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Overview

• The CGAL Open Source Project

• Structure of CGAL

• The Kernel
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The Open Source Project
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Goals

• Promote the research in Computational Geometry (CG)

• “make the large body of geometric algorithms developed in the field of CG
available for industrial applications”

⇒ robust programs

CG Impact Task Force Report, 1996

Among the key recommendations:

• Production and distribution of usable (and useful) geometric codes

• Reward structure for implementations in academia
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History

Development started in 1995

Consortium of 8 European sites
Two Esprit LTR European Projects (1996-1999)

Utrecht University (XYZ Geobench)
INRIA Sophia Antipolis (C++GAL)
ETH Zürich (Plageo)
MPI Saarbrücken (LEDA)
Tel Aviv University
Freie Universität Berlin

RISC Linz
Martin-Luther-Universität Halle

Introduction to 4



• Work continued after the end of European support (1999) in several sites.

• January, 2003: creation of Geometry Factory

INRIA startup
sells commercial licenses, support, customized developments

• November, 2003:

Release 3.0
Open Source Project

• December, 2004: Release 3.1
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License

• kernel under LGPL

• basic library under QPL
◦ free use for Open Source code
◦ commercial license needed otherwise

• A guarantee for CGAL users

• Allows CGAL to become a standard

• Opens CGAL for new contributions
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in numbers

• 400.000 lines of C++ code

• >2000 pages manual

• release cycle of ∼12 months

• CGAL 2.4: 9300 downloads (18 months)
• CGAL 3.1: 7329 downloads (9 months)

• 4000 subscribers to the announcement list (7000 for gcc)

• 800 users registered on discussion list (600 in gcc-help)

• 50 developers registered on developer list
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Supported platforms

• Linux, Windows, Mac OS X, Irix, Solaris

• g++, VC++, Intel C++, MipsPRO CC, SunPro CC

Introduction to 8



Development process

Editorial Board created in 2001.

• responsible for the quality of CGAL

New packages are reviewed.

→ helps authors to get credit for their work.

CG Impact Task Force Report, 1996
Reward structure for implementations in academia

• decides about technical matters

• coordinates communication and promotion

• ...
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Andreas Fabri (Geometry Factory)
Efi Fogel (Tel Aviv University)
Bernd Gärtner (ETH Zürich)
Michael Hoffmann (ETH Zürich)
Menelaos Karavelas (University of Notre Dame, USA → Greece)
Lutz Kettner (Max-Planck-Institut für Informatik)
Sylvain Pion (INRIA Sophia Antipolis)
Monique Teillaud (INRIA Sophia Antipolis)
Remco Veltkamp (Utrecht University)
Ron Wein (Tel Aviv University)
Mariette Yvinec (INRIA Sophia Antipolis)
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Tools

• Own manual tools: LATEX −→ ps, pdf, html

• CVS server for version management

• Developer manual

• mailing list for developers

• 1-2 developers meetings per year, 1 week long

• 1 internal release per day

• Automatic test suites running on all supported compilers/platforms
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Credit

Contributors keep their identity

• up to 3.0.1: names of authors mentioned in the Preface.

• 3.1: Names of authors appear at the beginning of each chapter.
Section on history of the package at the end of each chapter, with names

of all contributors.

• CGAL developers listed on the “People” web page.

• Authors publish papers (conferences, journals) on their packages.

• Copyright kept by the institution of the authors.
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Users

Projects using CGAL

Leonidas J. Guibas’ and co-workers, Stanford University.

Tamal K. Dey’s and co-workers, The Ohio State University.

Nina Amenta and co-workers, The University of Texas at Austin.

Xiangmin Jiao, University of Illinois at Urbana-Champaign.
(Surface Mesh Overlay)

Peter Coveney and co-workers, University of London.

. . .

Teaching

• Leo Guibas, Siu Wing Cheng, . . .

Introduction to 14



Commercial customers of Geometry Factory
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Structure of
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Basic Library

Algorithms and Data Structures

Kernel

Geometric objects
Geometric operations

core library

configurations, assertions, . . .

Visualization

File

I/O

NumberTypes

Generators

. . .

Support

Library
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Contents of
the Basic Library

18



Convex Hull

[MPI]

• 5 different algorithms in 2D

• 3 different algorithms in 3D
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Triangulations and related

[INRIA]

• 2D/3D Triangle/Tetrahedron based
data-structure

• Fully dynamic 2D/3D Delaunay triangulation
Delaunay hierarchy [Devillers ’98 ’02]

• 2D/3D Regular Triangulations
(fully dynamic in 3.2?)
• 2D Constrained Delaunay Triangulation

• 2D Apollonius diagram
• 2D Segment Voronoi Diagram
• 2D Meshes
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Polyhedra

[MPI]

• Half-edge data-structure

• Polyhedral surface
(orientable 2-manifold with boundary)

• 2D Nef polygons
• 3D Nef polyhedra
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Geometric Optimization

[ETH]

• Smallest enclosing circle and ellipse in 2D
• Smallest enclosing sphere in dD
• Largest empty rectangle
• . . .
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Arrangements

[Tel-Aviv]

• Line segments or polylines

• Conic arcs with Leda or Core

Completely new version in CGAL 3.2
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Search Structures

Arbitrary dimension

• Range-tree, Segment-tree, kD-tree

• Window query

• Approximate nearest neighbors

• . . .
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Work in Progress

Kinetic Data Structures
[Russel Karavelas]

Surface reconstruction
[Oudot Rey]

3D Meshes
[Rineau Yvinec]

Parameterization
[Alliez]

Curved Kernel
Extension of the CGAL kernel
Algebraic issues
[Emiris Kakargias Pion Tsigaridas Teillaud SoCG’04]

. . .

Introduction to 25



The Kernel
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In the kernel

Elementary geometric objects

Elementary computations on them

Primitives Predicates Constructions
2D, 3D, dD • comparison • intersection
• Point • Orientation • squared distance
• Vector • InSphere . . .
• Triangle . . .
• Iso rectangle
• Circle
. . .
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Affine geometry

Point - Origin → Vector
Point - Point → Vector
Point + Vector → Point

Point Vector

Origin

Point + Point illegal

midpoint(a,b) = a + 1/2 x (b-a)
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Kernels and Number Types

Cartesian representation

Point
∣∣∣∣ x = hx

hw

y = hy
hw

Homogeneous representation

Point

∣∣∣∣∣ hx
hy
hw

Intersection of two lines{
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x, y) =


˛̨̨̨
˛ b1 c1

b2 c2

˛̨̨̨
˛˛̨̨̨

˛ a1 b1

a2 b2

˛̨̨̨
˛
,−

˛̨̨̨
˛ a1 c1

a2 c2

˛̨̨̨
˛˛̨̨̨

˛ a1 b1

a2 b2

˛̨̨̨
˛



{
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx, hy, hw) =(∣∣∣∣ b1 c1

b2 c2

∣∣∣∣ ,−
∣∣∣∣ a1 c1

a2 c2

∣∣∣∣ ,

∣∣∣∣ a1 b1

a2 b2

∣∣∣∣)

Field operations Ring operations
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C++ Templates

CGAL::Cartesian< FT > (CGAL::Simple Cartesian)
CGAL::Homogeneous< RT > (CGAL::Simple Homogeneous)

Cartesian Kernels : Field type

double

Quotient<Gmpz>

leda real

Homogeneous Kernels : Ring type

int

Gmpz

double

−→ Flexibility

typedef double NumberType;
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point 2 Point;
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