε is a finite union of open ideal balls, the number µj(Aε) is lower semi-
computable (uniformly) and then ρ(µi, µj) is upper semi-computable, uniformly in
〈i, j〉. To see that ρ(µi, µj) is lower-semicomputable, uniformly in 〈i, j〉, observe
that ρ(µi, µj) = sup{ε ∈ Q : ∃A ⊂ Si, µi(A) > µj(Aε) + ε}, where Aε = {x :
d(x,A) ≤ ε} (a finite union of closed ideal balls when A ⊂ Si) and use the upper
semi-computability of µj(Aε). �

Definition 4.1.2. A measure µ is computable if it is a constructive point of
(M(X),D, ρ).
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The effectivization of the space of Borel probability measures M(X) is of theo-
retical interest, and opens the question: what kind of information can be (algorith-
mically) recovered from a description of a measure as a point of the computable
metric space M(X) ? The two most current uses of a measure are to give weights
to measurable sets and means to measurable functions. Can these quantities be
computed ?

4.1.2. The Wasserstein metric. In the particular case when the metric space X is
bounded, an alternative metric can be defined on M(X). When f is a real-valued
function, µf denotes

∫
fdµ.

Definition 4.1.3. The Wasserstein metric on M(X) is defined by:

(2) W (µ, ν) = sup
f∈1−Lip(X)

(|µf − νf |)

where 1− Lip(X) is the space of 1-Lipschitz functions from X to R.

We recall (see [LNG05]) that W has the following properties:

Proposition 4.1.2.
(1) W is a distance and if X is separable and complete then M(X) with this

distance is a separable and complete metric space.
(2) The topology induced by W is the weak topology and thus W is equivalent

to the Prokhorov metric.

Moreover, if (X,S, d) is a computable metric space (and X bounded), then:

Proposition 4.1.3. (M(X),D,W ) is a computable metric space.

Proof. We have to show that the distance W (µi, µj) between ideal measures is
uniformly computable. From 〈i, j〉 we can compute the set Si,j = supp(µi) ∪
supp(µj). Let s0 ∈ Si,j , then we can suppose that the supremum in (2) is taken over
1− Lip0

s0(X) := {f ∈ 1− Lip(X) : 1− Lip0
s0(X)f(s) = 0}. Given some precision ε

we construct a finite set Nε ⊂ 1−Lip0
s0(X) made of uniformly computable functions

such that for each f ∈ 1−Lip0
s0(X) there is some l ∈ Nε satisfying sup{|f(x)−l(x)| :

x ∈ Si,j} < ε: compute an integer m such that Si,j ⊂ B(s,m); then |f | < m for
every f ∈ 1 − Lip0

s(X). Let n be such that m/n < 2ε. For each s ∈ Si,j and
a ∈ { lmn }

m
l=−m let us consider the functions defined by φ+

s,l(x) := a + d(s, x) and
φ−s,l(x) := a− d(s, x). Then it is not difficult to see that Nε defined as the set of all
possible combinations of max and min made with the φ+−

s,l (x) satisfy the required
condition.

Therefore, since sup(|f − g|) < ε implies |µ(f − g)| < ε we have that:

W (µi, µj) ∈ [ sup
g∈Nε

(|µig − µjg|), sup
g∈Nε

(|µig − µjg|) + 2ε]

where the µig are computable, uniformly in i. The result follows.
�

When X is bounded, the effectivisation using the Prokhorov or the Wasserstein
metrics turn out to be equivalent.

Theorem 4.1.1. The Prokhorov and the Wasserstein metrics are computably equiv-
alent. That is, the identity function id : (M(X),D, ρ) → (M(X),D,W ) is a com-
putable isomorphism, as well as its inverse.
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Proof. Let M be an integer such that supx,y∈X d(x, y) < M . Suppose ρ(µ, ν) <
ε/(M + 1). Then, by the coupling theorem [Bil68], for every f ∈ 1 − Lip(X) it
holds |µf − νf | ≤ ε, then W (µ, ν) < ε. Conversely, suppose W (µ, ν) < ε2 < 1.
Let A be a Borel set and define gAε := |1 − d(x,A)/ε|+. Then εgAε ∈ 1 − Lip(X).
W (µ, ν) < ε2 implies µεgAε < νεgAε +ε2 and since µ(A) ≤ µgAε and νgAε ≤ ν(Aε), we
conclude µ(A) ≤ ν(Aε) + ε and then ρ(µ, ν) < ε. Therefore, given a fast sequence
of ideal measures converging to µ in the Prokhorov metric, we can construct a fast
sequence of ideal measures converging to µ in the W metric and vice-versa.

�

This equivalence offers an alternative method to prove computability of mea-
sures. It is used for example in [GHR07b] to show the computability of the physical
measures for some classes of dynamical systems.

4.2. Measures as valuations. We now investigate the first problem: can the
measure of sets be computed from the Cauchy description of a measure? Actually,
the answer is positive for a very small part of the Borel sigma-field. It is a well-
known fact that a Borel (probability) measure µ is characterized by the measure of
open sets, which generate the Borel sigma-field. That is, by the valuation vµ : τ →
[0, 1] which maps an open set to its µ-measure. The question is then so study this
characterization from a computability viewpoint.

The first result is that the measure of open sets can be lower semi-computed,
using the Cauchy description of the measure.

Proposition 4.2.1. The valuation operator v : M(X)× τ → [0, 1] mapping (µ,U)
to µ(U) is lower semi-computable.

Proof. as vµ = v(µ, .) is Scott-continuous (see remark 3.1.1), it suffices to show that
it is uniformly lower semi-computable on finite unions of balls.

We first restrict to ideal measures µi: we have already seen (proof of proposition
4.1.1) that all µi(Bi1∪. . .∪Bik) are lower semi-computable real numbers, uniformly
in 〈i, i1, . . . , ik〉.

Now let (µkn
)n∈N a description of a measure µ, that is a fast sequence converging

to µ for the Prokhorov distance: then ρ(µkn , µ) ≤ εn where εn = 2−n+1. For n ≥ 1,
and U = B(si1 , qj1) ∪ . . . ∪B(sik , qjk) define:

Un =
⋃
m≤k

B(sim , qjm − εn)

note that U εnn−1 ⊆ Un and U εnn ⊆ U . We show that µ(U) = supn(µjn(Un)− εn):
• µjn(Un) ≤ µ(U) + εn for all n, so µ(U) ≥ supn(µjn(Un)− εn).
• µ(Un−1) ≤ µjn(Un) + εn for all n. As Un−1 increases towards U as n → ∞,

µ(U) = supn(µ(Un−1)− 2εn) ≤ supn(µjn(Un)− εn).
As the quantity µjn(Un) − εn is lower semi-computable uniformly in n, we are

done (observe that everything is uniform in the finite description of U).
�

The second result is stronger: the lower semi-computability of the measure of
the r.e open sets even characterizes the computability of the measure.

Theorem 4.2.1. Given a measure µ ∈M(X), the following are equivalent:
(1) µ is computable,
(2) vµ : τ → [0, 1] is lower-semi-computable,
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(3) µ(Bi1 ∪ . . . ∪Bik) is lower-semi-computable uniformly in 〈i1, . . . , ik〉.

Proof. [1 ⇒ 2] Direct from proposition 4.2.1. [2 ⇒ 3] Trivial. [3 ⇒ 1] We show
that ρ(µn, µ) is upper semi-computable uniformly in n, and then use proposition
2.4.2. Since ρ(µn, µ) < ε iff µn(A) < µ(Aε) + ε for all A ⊂ Sn where Sn is the
finite support of µn, and µ(Aε) is lower semi-computable (Aε is a finite union of
open ideal balls) ρ(µn, µ) < ε is semi-decidable, uniformly in n and ε. This allows
to construct a fast sequence of ideal measures converging to µ.

�

It means that a representation which would be “tailor-made” to make the val-
uation constructive, describing a measure µ by the set of integers 〈i1, . . . , ik, j〉
satisfying µ(Bi1 ∪ . . .∪Bik) > qj , would be constructively equivalent to the Cauchy
representation. This is the approach taken in [Wei99] for the special case X = [0, 1]
and in [Sch07] on an arbitrary sequential topological space. In both case, the
topology on M(X) induced by this representation is proved to be equivalent to the
weak topology. A domain theoretical approach was also developed in [Eda96] on a
compact space, the Scott topology being proved to induce the weak topology.

4.2.1. The examples of the Cantor space and the unit interval. On the Cantor space
ΣN (where Σ is a finite alphabet) with its natural computable metric space struc-
ture, the ideal balls are the cylinders. As a finite union of cylinders can always
be expressed as a disjoint (and finite) union of cylinders, and the complement of a
cylinder is a finite union of cylinders, we have:

Corollary 4.2.1. A measure µ ∈ M(ΣN) is computable iff the measures of the
cylinders are uniformly computable.

On the unit real interval, ideals balls are open rational intervals. Again, a finite
union of such intervals can always be expressed as a disjoint (and finite) union of
open rational intervals. Then:

Corollary 4.2.2. A measure µ ∈ M([0, 1]) is computable iff the measures of the
rational open intervals are uniformly lower-semi-computable.

If µ has no atoms, a rational open interval is the complement of at most two
disjoint open rational intervals, up to a null set. In this case, µ is then computable
iff the measures of the rational intervals are uniformly computable.

4.3. Measures as integrals. We now answer the second question: is the integral
of functions computable from the description of a measure ?

The computable metric space structure of X and the enumerative lattice struc-
ture of R+

induce in a canonical way the enumerative space C(X,R+
) (see section

3.2), which is actually the set of lower semi-continuous functions from X to R+
.

We have:

Proposition 4.3.1. The integral operator
∫

: M(X) × C(X,R+
) → R+

is lower
semi-computable.
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Proof. the integral of a finite supremum of step functions can be expressed by
induction on the number of functions: first,

∫
f〈i,j〉dµ = qjµ(Bi) and∫

sup{f〈i1,j1〉, . . . , f〈ik,jk〉}dµ = qjmµ(Bi1 ∪ . . . ∪Bik) +∫
sup{f〈i1,j′1〉, . . . , f〈ik,j′k〉}dµ

where qjm is minimal among {qj1 , . . . , qjk} and qj′1 = qj1 − qjm , qj′2 = qj2 − qjm , etc.
Note that f〈im,j′m〉 being the zero function can be removed.

Now, m can be computed and by proposition 4.2.1 the measure of finite unions
of ideal balls can be uniformly µ-lower semi-computed, so the integral above can be
uniformly µ-lower semi-computed. For any fixed measure µ, the integral operator∫
dµ : C(X,R+

) → R+
is Scott-continuous, so it is lower semi-computable.

�

Again, the lower semi-computability of the integral of lower semi-computable
functions characterizes the computability of the measure:

Corollary 4.3.1. Given a measure µ ∈M(X), the following are equivalent:
(1) µ is computable,
(2)

∫
dµ : C(X,R+

) → R+
is lower semi-computable,

(3)
∫

sup{fi1 , . . . , fik}dµ is lower-semi-computable uniformly in 〈i1, . . . , ik〉.

Proof. [2 ⇔ 3] holds by Scott-continuity of the operator,
[1 ⇒ 2] is a direct consequence of proposition 4.3.1,
[2 ⇒ 1] is a direct consequence of theorem 4.2.1, composing the integral operator

with the function from τ to C(X,R+
) mapping an open set to its indicator function

(which is computable, see proposition 3.3.1).
�

It means that a representation of measures which would be “tailor-made” to
make the integration constructive, describing a measure by the set of integers
〈i1, . . . , ik, j〉 satisfying

∫
sup{fi1 , . . . , fik}dµ > qj , would be constructively equiva-

lent to the Cauchy representation.
A corollary of proposition 4.3.1 will be used in the last section: let (fi)i be a

sequence of uniformly computable functions, i.e. such that the function (i, x) 7→
fi(x) is computable. If moreover fi has a bound Mi computable uniformly in i,
then the function (µ, i) →

∫
fidµ is computable. Indeed, fi +Mi (resp. Mi− fi) is

uniformly lower (resp. upper) semi-computable, so
∫
fidµ =

∫
(fi +Mi)dµ−Mi =

Mi −
∫

(Mi − fi)dµ and proposition 4.3.1 allow to conclude.

5. Computable Probability Spaces

Definition 5.0.1. A computable probability space is a pair (X , µ) where X is
a computable metric space and µ a computable Borel probability measure on X.

Definition 5.0.2. A morphism of computable probability spaces F : (X , µ) →
(Y, ν), is a computable measure-preserving function F : DF ⊆ X → Y where DF

is a (full-measure) Π0
2-set.

An isomorphism (F,G) : (X , µ) � (Y, ν) is a pair (F,G) of morphisms such
that G ◦ F = id on F−1(DG) and F ◦G = id on G−1(DF ).
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We recall that F is measure-preserving if ν(A) = µ(F−1(A)) for all Borel set A.

5.1. Generalized binary representations. The Cantor space 2ω (2 denotes
{0, 1}) is a privileged place for computability. This can be understood by the
fact that it is the countable product (with the product topology) of a finite space
(with the discrete topology). A consequence of this is that membership of a basic
open set (cylinder) boils down to a pattern-matching and is then decidable. As
decidable sets must be clopen, this property cannot hold in connected spaces. As
a result, a computable metric space is not in general constructively homeomorphic
to the Cantor space.

Nevertheless, the real unit interval [0, 1] is not so far away from the Cantor space.
The binary numeral system provides a correspondence between real numbers and
binary sequences, which is certainly not homeomorphic, unless we remove the small
set of dyadic numbers. In particular, the remaining set is totally disconnected, and
the dyadic intervals form a basis of clopen sets.

Actually, this correspondence makes the computable probability space [0, 1] with
the Lebesgue measure isomorphic to the Cantor space with the uniform measure.
This fact has been implicitly used, for instance, to extend algorithmic randomness
on the Cantor space with the uniform measure to the unit interval with the Lebesgue
measure.

We extend this to any computable probability space defining the notion of binary
representation, and show that every computable probability space has a binary rep-
resentation, which implies in particular that every computable probability space is
isomorphic to the Cantor space with a computable measure. To carry out this gen-
eralization, let us briefly scrutinize the binary numeral system on the unit interval:
δ : 2ω → [0, 1] is a total surjective morphism. Every non-dyadic real has a unique

expansion, and the inverse of δ, defined on the set D of non-dyadic numbers, is
computable. Moreover, D is large both in a topological and measure-theoretical
sense: it is a residual (a countable intersection of dense open sets) and has measure
one. (δ, δ−1) is then an isomorphism.

In our generalization, we do not require every binary sequence to be the expan-
sion of a point, which would force X to be compact.

Definition 5.1.1. A binary representation of a computable probability space
(X , µ) is a pair (δ, µδ) where µδ is a computable probability measure on 2ω and
δ : (2ω, µδ) → (X , µ) is a surjective morphism such that, calling δ−1(x) the set of
expansions of x ∈ X:
• there is a dense full-measure Π0

2-set D of points having a unique expansion,
• δ−1 : D → δ−1(D) is computable.

Remark that when the support of the measure (the smallest closed set of full
measure) is the whole space X, like the Lebesgue measure on the interval, a full-
measure Π0

2-set is always a residual, but in general it is only dense on the support
of the measure: that is the reason why we explicitly require D to be dense. Also
remark that a binary representation δ always induces an isomorphism (δ, δ−1) be-
tween the Cantor space and the computable probability space.

The sequel of this section is devoted to the proof of the following result:

Theorem 5.1.1. Every computable probability space (X , µ) has a binary represen-
tation.
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The space, restricted to the domain D of the isomorphism, is then totally dis-
connected: the preimages of the cylinders form a basis of clopen and even decidable
sets. In the whole space, they are not decidable any more. Instead, they are almost
decidable.

Definition 5.1.2. A set A is said to be almost decidable if there are two r.e
open sets U and V such that:

U ⊂ A, V ⊆ AC , U ∪ V is dense and has measure one

Definition 5.1.3. A measurable setA is said to be µ-continuous or a µ-continuity
set if µ(∂A) = 0 where ∂A = A ∩X \A is the boundary of A.

Remark that, as for subsets of N, a set is almost decidable if and only if its
complement is a.s. decidable. An almost decidable set is always a continuity set.
Let B(s, r) be a µ-continuous ball with computable radius: in general it is not
an almost decidable set (for instance, isolated points may be at distance exactly r
from s). But if there is no ideal point is at distance r from s, then B(s, r) is almost
decidable: take U = B(s, r) and V = X \B(s, r).

We say that the elements of a sequence (Ai)i∈N are uniformly a.s. decidable
if there are two sequences (Ui)i∈N and (Vi)i∈N of uniformly r.e sets satisfying the
conditions above.

Lemma 5.1.1. There is a sequence (rn)n∈N of uniformly computable reals such
that (B(si, rn))〈i,n〉 is a basis of uniformly almost decidable balls.

Proof. define U〈i,k〉 = {r ∈ R+ : µ(B(si, r)) < µ(B(si, r))+1/k}: by computability
of µ, this is a r.e open subset of R+, uniformly in 〈i, k〉. It is furthermore dense in
R+: the spheres Sr = B(si, r) \B(si, r) form a partition of the space when r varies
in R+ and µ is finite, so the set of r for which µ(Sr) ≥ 1/k is finite.

Define V〈i,j〉 = R+ \ {d(si, sj)}: this is a dense r.e open set, uniformly in 〈i, j〉.
Then by the computable Baire Category Theorem (see [YMT99], [Bra01]), the

dense Π0
2-set

⋂
〈i,k〉 U〈i,k〉 ∩

⋂
〈i,j〉 V〈i,j〉 contains a sequence (rn)n∈N of uniformly

computable real numbers which is dense in R+. In other words, all rn are com-
putable, uniformly in n. By construction, for any si and rn, B(si, rn) is almost
decidable.

We recall that from an enumeration (In)n∈N of all the rational compact intervals
of R+, rn is constructed computing a nested shrinking sequence (Jnk )k∈N of rational
compact intervals starting from Jn0 = In, and such that Jnk+1 ⊆ Jnk ∩Uk ∩Vk. Then
{rn} =

⋂
k J

n
k .

�

We will denote B(si, rn) by Bµk where k = 〈i, n〉. Note that different algorithmic
descriptions of the same µmay yield different sequences (rn)n∈N, so Bµk is an abusive
notation. It is understood that some algorithmic description of µ has been chosen
and fixed. This can be done only because the measure µ is computable, which is
then a crucial hypothesis. We denote X \B(si, rn) by Cµk and define:

Definition 5.1.4. For w ∈ 2∗, the cell Γ(w) is defined by induction on |w|:

Γ(ε) = X, Γ(w0) = Γ(w) ∩ Cµi and Γ(w1) = Γ(w) ∩Bµi
where ε is the empty word and i = |w|.
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This an almost decidable set, uniformly in w.

Proof. (of theorem 5.1.1). We construct an encoding function b : D → 2ω, a
decoding function δ : Dδ → X, and show that δ is a binary representation, with
b = δ−1.

Encoding.
Let D =

⋂
iB

µ
i ∪C

µ
i : this is a dense full-measure Π0

2-set. Define the computable
function b : D → 2ω by:

b(x)i =
{

1 if x ∈ Bµi
0 if x ∈ Cµi

Let x ∈ D: ω = b(x) is also characterized by {x} =
⋂
i Γ(ω0..i−1). Let µδ be

the image measure of µ by b: µδ = µ ◦ b−1. b is then a morphism from (X,µ) to
(2ω, µδ).

Decoding.
Let Dδ be the set of binary sequences ω such that

⋂
i Γ(ω0..i−1) is a singleton.

We define the decoding function δ : Dδ → X by:

δ(ω) = x if
⋂
i

Γ(ω0..i−1) = {x}

ω is called an expansion of x. Remark that x ∈ Bµi ⇒ ωi = 1 and x ∈ Cµi ⇒
ωi = 0, which implies in particular that if x ∈ D, x has a unique expansion, which
is b(x). Hence, b = δ−1 : δ−1(D) → D and µδ(Dδ) = µ(D) = 1.

We now show that δ : Dδ → X is a surjective morphism. For seek of clarity, the
center and the radius of the ball Bµi will be denoted si and ri respectively. Let us
call i an n-witness for ω if ri < 2−(n+1), ωi = 1 and Γ(ω0..i) 6= ∅.
• Dδ is a Π0

2-set: we show that Dδ =
⋂
n{ω ∈ 2ω : ω has a n-witness}.

Let ω ∈ Dδ and x = δ(ω). For each n, x ∈ B(si, ri) for some i with ri < 2−(n+1).
Since x ∈ Γ(ω0..i), we have that Γ(ω0..i) 6= ∅ and ωi = 1 (otherwise Γ(ω0..i) is
disjoint of Bµi ). In other words, i is an n-witness for ω.

Conversely, if ω has a n-witness in for all n, since Γ(ω0..in) ⊆ Bµin whose radius
tends to zero, the nested sequence (Γ(ω0..in))n of closed cells has, by completeness
of the space, a non-empty intersection, which is a singleton.
• δ : Dδ → X is computable. For each n, find some n-witness in of ω: the

sequence (sin)n is a fast sequence converging to δ(ω).
• δ is surjective: we show that each point x ∈ X has at least one expansion.

To do this, we construct by induction a sequence ω = ω0ω1 . . . such that for all i,
x ∈ Γ(ω0 . . . ωi). Let i ≥ 0 and suppose that ω0 . . . ωi−1 (empty when i = 0) has
been constructed. As Bµi ∪ C

µ
i is open dense and Γ(ω0..i−1) is open, Γ(ω0..i−1) =

Γ(ω0..i−1) ∩ (Bµi ∪ C
µ
i ) which equals Γ(ω0..i−10) ∪ Γ(ω0..i−11). Hence, one choice

for ωi ∈ {0, 1} gives x ∈ Γ(ω0..i).
By construction, x ∈

⋂
i Γ(ω0..i−1). As (Bµi )i is a basis and ωi = 1 whenever

x ∈ Bµi , ω is an expansion of x.
�

5.2. Another characterization of the computability of measures. The ex-
istence of a basis of almost decidable sets also leads to another characterization of
the computability of measures, which is reminiscent of what happens on the Cantor
space (see corollary 4.2.1). Let us say that two bases (Ui)i and (Vi)i of the topology
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τ are constructively equivalent if both idτ : (τ,⊆,U) → (τ,⊆,V) and its inverse are
constructive functions between enumerative lattices.

Corollary 5.2.1. A measure µ ∈ M(X) is computable if and only if there is a
basis U = (Ui)i∈N of uniformly almost decidable open sets which is constructively
equivalent to B and such that all µ(Ui1 ∪ . . . ∪ Uik) are computable uniformly in
〈i1, . . . , ik〉.

Proof. if µ is computable, the a.s. decidable balls U〈i,n〉 = B(si, rn) are basis
which is constructively equivalent to B: indeed, B(si, rn) =

⋃
qj<rn

B(si, qj) and
B(si, qj) =

⋃
rn<qj

B(si, rn), and rn is computable uniformly in n.
For the converse, the valuation function fµ is lower semi-computable. Indeed,

the r.e open sets are uniformly r.e relatively to the basis U , so their measures can
be lower-semi-computed, computing the measures of finite unions of elements of U .
Hence µ is computable by theorem 4.2.1.

�

6. Algorithmic randomness

On the Cantor space with a computable measure µ, Martin-Löf originally defined
the notion of an individual random sequence as a sequence passing all µ-randomness
tests. A µ-randomness test à la Martin-Löf is a sequence of uniformly r.e open sets
(Un)n satisfying µ(Un) ≤ 2−n. The set

⋂
n Un has null measure, in an effective way:

it is then called an effective null set.
Equivalently, a µ-randomness test can be defined as a positive lower semi-

computable function t : 2ω → R satisfying
∫
tdµ ≤ 1 (see [VV93] for instance).

The associated effective null set is {x : t(x) = +∞} =
⋂
n{x : t(x) > 2n}. Actually,

every effective null set can be put in this form for some t. A point is then called
µ-random if it lies in no effective null set.

Following Gács, we will use the second presentation of randomness tests which
is more suitable to express uniformity.

6.1. Randomness w.r.t any probability measure.

Definition 6.1.1. Given a measure µ ∈ M(X), a µ-randomness test is a µ-
constructive element t of C(X,R+

), such that
∫
tdµ ≤ 1. Any subset of {x ∈ X :

t(x) = +∞} is called a µ-effective null set.
A uniform randomness test is a constructive function T from M(X) to

C(X,R+
) such that for all µ ∈M(x),

∫
Tµdµ ≤ 1 where Tµ denotes T (µ).

Note that T can be also seen as a lower-semi-computable function from M(X)×
X to R+

(see section 3.2).
A presentation à la Martin-Löf can be directly obtained using the functions

below:

F : C(X,R+
) → τN

t 7→ (t−1(2n,+∞))n
G : τN → C(X,R+

)
(Un)n 7→ (x 7→ sup{n : x ∈

⋂
i≤n Ui})

which are constructive, satisfy F ◦G = id : τN → τN and preserve the corresponding
effective null sets.
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A uniform randomness test T induces a µ-randomness test Tµ for all µ. We
show two important results which hold on any computable metric space:
• the two notions are actually equivalent (theorem 6.1.1),
• there is a universal uniform randomness test (theorem 6.1.2).
The second result was already obtained by Gács, but only on spaces which have

recognizable Boolean inclusions, which is an additional computability property on
the basis of ideal balls.

By proposition 3.2.2, constructive functions from M(X) to C(X,R+
) can be

identified to constructive elements of the enumerative lattice C(M(X), C(X,R+
)).

Let (Hi)i∈N be an enumeration of all its constructive elements (proposition 3.1.1):
Hi = supk fϕ(i,k) where ϕ : N2 → N is some recursive function and the fn are step
functions.

Lemma 6.1.1. There is a constructive function T : N×M(X) → C(X,R+
) satis-

fying:
• for all i, Ti = T (i, .) is a uniform randomness test,
• if

∫
Hi(µ)dµ < 1 for some µ, then Ti(µ) = Hi(µ).

Proof. To enumerate only tests, we would like to be able to semi-decide
∫

supk<n fϕ(i,k)(µ)dµ <
1. But supk<n fϕ(i,k)(µ) is only lower semi-computable (from µ). To overcome this
problem, we use another class of basic function.

Let Y be a computable metric space: for an ideal point s of Y and positive
rationals q, r, ε, define the hat function:

hq,s,r,ε(y) := q.[1− [d(y, s)− r]+/ε]+

where [a]+ = max{0, a}. This is a continuous function whose value is q in B(s, r),
0 outside B(s, r + ε). The numberings of S and Q>0 induce a numbering (hn)n∈N
of all the hat functions. They can be taken as an alternative to step functions
in the enumerative lattice C(Y,R+

): they yield the same computable structure.
Indeed, step functions can be constructively expressed as suprema of such functions:
f〈i,j〉 = sup{hqj ,s,r−ε,ε : 0 < ε < r} where Bi = B(s, r), and conversely.

We apply this to Y = M(X)×X endowed with the canonical computable metric
structure. By Curryfication it provides functions hn ∈ C(M(X), C(X,R+

)) with
which the Hi can be expressed: there is a recursive function ψ : N2 → N such that
for all i, Hi = supk hψ(i,k).

Furthermore, hn(µ) (strictly speaking, Eval(hn, µ), see proposition 3.2.3) is
bounded by a constant computable from n and independent of µ. Hence, the inte-
gration operator

∫
: M(X)×N → [0, 1] which maps (µ, 〈i1, . . . , ik〉) to

∫
sup{hi1(µ), . . . , hik(µ)}dµ

is computable.
We are now able to define T : T (i, µ) = sup{Hk

i (µ) :
∫
Hk
i (µ)dµ < 1} where

Hk
i = supn<k hψ(i,n). As

∫
Hk
i (µ)dµ can be computed from i, k and a description

of µ, T is a constructive function from N×M(X) to C(X,R+
).

�

As a consequence, every randomness test for a particular measure can be ex-
tended to a uniform test:

Theorem 6.1.1 (Uniformity vs non-uniformity). Let µ0 be a measure. For every
µ0-randomness test t there is a uniform randomness test T : M(X) → C(X,R+

)
with T (µ0) = 1

2 t.
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Proof. let µ0 be a measure and t a µ0-randomness test: 1
2 t is then a µ0-constructive

element of the enumerative lattice C(X,R+
), so by lemma 3.2.1 there is a construc-

tive element H of C(M(X), C(X,R+
)) such that H(µ0) = 1

2 t. There is some i
such that H = Hi: Ti is a uniform randomness test satisfying Ti(µ0) = 1

2 t because∫
Hi(µ0)dµ0 = 1

2

∫
tdµ0 < 1.

�

Theorem 6.1.2 (Universal uniform test). There is a universal uniform randomness
test, that is a uniform test Tu such that for every uniform test T there is a constant
cT with Tu ≥ cTT .

Proof. it is defined by Tu :=
∑
i 2

−i−1Ti: as every Ti is a uniform randomness test,
Tu is also a uniform randomness test, and if T is a uniform impossibility test, then
in particular 1

2T is a constructive element of C(M(X), C(X,R+
)), so 1

2T = Hi for
some i. As

∫
Hi(µ)dµ = 1

2

∫
T (µ)dµ < 1 for all µ, Ti(µ) = Hi(µ) = 1

2T (µ) for all
µ, that is Ti = 1

2T . So Tu ≥ 2−i−2T .
�

Definition 6.1.2. Given a measure µ, a point x ∈ X is called µ-random if
Tµu (x) <∞. Equivalently, x is µ-random if it lies in no µ-effective null set.

The set of µ-random points is denoted by Rµ. This is the complement of the
maximal µ-effective null set {x ∈ X : Tµu (x) = +∞}.

6.2. Randomness on a computable probability space. We study the particu-
lar case of a computable measure. As a morphism of computable probability spaces
is compatible with measures and computability structures, it shall be compatible
with algorithmic randomness. Indeed:

Proposition 6.2.1. Morphisms of computable probability spaces are defined on
random points and preserve randomness.

To prove it, we shall use the following lemma:

Lemma 6.2.1. In a computable probability space (X , µ), every random point lies
in every r.e open set of full measure.

Proof. let U =
⋃
〈i,j〉∈E B(si, qj) be a r.e open set of measure one, with E a r.e

subset of N. Let F be the r.e set {〈i, k〉 : ∃j, 〈i, j〉 ∈ E, qk < qj}. Define:

Un =
⋃

〈i,k〉∈F∩[0,n]

B(si, qk) and V C
n =

⋃
〈i,k〉∈F∩[0,n]

B(si, qk)

Then Un and Vn are r.e uniformly in n, Un ↗ U and UC =
⋂
n Vn. As µ(Un) is

lower semi-computable uniformly in n, a sequence (ni)i∈N can be computed such
that µ(Uni

) > 1 − 2−i. Then µ(Vni
) < 2−i, and UC =

⋂
i Vni

is a µ-Martin-Löf
test. Therefore, every µ-random point is in U .

�

Proof. (of proposition 6.2.1) let F : D ⊆ X → Y be a morphism. From lemma
6.2.1, every random point is in D which is an intersection of full-measure r.e open
sets.

Let t : Y → R+
be the universal ν-test. The function t ◦ F : D → R+

is lower
semi-computable. Let A be any algorithm lower semi-computing it: the associated
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lower semi-computable function fA : X → R+
extends t ◦ F to the whole space X

(see lemma 3.2.1). As µ(D) = 1,
∫
t ◦ Fdµ is well defined and equals

∫
fAdµ. As

F is measure-preserving,
∫
t ◦ Fdµ =

∫
tdν ≤ 1. Hence fA is a µ-test. Let x ∈ X

be a µ-random point: as x ∈ D, t(F (x)) = fA(x) < +∞, so F (x) is ν-random.
�

Corollary 6.2.1. Let (F,G) : (X , µ) � (Y, ν) be an isomorphism of computable
probability spaces. Then F|Rµ

and G|Rν
are total computable bijections between Rµ

and Rν , and (F|Rµ
)−1 = G|Rν

.

In particular:

Corollary 6.2.2. Let δ be a binary representation on a computable probability space
(X , µ). Each point having a µδ-random expansion is µ-random and each µ-random
point has a unique expansion, which is µδ-random.

This proves that algorithmic randomness over a computable probability space
could have been defined encoding points into binary sequences using a binary rep-
resentation: this would have led to the same notion of randomness. Using this
principle, a notion of Kolmogorov complexity characterizing Martin-Löf random-
ness comes for free. For x ∈ D, define:

Hn(x) = H(ω0..n−1) and Γn(x) = δ([ω0..n−1])

where ω is the expansion of x and H is the prefix Kolmogorov complexity.

Corollary 6.2.3. Let δ be a binary representation on a computable probability
space (X , µ). Then x is µ-random if and only if there is c such that for all n:

Hn(x) ≥ − logµ(Γn(x))− c

All this allows to treat algorithmic randomness within probability theory over
general metric spaces. In [GHR07a] for instance, it is applied to show that in ergodic
systems over metric spaces, algorithmically random points are well-behaved: they
are typical with respect to any computable measure preserving transformation,
generalizing what has been proved in [V’y97] for the Cantor space.
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