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Abstract

The interaction between algorithmic randomness and ergodic theory is a rich
field of investigation. In this paper we study the particular case of the ergodic de-
composition. We give several positive partial answers, leaving the general problem
open. We shortly illustrate how the effectivity of the ergodic decomposition allows
one to easily extend results from the ergodic case to the non-ergodic one (namely
Poincaré recurrence theorem). We also show that in some cases the ergodic mea-
sures can be computed from the typical realizations of the process.

1 Introduction

The goal of the paper is to study the interaction between the theory of algorithmic
randomness, started by Martin-Löf [ML66], and ergodic theory (i.e. restricting to shift-
invariant measures). The first results in this direction were obtained by V’yugin [V’y98],
who proved that Birkhoff’s ergodic theorem and a weak form of Shannon-McMillan-
Breiman theorem hold for each Martin-Löf random sequence. Recently several improve-
ments of the first result have been achieved [Nan08, HR09a, BDMS10].

A classical result from ergodic theory, called the ergodic decomposition, states that
given a stationary process, almost every realization is actually a typical realization of an
ergodic process. The full process can be decomposed as the combination of a collection of
ergodic processes. It is natural to ask the question whether every Martin-Löf random se-
quence (with respect to the stationary measure) statistically induces an ergodic measure,
and if the sequence is Martin-Löf random with respect to it.

We give three orthogonal cases in which we can give a positive answer: (i) when the
decomposition of the measure is computable, (ii) when the decomposition of the measure
is supported on an effective compact class of ergodic measures, (iii) when the decompo-
sition of the measure is finite. Observe that the three cases are mutually incomparable.
We leave the general problem open.

As a side result, we give sufficient conditions to infer the statistics of the system
from the observation; formally we give a sufficient condition on an ergodic measure to be
computable relative to its random elements.

In Section 2 we give the necessary background on computability and randomness. In
Section 3 we develop results about randomness and combinations of measures that will
be applied in the sequel, but are of independent interest (outside ergodic theory). We
start Section 4 with a reminder on the ergodic decomposition and then we present our
results relating it to randomness. We finish in Section 5 by a side result on the inference
of ergodic measures from their random elements.
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2 Preliminaries

We assume familiarity with algorithmic randomness and computability theory.
All the results stated in this paper hold on effectively compact computable metric

spaces X and for computable maps T : X → X (as defined in computable analysis,
see [Wei00]), but for the sake of simplicity we formulate them only on the Cantor space
X = {0, 1}N and for the shift transformation T : X → X defined by T (x0x1x2 . . .) =
x1x2x3 . . .. The Cantor space is endowed with the product topology, generated by the
cylinders [w], w ∈ {0, 1}∗. Implicitly, measures are probability measures defined on the
Borel σ-algebra, and ergodic measures are stationary (i.e., shift-invariant) ergodic Borel
probability measures. The set P(X) of probability measures over X is endowed with the
weak* topology, given by the notion of weak convergence: measures Pn converge to P if
for every w ∈ {0, 1}∗, Pn[w]→ P [w].

A name for a real number r is an infinite binary sequence encoding, in some canonical
effective way, a sequence of rational numbers qn such that |qn − r| < 2−n for all n. A
name for a probability measure P is the interleaving, in some canonical effective way,
of names for the numbers P [w], w ∈ {0, 1}∗. A computable probability measure is a
measure admitting a computable name: in other words, the numbers P [w] are uniformly
computable.

Let X, Y be any spaces among {0, 1}N, R and P(X). A function f : X → Y is
computable if there is an oracle machine that, given a name of x ∈ X as an oracle, outputs
a name of f(x) (the computation never halts). Computable functions are continuous. f
is computable on a set A ⊆ X if the same holds for all x ∈ A (nothing is required to
the machine when x /∈ A). An object y is computable relative to an object x if the
function x 7→ y is computable on {x}, i.e. if there is an oracle machine that on any name
of x as oracle, produces a name of y.

An open subset U of the Cantor space is effective if there is a (partial) computable
function ϕ : N → {0, 1}∗ such that U =

⋃
n∈N[ϕ(n)]. An effective compact set is the

complement of an effective open set. Let K ⊆ X be an effective compact set and f :
K → Y a function computable on K.

Fact 1 (Folklore). f(K) is an effective compact set.

Fact 2 (Folklore). If f is moreover one-to-one then f−1 : f(K) → K is computable on
f(K).

Proof. For the sake of clarity, we denote f−1 by g. Here we use the following characteri-
zation: g is computable on f(K) if and only if the preimage of any effective open set U
is an effective open set on f(K), uniformly, i.e. there is an effective open set V such that
g−1(U) = f(K) ∩ V .

Let U be an effective open set. We have to prove The set C := K \ U is an effective
compact set. g−1(U) = g−1(K\C) = g−1(K)\g−1(C) = f(K)\f(C). As C is an effective
compact set, its complement is an effective open set (everything is uniform here).

The product of two computable metric spaces has a natural structure of computable
metric space.

Fact 3 (Folklore). If K ⊆ X is an effective compact set and f : K × Y → R is lower
semi-computable, then the function g : Y → R defined by g(y) = infx∈K f(x, y) is lower
semi-computable.
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Proof. Let us prove that g−1(q,+∞] = {y : K × {y} ⊆ f−1(q,+∞]} is an effective open
set, uniformly in q. Let q be some fixed rational number. The effective open set Uq =
f−1(q,+∞] can be expressed as an effective union of product balls Uq =

⋃
i∈NB

X
i ×BY

i .
The set Eq = {(i1, . . . , ik) : K ⊆ BX

i1
∪ . . . ∪ BX

ik
} is r.e. and it is easy to prove that

g−1(q,+∞] =
⋃

(i1,...,ik)∈Eq
BY
i1
∩ . . . ∩ BY

ik
, which is an effective open set. The argument

is uniform in q.

If f, g are real-valued functions, f
∗
< g means that there exists c ≥ 0 such that f ≤ cg.

f
∗
= g means that f

∗
< g and g

∗
< f .

2.1 Effective randomness

Martin-Löf [ML66] was the first one to define a sound individual notion of random infinite
binary sequence. He developed his theory for any computable probability measure on the
Cantor space. This theory was then extended to non-computable measures by Levin
[Lev73], and later by [Gác05, HR09b] on general spaces ([HW03] was an extension to
topological spaces, but for computable measures).

We will use the most general theory: we will be interested in randomness on the
Cantor space and on the space of Borel probability measures over the Cantor space, for
arbitrary (i.e. not necessarily computable) probability measures. In particular, we will
use the notion of uniform test of randomness, introduced by Levin [Lev73] and further
developed in [Gác05, Gác08, HR09b].

On a computable metric space X endowed with a probability measure P , there is a set
RP of P -random elements satisfying P (RP ) = 1, together with a canonical decomposition
(coming from the universal P -test) RP =

⋃
n Rn

P where Rn
P are uniformly effective compact

sets relative to P , Rn
P ⊆ Rn+1

P and P (Rn
P ) > 1−2−n. The sets X\Rn

P constitute a universal
Martin-Löf test. A P -test is a function t : X → [0,+∞] which is lower semi-computable
relative to P , such that

∫
t dP ≤ 1.

A function f : X → Y is P -layerwise computable if there is an oracle machine
that, given n as input and a name of x ∈ Rn

P as an oracle, outputs a name of f(x) (the
computation never halts). Nothing is required to the machine when x is not P -random.
When f is P -layerwise computable, for every P -random x, f(x) is computable relative
to x in a way that is not fully uniform, but uniform on each set Rn

P .
Such a machine can be thought of as a probabilistic algorithm, but here the random-

ness is not part of the algorithm but of the input. Formally, it is the same notion, but
usually, “succeeding with high probability” means that if we run the program on a given
input several times, independently, it will succeed most of the times; here, the algorithm
is deterministic and it will succeed on most inputs.

Lemma 2.1. Let P be a computable measure, f : X → Y a P -layerwise computable
function and Q = f∗P .

1. Q is computable and f : RP → RQ is onto.

2. If f : X → Y is moreover one-to-one then f : RP → RQ is one-to-one and f−1 is
Q-layerwise computable.
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Proof. We only prove that f−1 isQ-layerwise computable, the other statements are proved
in [HR09a]. There is c ∈ N such that Rn

Q ⊆ f(Rn+c
P ) for all n. Let n ∈ N. f : Rn+c

P → Y
is one-to-one and computable so by Fact 2, f−1 : f(Rn+c

P ) → X is computable. As
Rn
Q ⊆ f(Rn+c

P ), f−1 : Rn
Q → X is computable. This is uniform in n.

3 Randomness and continuous combination of mea-

sures

The material developed here will be used to investigate the algorithmic content of the
ergodic decomposition.

Given a countable class of probability measures Pi and real numbers αi ∈ [0, 1] such
that

∑
i αi = 1, the convex combination P =

∑
i αiPi is again a probability measure.

This can be generalized to continuous classes of measures, as we briefly remind now.
Let m be a probability measure over P(X). The set function P defined by P (A) =∫

Q(A) dm(Q) for measurable setsA is a probability measure overX, called the barycenter
of m. It satisfies

∫
f dP =

∫
(
∫
f dQ) dm(Q) for f ∈ L1(X,P ). When m is computable,

so is P . We can think of P as the measure describing the following process: first pick
some measure Q at random according to m; then run the process with distribution Q.

Probabilistically, picking a sequence according to P or decomposing into these two
steps are equivalent. We are interested in whether the algorithmic theory of randomness
fits well with this intuition: are the P -random sequences the same as the sequences that
are Q-random for some m-random Q?

Remark 3.1. Let f : X → [0,+∞] be a lower semi-computable function. Let F : P(X)→
[0,+∞] be defined by F (Q) =

∫
f dQ. F is lower semi-computable and

∫
F dm =

∫
f dP .

As a result, F is a m-test if and only if f is a P -test.

Theorem 3.1. Let m ∈ P(P(X)) be computable, and P be the barycenter of m. For
x ∈ X, the following are equivalent:

1. x is P -random,

2. x is Q-random for some m-random Q.

In other words,

RP =
⋃

Q∈Rm

RQ.

Proof.

Let f(x) = infQ tm(Q).tQ(x). f is lower semi-computable by Fact 3 (P(X) is effectively
compact). As

∫
f dP =

∫
(
∫
f dQ) dm(Q) ≤

∫
tm(Q)(

∫
tQ dQ) dm(Q) ≤ 1, f is a P -test,

so if x is P -random then it is Q-random for some m-random measure Q.
Conversely, let TP (Q) =

∫
tP dQ where tP is a universal P -test. By Remark 3.1, TP

is a m-test so if Q is m-random then TP (Q) <∞, so tP is a (multiple of a) Q-test. As a
result, RQ ⊆ RP .
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4 Randomness and ergodic decomposition

4.1 Background from ergodic theory

A sequence x ∈ {0, 1}N is generic if for each w ∈ {0, 1}∗, the frequency of occurrences
of w in x converges. If x is generic, we denote by Qx the set function which maps
each cylinder [w] to the limit frequency of occurrences of w in x. Qx extends to a
probability measure over the Cantor space, which we also denote by Qx. If x is generic
then Qx is stationary, i.e. Qx(A) = Qx(T

−1(A)) for every measurable set A. Birkhoff’s
ergodic theorem states that given a stationary measure P , P -almost every x is generic. A
stationary measure P is ergodic if the only invariant sets have measure 0 or 1. Formally,
if T−1(A) = A then P (A) = 0 or 1, for every measurable set A. If P is stationary ergodic
then Qx = P for P -almost every x.

The ergodic decomposition theorem states that given a stationary probability measure
P , the measure Qx is ergodic for P -almost every x. There are mainly two proofs of this
fact. One of them uses Choquet theorem from convex analysis: the set of stationary
probability measures is a convex compact set whose extreme points are exactly the ergodic
measures. Then any point in that set, i.e. any invariant measure, can be expressed as a
barycenter over the ergodic measures. More precisely, for any invariant measure P there
is a unique probability measure mP over P(X) which gives full weight to the ergodic
measures, and such that P (A) =

∫
Q(A) dmP (Q) for every Borel set A. We will call mP

the Choquet measure associated to P .

4.2 Randomness and ergodic theorems

An algorithmic version of Birkhoff’s ergodic theorem was eventually proved by V’yugin
[V’y97]: given a shift-invariant probability measure P , every P -random sequence is
generic, and if P is moreover ergodic then Qx = P for every P -random sequence x
(it was proved for computable measures, but it still works for non-computable measures).
The proof was not immediate to obtain from the classical proof of Birkhoff’s theorem,
which is in a sense not constructive. In this paper we are interested in an algorithmic
version of the ergodic decomposition theorem, which again cannot be proved directly.

More precisely, given a stationary measure P , we are interested in the following ques-
tions:

• if x is P -random, is Qx ergodic?

• if x is P -random, is x also Qx-random?

• if x is P -random, is Qx an mP -random measure?

• does any converse implication hold?

We give positive partial answers to these questions, leaving the general problem open.
We will use the following lemmas (the first one was proved in [V’y97]).

Lemma 4.1. Let P be an ergodic stationary probability measure. For every x ∈ RP ,
Qx = P .
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Lemma 4.2. Let P be a stationary probability measure and mP the associated Choquet
measure. Every mP -random measure is ergodic and stationary.

Proof. It is known that the set of ergodic stationary measure is a Gδ-set. It is moreover
effective, i.e. it is an intersection of effective open sets. As it has mP -measure one, it
contains RmP

.

4.3 First answer: effective decomposition

A stationary probability measure P is always computable relative to its associated Cho-
quet measure mP . The converse does not always hold (see Section 4.4 for a counter-
example).

Definition 4.1. A stationary probability measure P is effectively decomposable if
its Choquet measure is computable relative to P .

4.3.1 When P is computable

As an application of Theorem 3.1, we directly get a result when P is computable and
effectively decomposable (i.e. when m := mP is computable).

Corollary 4.1. Let P be a computable stationary probability measure that is effectively
decomposable. For x ∈ X, the following are equivalent:

1. x is P -random,

2. x is Q-random for some m-random Q.

In other words, the following are equivalent:

1. x is P -random,

2. x is generic, Qx-random and Qx is m-random.

We also have the following characterization.

Theorem 4.1. Let P be a computable stationary probability measure. The following are
equivalent.

1. P is effectively decomposable,

2. the function X → P(X), x 7→ Qx is P -layerwise computable.

Proof. 1 ⇒ 2. In any probability space (Y, µ) with random elements Rµ =
⋃
n Rn

µ, we
define dµ(y) = min{n : y ∈ Rn

µ} (dµ(y) = +∞ if y is not µ-random). d : P(Y ) × Y →
[0,+∞] which maps (µ, y) to dµ(y) is lower semi-computable.

Let Cn = {(Q, x) : dm(Q) ≤ n and dQ(x) ≤ n}. The second projection π2 :
⋃
nCn →

X is one-to-one. Indeed, if (Qi, xi) ∈
⋃
nCn, i = 1, 2 and π2(Q1, x1) = π2(Q2, x2) then (i)

x1 = x2, (ii) Q1, Q2 are m-random hence ergodic, (iii) xi is Qi-random so Qxi
= Qi; as

a result, Q1 = Qx1 = Qx2 = Q2. Cn is effectively compact so π−1
2 is computable on each

π2(Cn) (uniformly in n) by Fact 2.
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We know from the proof of Theorem 3.1 that there exists a constant c such that for
all n and all x ∈ Rn

P , (Qx, x) ∈ Cn+c, hence Rn
P ⊆ π2(Cn+c). It implies that π−1

2 is
computable on each Rn

P , uniformly in n, i.e. π−1
2 is P -layerwise computable. Finally,

π1 ◦ π−1
2 , which maps x ∈ RP to Qx is P -layerwise computable.

2 ⇒ 1. Conversely, if ψ : x 7→ Qx is P -layerwise computable, then m = ψ∗P is the
push-forward of P under ψ, so it is computable by Lemma 2.1, item 1.

Remark 4.1. For f ∈ L1(X,P ), we denote by f ∗ the limit of the Birkhoff averages of f .
One can also prove that if P is computable then P is effectively decomposable if and only
if the function

L1(X,P ) → L1(X,P )
f 7→ f ∗

is computable.

Remark 4.2. We can use Lemma 2.1, item 2 to prove that π−1
2 : x 7→ (Qx, x) is P -layerwise

computable.
It can be proved that there is a probability measure µ over P(X) × X such that

µ(A × B) =
∫
Q∈A

Q(B) dm(Q) for all measurable sets A ⊆ P(X), B ⊆ X. µ satisfies∫
f dµ =

∫ ∫
f(Q, .) dQ dm for all f ∈ L1(P(X) × X,µ). It can be proved that µ is

computable and that (Q, x) is µ-random if and only if Q is m-random and x is Q-random.
The projection π2 : P(X)×X → X is computable and one-to-one on Rµ. As (π2)∗µ =

P , π−1
2 is P -layerwise computable by Lemma 2.1, item 2.

4.3.2 When P is not computable.

If P is not computable, but still effectively decomposable, one implication in Corollary
4.1 remains.

Theorem 4.2. Let P be a stationary probability measure that is effectively decomposable.
For every P -random x, Qx is mP -random, hence ergodic, and x is Qx-random.

The converse implication does not hold in general, as the following counter-example
proves. Let p1, p2 ∈ (0, 1) be two different real numbers and P1, P2 the Bernoulli measures
with parameters p1, p2 respectively. Let x be P1-random and let α ∈ (0, 1) be the real
number whose binary expansion is 0.x. Let P = αP1 + (1 − α)P2. P is effectively
decomposable, as mP = αδP1 +(1−α)δP2 is computable relative to P . As x is computable
relative to P , x is not P -random but x is P1-random and P1 is mP -random.

The effectivity of the ergodic decomposition enables one to extend results from ergodic
systems to non-ergodic ones. Let us illustrate it. It was proved in [BDMS10] that when
P is an ergodic measure, every P -random sequence eventually visits every effective com-
pact set of positive measure under shift iterations. When the decomposition is effective,
this theorem can be generalized to non-ergodic measures, giving a version of Poincaré
recurrence theorem for random sequences.

Corollary 4.2. Let P be a stationary measure that is effectively decomposable. Let F
be an effective compact set such that P (F ) > 0. Every P -random x ∈ F falls infinitely
often in F under shift iterations.
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Proof. x is Qx-random and Qx is ergodic. As all random sequences belong to effective
open sets of measure one and x ∈ F , Qx(F ) > 0. Hence we can apply the result
in [BDMS10] to the ergodic measure Qx (strictly speaking their result was proved for
computable ergodic measures, but it can be relativized without difficulty).

The result actually holds as soon as for every P -random x, Qx is ergodic and x is
Qx-random.

4.4 V’yugin’s example

In [V’y97], V’yugin constructed a computable stationary measure for which the conver-
gence of Birkhoff’s average is not effective. We give a simpler construction and show that
this measure is not effectively decomposable.

Let Mi be some effective enumeration of the Turing machines. For each i, let pi = 2−ti

is Mi halts in time ti, pi = 0 if ti does not halt. The real numbers pi are computable
uniformly in i (while they are not uniformly computable as rational numbers). Let Pi be

the Markovian stationary measure defined by Pi[0] = Pi[1] = 1
2

and Pi[w01]
Pi[w0]

= Pi[w10]
Pi[w1]

= pi
for all w ∈ {0, 1}∗ (the probability of changing between states 0 and 1 is pi). Let P =∑

i 2
−iPi. P is computable. We now show that x 7→ Qx is not P -layerwise computable

(which will imply that P is not effectively decomposable by Theorem 4.1). Let f = χ[1].
Let α =

∑
i:Mi halts 2−i. f ∗(x) = 0 for x = 0N, f ∗(x) = 1 for x = 1N and f ∗(x) = 1

2

for P -almost all x /∈ {0N, 1N}. By definition of Qx, f
∗(x) = Qx[1] for every P -random

x. If f ∗ were P -layerwise computable, then P (f ∗−1[0, 1/4)) = (1 − α)/2 would be lower
semi-computable by basic properties of layerwise computable functions (see [HR09a]).

While P is not effectively decomposable, we can still get a result about random
elements.

Proposition 4.1. For every P -random x, Qx is ergodic and x is Qx-random.

Proof. The decomposition P =
∑

i 2
−iPi is partial in the sense that some Pi are not

ergodic (when Mi does not halt). However we can apply Theorem 3.1 to this decomposi-
tion: P is the barycenter of the computable measure m′ =

∑
i 2
−iδPi

, so every P -random
x is random for some Pi. (i) If Mi halts, then Pi is ergodic. (ii) If Mi does not halt then
Pi = 1

2
(δ0 +δ1) (where δ0 is the measure concentrated on 0N, δ1 on 1N). In turn, Pi, which

is non-ergodic is effectively decomposable. Hence as x is Pi-random, Qx = δ0 or δ1 and x
is Qx-random.

As a result, Corollary 4.2 also holds for the measure P .

4.5 A particular case: effective compact classes of ergodic mea-
sures

Proposition 4.2. Let P be a stationary probability measure. If mP is supported on an
effective compact class of ergodic measures, then P is effectively decomposable.

Proof. Let C be an effective compact class of stationary ergodic probability measures.
Let P(C ) be the set of probability measures m over P(X) such that m(C ) = 1. P(C ) is an
effective compact subset of P(X): indeed, it is the pre-image of [1,+∞] under the upper
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semi-computable function m 7→ m(C ). If m ∈ P(C ), the barycenter P of m is defined
by P (A) =

∫
Q(A) dm(Q) for every measurable set A. The function ψ which maps m to

P is computable. Let IC be the class of invariant measures that are barycenters of C ,
i.e. the image of P(C ) under ψ: IC is an effective compact class too. By existence and
uniqueness of the ergodic decomposition, ψ : P(C )→ IC is onto and one-to-one; as it is
computable and P(C ) is an effective compact set, its inverse is also computable by Fact
2.

Example 1. Let m be a probability measure over the real interval [0, 1]. Pick a real number
p at random according to m, and then generate an infinite sequence of 0, 1 tossing a coin
with probability of heads p. As an application of the preceding proposition, we get that
the function which maps a random sequence generated by the process to the number
p that was picked is P -layerwise computable: it can be computed from the observed
outcomes with high probability.

We also learn that the algorithmic theory of randomness fits well with this example:
obviously, we expect a random sequence for the whole process to be random for some
Bernoulli measure Bp, which is not immediate.

In Section 2.1, we define P -layerwise computable function when P is a computable
probability measure. This can be extended straightforwardly to any effective compact
class of measures C . The universal C -test induces a decomposition

⋃
n RC

n of the se-
quences that are random for some measure in C . A function f : X → Y is C -layerwise
computable if it is computable on each RC

n , uniformly in n. It means that one can com-
pute f(x) if x is random for some measure P ∈ C , with probability of error bounded by
2−n, whatever P is (as long as it is in C ), and for any n.

From Theorem 4.2 we know that for every P ∈ IC and every x ∈ RP , Qx is m-random,
hence ergodic and x is Qx-random. We also prove a quantitative version of this fact. We
recall that if A is an effective compact class of measures, tA := infP∈A tP is a universal
A-test, i.e. (i) it is lower semi-computable, (ii)

∫
tA dP ≤ 1 for every P ∈ A and (iii)

tA multiplicatively dominates every function satisfying (i) and (ii) (see [Gác08] for more
details about such class tests). We will consider the class tests tC and tIC

.

Theorem 4.3. Let C be an effective compact class of stationary ergodic probability mea-
sures. One has:

1. tC (x)
∗
= tIC

(x)

2. The function x 7→ Qx is IC -layerwise computable and C -layerwise computable.

Proof. 1. Of course, tIC

∗
< tC as C ⊆ IC . Conversely, the P ∈ IC :

∫
tC dP =∫

(
∫
tC dQ) dm(Q) ≤ 1 as m is supported on measures in Q ∈ C , and

∫
tC dQ ≤ 1

for such measures. As a result, tC is a IC -test, so tC
∗
< tIC

.

2. The proof is similar to the proof of Theorem 4.1. As tC (x) = infQ∈C tQ(x), if x ∈ Rn
C

then Qx ∈ Rn+c
m . Again, π2 : Rn+c

m × Rn
C → Rn

C is computable and bijective so its
inverse is computable and maps x to (Qx, x). Hence π1 ◦ π−1

2 is computable on Rn
C ,

uniformly in n, i.e. it is C -layerwise computable. As tC
∗
< tIC

, it is also IC -layerwise
computable.
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Observe that for generic sequences x, tC (x)
∗
= tQx(x). Indeed, tC (x) = infP∈C tP (x) =

tQx(x) as tP (x) = +∞ for every P ∈ C \ {Qx}.

4.6 A weaker answer: finitely decomposable measures

In the two preceding results, we need the effectivity of the ergodic decomposition. In
particular situations, we still get a (weaker) result without this assumption.

Proposition 4.3. Let P be a stationary measure such that mP is supported on a closed
set C of stationary ergodic measures. For every P -random x, Qx is ergodic.

To prove it we use the following lemma.

Lemma 4.3. Let X, Y be computable metric spaces. Let fn : X → Y be uniformly
computable functions that converge P -a.e. to a function f . Let A ⊆ Y be a closed set
such that f(x) ∈ A for P -a.e. x. For every P -random x, lim fn(x) ∈ A.

Proof. It is already known if f is constant P -a.e. Let x0 be a P -random point such that
lim fn(x0) /∈ A. Let B(y, r) be a ball with computable center and radius, containing
lim fn(x0) and disjoint from A. Let gn(x) = max(0, r − d(fn(x), y)). For P -a.e. x, gn(x)
converge to 0, but lim gn(x0) = r − d(lim fn(x0), y) > 0.

Proof of Proposition 4.3. For every n, define Qn : X → P(X) by Qn(x) = 1
n
(δx + . . . +

δTn−1x). A sequence x is generic if and only if Qn(x) is weakly convergent, and in that
case Qx is the limit of Qn(x). The functions Qn are uniformly computable. As Qx ∈ C
for P -almost every x, Qx ∈ C for every P -random x by Lemma 4.3.

For instance, if P has a finite decomposition, i.e. if P =
∑n

i=1 αiPi where αi ∈ [0, 1],∑
i αi = 1 and all Pi are ergodic, then regardless of the computability of P, αi, Pi, for

every P -random x, Qx ∈ {P1, . . . , Pn} as the latter set is closed. In this particular case,
Qx is always m-random.

We do not know whether every finitely decomposable measure is effectively decompos-
able. For instance, are there distinct non-computable ergodic measures P1, P2 such that
P := 1

2
(P1 + P2) is computable? Such a measure P would be a finitely, non-effectively

decomposable measure.
If a finitely, but non-effectively, decomposable measure P exists, we do not know

whether for every P -random x, is Qx-random, Qx is mP -random. We only know that Qx

is ergodic.

5 Inferring ergodic measures

In [GHR10] the computability of stationary measures in computable dynamical systems
is investigated. It is proved that computable topological systems, that always admit
invariant measures, do not necessarily admit computable ones; it is also proved that
some interesting classes of dynamical systems always admit computable ergodic measures.
Here we are interested in the computability of ergodic measures, relative to its typical
trajectories. There are generally uncountably many ergodic measures, so most of them
are not computable; nevertheless in many cases all of them can be computed using the
observation of any typical trajectory of the system as oracle.
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Definition 5.1. A stationary ergodic probability measure P is strongly inferable if
the constant function x 7→ P is P -layerwise computable.

A stationary ergodic probability measure P is weakly inferable if for every P -
random sequence x, P is computable relative to x.

In the first notion, we ask for some uniformity in the computability of P relative to its
random elements. While in many systems there are many ergodic measures that are not
computable, for the simple reason that there are uncountably many ergodic measures, in
many systems all of them are inferable.

Example 2. The simplest system is the identity id : X → X. The ergodic stationary
measures are the Dirac measures δx. Of course, δx is computable from x, its only random
point, so every ergodic measure is strongly inferable.

Example 3. Consider X = S × [0, 1] where S = [0, 1] mod 1 is the unit circle. Let
T (x, y) = (x + y mod 1, y). On S × {y}, T is a rotation by angle y. There are two
types of ergodic measures: λ× δy where y /∈ Q and λ is the uniform (Lebesgue) measure
on S; 1

q
(δx + . . . + δx+(q−1)y) × δy where x ∈ S, y = p/q ∈ Q with p, q mutually prime.

Every ergodic measure is uniformly computable from its random points (even from all
the points in its support), so every ergodic measure is strongly inferable.

For the shift transformation on the Cantor space, we do not know whether every
ergodic measure is weakly inferable. As a consequence of Theorem 4.3, we obtain:

Corollary 5.1. If P belongs to an effective compact class of ergodic measures, then P is
strongly inferable.

Proof. Let C be an effective compact class of ergodic measures that contains P . The
P -layers are contained in the C -layers. x 7→ Qx, which is C -layerwise computable is then
also P -layerwise computable.

As a result, all Bernoulli measures, all Markovian ergodic measures are strongly in-
ferable. Using Baire category (see [Par61]) it can be proved that there exist ergodic
shift-invariant measures that avoid every effective compact class of ergodic measures.

6 Open questions

We summarize the questions left open in the general case.

• Is every stationary ergodic measure strongly inferable? weakly inferable?

• Is there a non-effectively decomposable stationary measure that is finitely decom-
posable? Given two different stationary ergodic measures P1, P2: are they com-
putable from the mixture P := 1

2
(P1 + P2)? In particular, is it possible that P be

computable but not P1, P2?

• Given a stationary (non-ergodic) measure, and x a P -random sequence. Is Qx

ergodic? Is x always Qx-random? Is Qx always mP -randoms? The question is not
even answered when P is computable, or finitely decomposable.

All these questions can be asked for any computable system.
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