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Abstract

Beyer et al. gave a sufficient condition for the high dimensional phenomenon known
as the concentration of distances. Their work has pinpointed serious problems due
to nearest neighbours not being meaningful in high dimensions. Here we establish
the converse of their result, in order to answer the question as to when nearest
neighbour is still meaningful in arbitrarily high dimensions. We then show for a
class of realistic data distributions having non-i.i.d. dimensions, namely the family
of linear latent variable models, that the Euclidean distance will not concentrate as
long as the amount of ‘relevant’ dimensions grows no slower than the overall data
dimensions. This condition is, of course, often not met in practice. After numerically
validating our findings, we examine real data situations in two different areas (text-
based document collections and gene expression arrays), which suggest that the
presence or absence of distance concentration in high dimensional problems plays a
role in making the data hard or easy to work with.
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1 Introduction

In an influential paper, Beyer et al. [2] point out a serious threat for index-
ing and similarity-based retrieval in high dimensional databases, due to the
following phenomenon, called the concentration of distances: As the dimen-
sionality of the data space grows, the distance to the nearest point approaches
the distance to the farthest one. Nearest neighbours become meaningless. The
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underlying geometry of this phenomenon was further studied in [11], strongly
suggesting the detrimental effects often termed informally as the ‘curse of
dimensionality’ are attributable to this phenomenon.

Beyond exponentially slowing down data retrieval [11], the problem of dis-
tance concentration is becoming a major concern more generally for high di-
mensional multivariate data analysis, and risks to compromise our ability to
extract meaningful information from volumes of data [4,7]. This is because in
many domains of science and engineering, the dimensionality of real data sets
grows very quickly, while all data processing and analysis techniques routinely
rely on the use of some notion of distance [7]. In particular, high impact ap-
plication areas, such as cancer research, produce simultaneous measurements
of the order of several thousands. As pointed out in [4], currently existing
multivariate data analysis techniques were not designed with an awareness
of such counter-intuitive phenomena intrinsic to very high dimensions. It is
therefore imperative for this problem to be studied and better understood in
its own right, before one can embark on trying to devise more appropriate
computational techniques for high dimensional problems.

Despite its title “When is nearest neighbour meaningful” [2], the paper in fact
answers a different question, namely “When nearest neighbour isn’t meaning-
ful”. In formal terms, they give a sufficient condition for the concentration
phenomenon. However, knowing the answer to the previous question would be
very important and useful, since then one would have an objective to work
towards in order to get round of the problem, in principle. This is what we
address in this paper.

Although many previous authors mention, and admit on the basis of empirical
evidence, that cases exist when the nearest neighbour is still meaningful in high
dimensions [3,2,7], generally valid formal conditions are still lacking. All recent
formal analyses have been conducted assuming data distributions with i.i.d.
dimensions [1,7], which is unrealistic in most real settings. Yet, it has been
observed that, if techniques for mitigating the concentration phenomenon are
used carelessly, they may actually end up having a detrimental effect [7].

Here we make the following contributions: We establish the converse of Beyer
et al.’s result, which gives us a generic answer to when nearest neighbour is

meaningful in arbitrarily high dimensions. Then, we give a class of examples
of realistic data distributions having non-i.i.d. dimensions, where we show
the Euclidean distance will not concentrate when the dimensionality increases
without bounds, as long as the amount of ‘relevant’ dimensions grows no slower
than the overall data dimensions. Of course, this condition is not always met
in practice; examples will follow later.

These results provide a formal explanation for previous informal and empirical
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observations, such as [3] “increasing the input space dimension without en-
hancing the quantity of available information reduces the model’s power and
may give rise to the curse of dimension”. Our theoretical result also provides
a generic criterion that may be used as an objective to work towards in order
to counter the problem when necessary.

2 Distance concentration

Let Fm,m = 1, 2, . . . be an infinite sequence of data distributions and x
(m)
1 , . . . ,x(m)

n

a random sample of n independent data vectors distributed as Fm. An arbi-
trary random vector distributed as Fm will be referred to as x

(m). For each m,
let || · || : dom(Fm) → R

+ be a function that takes a point from the domain
of Fm and returns a positive real value. Further, p > 0 will denote an arbi-
trary positive constant, and it is assumed that E[||x(m)||p] and Var[||x(m)||p]
are finite and E[||x(m)||p] 6= 0 throughout this section.

In the context of the problem at hand, the interpretation of the function
|| · || is that of a distance metric (or norm) — though the theory does not
rely on this interpretation, i.e. there is no requirement for it to satisfy the
properties of a metric. Similarly, the positive integer m may be interpreted as
the dimensionality of the data space.

Theorem 1 (Beyer et al. [2]).

If lim
m→∞

Var[||x(m)||p]

E[||x(m)||p]2
= 0, then ∀ǫ > 0, lim

m→∞
P

[

max
1≤j≤n

||x
(m)
j || < (1 + ǫ) min

1≤j≤n
||x

(m)
j ||

]

=

1 ; where the operators E[·] and Var[·] refer to the theoretical expectation and
variance of the distributions Fm, and the probability on the r.h.s. is over the
random sample of size n drawn from Fm.

The proof can be found in [2].

As mentioned, this result gives a sufficient condition for which the relative
separation of points vanishes as m increases without bounds, though it says
nothing when this condition does not hold. Therefore, we formulate and prove
the following necessary condition. Before proceeding, it should be noted that
nothing was said about the sample size n, so indeed Theorem 1 holds no-matter
how large n is.

Theorem 2 (Converse of Theorem 1).

Assume the sample size n is large enough for E[||x(m)||p] ∈ [ min
1≤j≤n

||x
(m)
j ||p, max

1≤j≤n
||x

(m)
j ||p]

to hold. Now, if lim
m→∞

P
[

max
1≤j≤n

||x
(m)
j || < (1 + ǫ) min

1≤j≤n
||x

(m)
j ||

]

= 1, ∀ǫ > 0, then

lim
m→∞

Var[||x(m)||p]

E[||x(m)||p]2
= 0.
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Proof. Denote DMINm = min
1≤j≤n

||x
(m)
j || and DMAXm = max

1≤j≤n
||x

(m)
j ||.

Rewriting the precondition gives:

lim
m→∞

P [DMAXm < (1 + ε)DMINm] = 1 ⇒ (1)

lim
m→∞

P
[

DMAXm

DMINm

− 1 < ε
]

= 1 ⇒ (2)

lim
m

P
→∞

DMAXm

DMINm

= 1 (3)

using the definition of convergence in probability 2 , and the fact that DMAXm

DMINm
−

1 ≥ 0.

In the above, we must assume that DMINm 6= 0,∀m. For this reason, we split
the infinite sequence in two sub-sequences: one corresponding to the terms
DMINm = 0 and the other to DMINm > 0, at least one of which is infinite.
Now, since all infinite sub-sequences of a convergent sequence are convergent
to the same limit, and finite sub-sequences may be dropped without altering
convergence, it is enough to show that the statement of Theorem 2 holds for
either case.

For economy of argument we deal first with the case of an infinite sub-sequence
that corresponds to DMINm = 0. Now, if there were such an infinite sub-
sequence having all terms DMINm = 0, by substituting these into the pre-
condition we would have:

lim
m→∞

P [DMAXm < (1 + ε)DMINm] = 1 and so lim
m→∞

P [DMAXm < 0] = 1

But we know that P [DMAXm ≥ 0] = 1,∀m, since DMAXm ≥ 0,∀m; a
contradiction! Therefore no infinite subsequence having DMINm = 0 exists
under the given preconditions.

We now move on to the case of practical interest, namely the infinite sub-
sequence that has DMINm > 0,∀m. Using the fact that the functions (.)p

and 1/(.)p are continuous, we apply Slutsky’s theorem ([9], pp. 119–120) to
(3) twice, to yield:

lim
m

P
→∞

DMAXp
m

DMINp
m

= 1; and lim
m

P
→∞

DMINp
m

DMAXp
m

= 1 (4)

Observe that here DMAXm > 0,∀m, since DMINm > 0,∀m.

2 To say that a sequence Xm of random variables converges in probability to X
means that ∀ǫ > 0, lim

m→∞
P (|Xm − X| ≥ ǫ) = 0, equivalently (and as used here)

lim
m→∞

P (|Xm − X| < ǫ) = 1. The short notation is lim
m

P
→∞

Xm = X [12], pp. 58–59.
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Furthermore, using the precondition that E[||x(m)||p] ∈ [DMINp
m, DMAXp

m],
and the fact that the power function (·)p is a monotonically increasing function
on the positive domain, we have that:

DMAXp
m

DMINp
m

≥
||x

(m)
j ||p

E[||x(m)||p]
≥

DMINp
m

DMAXp
m

,∀j ∈ {1, . . . n} (5)

Now, by the squeeze rule, it follows that the following limit exists and is equal
to 1:

lim
m

P
→∞

||x(m)||p

E[||x(m)||p]
= 1 (6)

In (6), we have a sequence of random variables that converges in probability
to a constant. Noting that convergence in probability implies convergence in
distribution (e.g. see [12] pp. 119–120), in this case to the probability function
of a Dirac delta density, the required result follows i.e. the associated sequence
of variances converges to zero:

lim
m→∞

Var

[

||x(m)||p

E[||x(m)||p]

]

= lim
m→∞

Var[||x(m)||p]

E[||x(m)||p]2
= 0 � (7)

In the sequel, the value RVm = Var[||x(m)||p]

E[||x(m)||p]2
shall be referred to as the relative

variance, and DMAXm/DMINm − 1 is the relative separation of norms or
distances. We should note, our use of the term ‘relative variance’ is a gener-
alisation of that of [7], where it refers to the square root of RVm with fixed
p = 1.

The significance of Theorem 2 is that we can now conclude that if the relative
separation of distances tends to zero as the dimension of the data space grows
to infinity, so does their relative variance. Equivalently, and most importantly,
if the relative variance of the distances does not tend to zero, then neither
does their relative separation.

2.1 Is it possible for the converse theorem to apply?

In [2], the authors demonstrate a large number of examples in which all Lp

metrics fall prey to concentration, and the dimensionality may be of the order
of tens for the problem to be of a practical concern already. Is there any
room, then, for the converse theorem to apply? The only scenario previously
identified formally not to produce a relative variance convergent to zero (and
hence satisfying our converse) was the setting where all dimensions (data
features) are identical [2]. Of course, to have all dimensions identical to each
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other would be an unrealistic model, and in the sequel we identify a much
larger class, where our converse theorem applies.

Consider the function || · || defined earlier, substantiated as the family of p-
norms, as in the examples presented in [2]. Then, using definitions and making
no assumption on the distribution structure, the relative variance of an m-
dimensional random vector x

(m) = (x1, · · · , xi, · · · , xm)T may be written as
the following:

RVm =
Var[

∑m
i=1 |xi|

p]

E[
∑m

i=1 |xi|p]2
=

∑m
i=1

∑m
j=1 Cov[|xi|

p, |xj|
p]

∑m
i=1

∑m
j=1 E[|xi|p]E[|xj|p]

Quite evidently, it is possible for RVm not to converge to zero when m tends
to infinity, provided that the numerator grows no slower with m than the
denominator. Then, cf. the converse theorem, the p-norms remain spread-out
despite m increasing to infinity.

One can verify for all examples of [2] that the problem is caused by a sparse
correlation structure. Independent variables represent the most trivial case,
but chain-like correlation structure is also unable to grow with dimensions at
the rate of the denominator.

Thus, we are now able to make some formal sense of what ‘structure’ in the
data means in the context of distance concentration, at least in principle. The
next section details a concrete class of examples.

3 Examples: Linear latent variable models

Real data quite often exhibit a rich correlation structure, yet previous studies
on distance concentration [7,1] assume data distributions with independent
dimensions. The aim in these works has been to identify a non-Euclidean or
even non-metric dissimilarity function that would concentrate more slowly
with growing m, in data with i.i.d. features. Instead, here we re-examine the
more intuitively appealing Euclidean distance in a fairly simple but still more
realistic family of data distributions having dependent dimensions. In partic-
ular, we consider the family of linear latent variable data-models [6,13]. These
models capture dependencies between dimensions with the use of a latent vari-
able, and are known for their ability to describe a variety of real-world data
sets. As such, they have been widely used for multivariate data analysis in
numerous areas of science and engineering [6]. Hence analysing distance con-
centration effects in such models, rather than models with i.i.d. dimensions,
will give us a better understanding of the concentration issues that one may
expect to encounter in real high-dimensional data sets, and will reveal some
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of the key causes that govern this problem. The analysis framework and ideas
are also applicable, in principle, to non-linear data models 3 , though this is
outside the scope of this paper.

3.1 Finite latent dimensions

Let L denote the dimension of a latent linear subspace, and each observed
dimension xi is some linear combination of the L latent systematic factors yl

with additive noise.

xi =
L

∑

l=1

ailyl + δi,∀i ∈ {1, ..,m} (8)

In the above, the parameters ail are real valued constants, independent of
m. The noise term is assumed to be zero mean, i.i.d. and independent from
the systematic factors – these are all standard assumptions in latent variable
modelling – so that the latent space captures all the structure content of the
data. We also assume that Var(y2

l ) 6= 0.

The model (8) encompasses a number of instantiations that are widely used in
practice, such as Probabilistic Principal Component Analysis, Factor Analysis,
Independent Factor Analysis and mixture density models [13]. The special case
when L = 1 includes linear classification and regression models.

Applying our result described in Section 2, we examine the convergence of RVm

derived from the model (8), in order to determine whether the L2 distance
between m-dimensional points concentrates in data that follows this density.
Straightforward calculations (detailed in the Appendix) and neglecting O(m)
terms in the numerator yield the following expression for the limit of the
relative variance, if this limit exists:

lim
m→∞

RVm = lim
m→∞

∑L,L,L,L
l,k,l′,k′=1 Cov[ylyk, yl′yk′ ]

∑m
i=1 ailaik

∑m
j=1 ajl′ajk′

(
∑L,L

l,k=1 E[ylyk]
∑m

i=1 ailaik +
∑m

i=1 E[δ2
i ])

2
(9)

For the L = 1 case, we have the following simpler form,

lim
m→∞

RVm = lim
m→∞

Var[y2]
(

E[y2] +
∑m

i=1
E[δ2

i
]

∑m

i=1
a2

i

)2 (10)

Inspecting the obtained expressions, it is easy to see (in either example) that
in the noiseless case we have terms of the same order w.r.t. m in both the
numerator and denominator. So – unless the positive and negative correlation

3 Nonlinear data models are often approximated by multiple locally linear models.
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terms happen to cancel the numerator of (9) (impossible if e.g. the latent
variables are uncorrelated, as the variances are non-zero) – we can conclude
that, concentration of the L2 distance will not occur in the noiseless case in
these models. Thus it is safe to use L2 distances in arbitrarily high dimensions
in this case. Next, the noisy case of interest will be discussed.

Since both E[δ2
i ] and a2

il, i = 1, ...,m would be positive constants in a finite-
dimensional formulation, it is reasonable to take their infinite sequences to be
bounded. So,

∑m
i=1 E[δ2

i ] ∈ O(m) and likewise 4 , ∀l,
∑m

i=1 a2
il ∈ O(m). Further,

it is unlikely for the data features to have a negligible noise contribution,
therefore the sequence E[δ2

i ] may also be assumed to be bounded from below
by a non-zero positive value. Hence the case of practical interest is when
∑m

i=1 E[δ2
i ] ∈ Θ(m).

Now, the denominator has the order Θ(m2 ), therefore, to ensure RVm will not
converge to zero, the numerator must also be of the order Θ(m2 ) (it cannot
be of higher order anyway). Since the covariance terms when l = k = k′ = l′

are definitely non-zero (Var(y2
l ) 6= 0) and L is finite, it is enough to require

from the factor coefficients that:

¬

[

lim
m→∞

∑m
i=1 a2

il

m
= 0

]

, for some l (11)

In words, at least one systematic factor must generate data features of the
order Θ(m) — i.e. the number of features (regarded as random variables)
that receive contribution from a generative systematic factor yl must be of
this order. We may conclude therefore that an abundance of features with
content from the i.i.d. noise but no content from the systematic factors is
a key cause of distance concentration in this model. A less likely cause, as
mentioned earlier, would be if the weighted covariance and variance terms in
the numerator happen to cancel each other.

Summarising, the main conclusions of this section are the following: (1) In
noiseless linear latent-variable data models, the L2 distance does not concen-
trate. (2) In linear latent variable models with additive i.i.d. noise, the key
requirement for the L2 distance not to concentrate is that the cumulative con-
tribution of the systematic component(s) must grow no slower than that of
the noise. When the noise variance is bounded away from zero, this may be
restated as: The cumulative contribution of the systematic component(s) must
grow no slower than the data dimensionality.

4 With am and bm two real-valued sequences,
am ∈ O(bm) (or am is of the order O(bm)) stands for: ∃C > 0, m0 : ∀m > m0, |am| ≤
C|bm|.
am ∈ Θ(bm) (or am is of the order Θ(bm)) stands for: ∃C, C ′ > 0, m0 : ∀m >
m0, C|bm| < |am| < C ′|bm|.
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3.2 Infinite latent dimensions

It has been conjectured [2,7] that the underlying ‘intrinsic dimension’ or the
‘actual degree of freedom’ of the data needs to be small, otherwise the con-
centration phenomenon would reappear. Since these terms are often defined
in different ways we will refer to L as the ‘latent dimension’ instead. We will
give examples that show this conjecture does not hold in general.

Before proceeding, note that for the case L → ∞, the requirement analogous

to (11) now becomes: ¬
[

lim
m→∞,L→∞

∑L

l=1

∑m

i=1
a2

il

m
= 0

]

, which no longer implies

that any one factor must have of the order Θ(m) contribution to the data
features, but still, at least of the order Θ(m) contribution from some of the
(infinitely many) latent factors is required. For the remainder of the section,
it will be assumed that there exists an Θ(m2 ) term in the numerator of eq.
(9), so we can assess the effects of increasing L separately.

I.i.d., zero-mean latent variables. Knowing that i.i.d. data dimensions imply
the concentration of L2 distances when m → ∞ as an immediate consequence
of the weak law of large numbers [2], one may be somewhat surprised to find
that i.i.d. latent dimensions do not necessarily have this effect when L → ∞.
Indeed, in this case, we have:

lim
m→∞,L→∞

RVm = lim
m→∞,L→∞

∑L
l

∑L
k=1 Var[ylyk]

∑m
i=1 a2

il

∑m
j=1 a2

jk

(
∑L

l=1 E[y2
l ]

∑m
i=1 a2

il +
∑m

i=1 E[δ2
i ])

2
(12)

The leading terms of both the numerator and denominator are O(L2), so in
general, it is again feasible for the relative variance not to converge to zero.

Orthogonal coefficients. For the sake of another example, let us now assume
that in (9) all pairs of coefficient vectors al and ak, l 6= k are orthogonal.
Then, the terms of the form

∑m
i=1 ailaik are zero except when l = k. Let the

latent factors be non-i.i.d. this time. Then, eq (9) becomes:

lim
m→∞,L→∞

RVm = lim
m→∞,L→∞

∑L
l=1

∑L
l′=1 Cov[y2

l , y
2
l′ ]

∑m
i=1 a2

il

∑m
j=1 a2

jl′

(
∑L

l=1 E[y2
l ]

∑m
i=1 a2

il +
∑m

i=1 E[δ2
i ])

2
(13)

Again both the numerator and the denominator have leading terms of the
order O(L2). Therefore, in general (with suitable covariance, i.e. no excessive
cancellations in the numerator), converge to 0 when L → ∞ is still not implied.

However, if both restrictions considered earlier (i.e. orthogonal coefficient vec-
tors and also i.i.d. 0-mean latent variables) are simultaneously present, then
the resulting data distribution becomes too sparsely correlated and the con-
centration effect appears: Indeed, in that case the numerator grows slower
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than the denominator, since all terms of the form Cov[y2
l , y

2
l′ ] other than l = l′

are zero:

lim
m→∞

RVm = lim
m→∞

∑L
l=1 Var[y2

l ](
∑m

i=1 a2
il)

2

(
∑L

l=1 E[y2
l ]

∑m
i=1 a2

il +
∑m

i=1 E[δ2
i ])

2
=

O(L)

O(L2)
−→
L→∞

0 (14)

From the examples given above, we can conclude that, contrary to a na̋ıve
intuition, a very large latent dimension, on its own, does not automatically
imply the concentration phenomenon. Instead, it is the richness of correlations
between the data features that governs the concentration effect.

4 Numerical validation

In this section, we numerically validate our findings and also examine real
data sets from two different areas (text-based documents and gene expression
arrays). The results suggest that the presence or absence of distance concen-
tration is a major cause for the success or failure of automated data analysis.

4.1 Validating theoretical results

An example of numerical simulation is demonstrated in Figure 1 as m in-
creases, for an instantiation of the model (8): L = 1, y ∼ Uniform[0, 2], the
noise terms δi were sampled from a 0-mean spherical Gaussian with variance
varied in [0, 1] and ai were designed such that lim

m→∞
a2

m = 1. Empirical es-

timates are superimposed with the corresponding analytical limits. We see
the sequence of the RVm estimates converge in agreement with the analyti-
cal limits. As predicted from the theory, the limit of the sequence RVm gets
smaller as the noise level increases, but neither the relative variance nor the
log[DMAXm/DMINm] get arbitrarily close to zero.

Figure 2 shows an example with increasing latent dimensionality alongside
of increasing data dimensionality. Here, the underlying factors yl were drawn
from i.i.d. standard normal distributions N(0, 1), and δi ∼ N(0, 1). The coef-
ficients ail were chosen randomly from [0,3] (all positive and non-orthogonal).
As expected cf. the results in Sec. 3.2, concentration does not show up, despite
both the data dimensionality m and the latent dimension L increase. Also, as
expected from Theorem 2, the picture is similar both in terms of the relative
variance and the relative separation of norms.

Contrariwise, in the example shown in Figure 3, we have the same i.i.d. zero-
mean factors as before (yl are drawn i.i.d. from N(0, 1)), but we have also
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Fig. 1. Example showing the behaviour of RVm and the log[DMAXm/DMINm]
as m increases. L = 1, y ∼ Uniform[0, 2] (so, E[y2] = 4/3, Var[y2] = 64/45) and
δi ∼ N(0, σ2) where σ2 is varied in [0, 1]. For each m, the estimation is based on
15,000 points generated from the model, and the estimates are averaged over 10
repeats.
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Fig. 2. Example where increasing L does not lead to concentration. yi ∼ N(0, 1),
δi ∼ N(0, 1), ail ∈ [0, 3], and the pairs of vectors al, ak are non-orthogonal. Each
estimate is based on 20,000 points generated from the model.

pairwise orthogonal coefficients. In this case we see that RVm decreases with
increasing L, and tends to zero eventually, as predicted by our theoretical
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Fig. 3. Example where increasing L does lead to concentration: yi ∼ N(0, 1),
δi ∼ N(0, 1) (as before), and pairwise orthogonal coefficient vectors al. Each es-
timate is based on 20,000 points generated from the model.

analysis, eq (14). As we have seen in the previous section, this is because the
pairwise correlations between features becomes too sparse in this setting.

4.2 Understanding the effect of ‘irrelevant’ dimensions

We call the i-th feature ‘irrelevant’ (from the point of view of its systematic
structure content), if all its coefficients a2

il, l = 1, 2, ... are zero. Thus, an irrel-
evant dimension will only contain the contribution of the independent noise
term.

Condition (11) says the cumulative contribution of an underlying systematic
factor must grow no slower than the data dimensionality. Assuming the coef-
ficients ail are bounded away from zero, we may say, the number of ‘relevant
features’ must grow no slower than the data dimensionality. This notion ap-
pears to be more close to what has been termed the ‘intrinsic dimensionality’
in [7], in the sense of the independent degrees of freedom that describes the
data.

To see an example, Figure 4 demonstrates the effect of irrelevant dimensions
in a regression model, i.e. L = 1. We have y ∼ N(0, 1), δi ∼ N(0, 1), and
the proportion of relevant dimensions is varied on a grid. As expected, we see
the presence of a large fraction of irrelevant dimensions triggers the concen-
tration phenomenon, while in the case of predominantly relevant dimensions,
distance concentration does not occur. This insight provides us a more con-
crete understanding of the nature of the concentration problem in data that
obeys a distribution that can be well described by the considered family of
models. Again, as expected, the picture is similar both in terms of the relative
variance and the relative separation. The latter estimates are of course more
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noisy, while the former is easier to estimate from the data sample.
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Fig. 4. Example showing that irrelevant features (ai = 0) trigger the concentration
phenomenon. L = 1, y ∼ N(0, 1), δi ∼ N(0, 1). The estimates are based on 25,000
sample points generated from the model.

4.3 Examining real data sets

In real data sets, examples of measurements that contain many fewer relevant
than irrelevant features are frequently encountered in biomedical research [4].
Indeed, some of these data manage to break the best classifiers [10]. The
primary cause identified for the unusual effects reported in [10] is the mismatch
between the proximity relations in the data space and those in the target space.
We may add the abundance of irrelevant dimensions, on its own, may easily
destroy the proximities in the data, even if an underlying systematic relation
exists between some of the observed features and the target.

We find it instructive to contrast the kind of data associated with this problem
domain with that of another area with equally large dimensionality, such as
text categorisation. For text-based documents, the data dimensions are dic-
tionary words and the dimensionality equals the size of the dictionary used —
typically of the order of tens of thousands. Despite this, many successes have
been reported in this problem domain [8]. The question as to what makes the
difference in difficulty has never been addressed. Though a possible answer
would greatly enhance our understanding of the practical side of the rather
vaguely defined ‘curse of dimensionality’ problem.

Relating these observations to our earlier results, we conjecture that the dis-
tance concentration phenomenon plays a role in making the data hard / or
easy to work with. One should note that in the case of text irrelevant words
(termed ‘stop-words’ in statistical text analysis, e.g. ‘the’, ‘and’, etc.) are rel-
atively few (and typically filtered out based on a well-known list).
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To test this conjecture, Figure 5 demonstrates the percentage of datum in-
stances for which half of the remaining points are within some factor of the
nearest neighbour, for a number of real data sets drawn from these two ap-
plication areas. Plotting this quantity for varying percentages and factors was
previously used in [2] and gives a suggestive visual representation of the degree
of concentration. We have chosen three gene expression data sets of different
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Fig. 5. Examining distance concentration in real data sets. Gene expression data
are much more concentrated than text document data.

difficulty and four text data sets. The Adenocarcinoma gene expression ar-
rays [10] were deemed ‘anti-learnable’ by means of classification methods in
[10]. We see in Figure 5, this data is the most concentrated among all oth-
ers tested. All arrays have half of the rest of the data within a factor of just
1.669 of the square distance from their nearest neighbour. 90% of the arrays
have half of the data within a factor of just 1.538 from their nearest neigh-
bours. That is an extremely poor relative spread. The next steepest curve
belongs to the Brain tumour gene expressions (available from [5]). This is a
data set that led consistently to the highest error rate among five other data
sets tested in [5], by seven different classifiers considered in the comparative
study of [5]. (E.g. SVM obtained an error rate of 28.29%, KNN 29.71%.) The
data contains 5 different classes, yet we see in Figure 5 that all arrays have
half of the rest of the data within a factor of 2.327 of the square distance
from their nearest neighbour. So the concentration is still quite pronounced.
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Next, the Leukaemia gene expressions represent a benchmark on which many
studies with different methods reported reasonably good performance (e.g. a
KNN achieved 3.83% error [5]). We observe the cumulative percentage curve
is slightly less steep than for the previous two sets, which indicates a slightly
better relative spread-out of the pairwise distances.

The remaining four data sets represent text-based document data. The NIPS
conference paper collection 5 has the highest dimensionality, and we did not do
any stop-word removal. Still, the pairwise distances are fairly well spread-out,
as indicated by the considerably less steep cumulative percentage curve com-
pared to the gene expression data sets. Further, CISI, MedLine and Cranfield 6

represent benchmark data sets used in many successful information retrieval
studies, and we have chosen these for their comparable dimensionality to the
gene expression data sets considered earlier. We can see in all these data the
distances are well spread out, so the nearest neighbour is indeed meaningful.

These findings suggest that it is not the high dimensionality per se that causes
problems for automated data analysis. Rather, it is the issue of distance con-
centration that, when present, appears to be a key source of serious problems.
Further research is required to study the feasibility limits of existing feature
selection methods and devising new ways of extending them based on the
understanding gained in this study.

5 Conclusions

By establishing the converse of the theorem of [2], we formulated a necessary
condition for the distance concentration phenomenon. We then examined a
broad class of non-i.i.d. data models, known as linear latent variable models,
and identified the settings where the Euclidean distance does not concentrate
under reasonable conditions. This complements previous work that focused
on non-Euclidean distances in data models with i.i.d. dimensions. Since latent
variable models have a long and successful history in modelling dependencies
in real data sets, our analysis provides guidance and explanation as to when
and why distance concentration is or isn’t a problem in high dimensional data
settings. We gave numerical simulations that validated the theory, and we also
examined several real data sets in two different application area. Our findings
are in agreement with existing empirical observations, and our theory provides
a novel explanation as to why and how data that exhibits structure suffers less
from the curse of dimensionality.

5 http://www.cs.toronto.edu/∼roweis/data.html
6 http://scgroup6.ceid.upatras.gr:8000/wiki/index.php/Main Page
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The most foreseeable practical ramifications of these results include the fol-
lowing:

• For databases, the need for testing nearest neighbour processing techniques
on ‘meaningful’ workloads (i.e. distributions in which the employed dis-
tance does not suffer from the concentration phenomenon) has been noted
in [2]. The examples we provided in Sec. 3 can be directly used for this
purpose. Moreover, for any distribution and distance function pair, one can
test meaningfulness by using our generic theoretical result given in Sec. 2.

• For data analysis and learning from data, as noted in [4], existing techniques
lack an awareness of the distance concentration phenomenon in high dimen-
sional spaces. It is hoped that the understanding gained through analysis
will pave the way towards a rigorous assessment of existing techniques and
towards devising better ones. More research is needed in this area in order
to produce and evaluate concrete techniques, however, a natural step may
be to investigate the explicit use of RVm as an objective to be maximised for
feature selection and dimensionality reduction. A learning-theoretic study of
how the distance concentration in the space of data features (as considered
here) affects the generalisation 7 of learning methods in high dimensional
problems is also a topic of further research.
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Appendix: Derivation details

To compute RVm, the expectation of Euclidean distances is computed as:

E[||x||22] = E[
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and the variance is:
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