
Computational Geometry Algorithms Library

www.cgal.org

Monique Teillaud

Introduction to



Overview

• The CGAL Open Source Project

• Structure of CGAL

• The Kernel

Introduction to 1



The Open Source Project

2



Goals

• Promote the research in Computational Geometry (CG)

• “make the large body of geometric algorithms developed in the field of CG
available for industrial applications”

⇒ robust programs

CG Impact Task Force Report, 1996

Among the key recommendations:

• Production and distribution of usable (and useful) geometric codes

• Reward structure for implementations in academia

Introduction to 3



History

Development started in 1995

Consortium of 8 European sites
Two Esprit LTR European Projects (1996-1999)

Utrecht University (XYZ Geobench)
INRIA Sophia Antipolis (C++GAL)
ETH Zürich (Plageo)
MPI Saarbrücken (LEDA)
Tel Aviv University
Freie Universität Berlin

RISC Linz
Martin-Luther-Universität Halle

Introduction to 4



• Work continued after the end of European support (1999) in several sites.

• January, 2003: creation of Geometry Factory

INRIA startup
sells commercial licenses, support, customized developments

• November, 2003:

Release 3.0
Open Source Project

• December, 2004: Release 3.1

Introduction to 5



License

• kernel under LGPL

• basic library under QPL
◦ free use for Open Source code
◦ commercial license needed otherwise

• A guarantee for CGAL users

• Allows CGAL to become a standard

• Opens CGAL for new contributions

Introduction to 6



in numbers

• 400.000 lines of C++ code

• >2000 pages manual

• release cycle of ∼12 months

• CGAL 2.4: 9300 downloads (18 months)
• CGAL 3.1: 7329 downloads (9 months)

• 4000 subscribers to the announcement list (7000 for gcc)

• 800 users registered on discussion list (600 in gcc-help)

• 50 developers registered on developer list

Introduction to 7



Supported platforms

• Linux, Windows, Mac OS X, Irix, Solaris

• g++, VC++, Intel C++, MipsPRO CC, SunPro CC

Introduction to 8



Development process

Editorial Board created in 2001.

• responsible for the quality of CGAL

New packages are reviewed.

→ helps authors to get credit for their work.

CG Impact Task Force Report, 1996
Reward structure for implementations in academia

• decides about technical matters

• coordinates communication and promotion

• ...

Introduction to 9



Andreas Fabri (Geometry Factory)
Efi Fogel (Tel Aviv University)
Bernd Gärtner (ETH Zürich)
Michael Hoffmann (ETH Zürich)
Menelaos Karavelas (University of Notre Dame, USA → Greece)
Lutz Kettner (Max-Planck-Institut für Informatik)
Sylvain Pion (INRIA Sophia Antipolis)
Monique Teillaud (INRIA Sophia Antipolis)
Remco Veltkamp (Utrecht University)
Ron Wein (Tel Aviv University)
Mariette Yvinec (INRIA Sophia Antipolis)

Introduction to 10



Tools

• Own manual tools: LATEX −→ ps, pdf, html

• CVS server for version management

• Developer manual

• mailing list for developers

• 1-2 developers meetings per year, 1 week long

• 1 internal release per day

• Automatic test suites running on all supported compilers/platforms

Introduction to 11



Credit

Contributors keep their identity

• up to 3.0.1: names of authors mentioned in the Preface.

• 3.1: Names of authors appear at the beginning of each chapter.
Section on history of the package at the end of each chapter, with names

of all contributors.

• CGAL developers listed on the “People” web page.

• Authors publish papers (conferences, journals) on their packages.

• Copyright kept by the institution of the authors.

Introduction to 12



Introduction to 13



Users

Projects using CGAL

Leonidas J. Guibas’ and co-workers, Stanford University.

Tamal K. Dey’s and co-workers, The Ohio State University.

Nina Amenta and co-workers, The University of Texas at Austin.

Xiangmin Jiao, University of Illinois at Urbana-Champaign.
(Surface Mesh Overlay)

Peter Coveney and co-workers, University of London.

. . .

Teaching

• Leo Guibas, Siu Wing Cheng, . . .

Introduction to 14



Commercial customers of Geometry Factory

Introduction to 15



Structure of

16



Basic Library

Algorithms and Data Structures

Kernel

Geometric objects
Geometric operations

core library

configurations, assertions, . . .

Visualization

File

I/O

NumberTypes

Generators

. . .

Support

Library

Introduction to 17



Contents of
the Basic Library

18



Convex Hull

[MPI]

• 5 different algorithms in 2D

• 3 different algorithms in 3D

Introduction to 19



Triangulations and related

[INRIA]

• 2D/3D Triangle/Tetrahedron based
data-structure

• Fully dynamic 2D/3D Delaunay triangulation
Delaunay hierarchy [Devillers ’98 ’02]

• 2D/3D Regular Triangulations
(fully dynamic in 3.2?)
• 2D Constrained Delaunay Triangulation

• 2D Apollonius diagram
• 2D Segment Voronoi Diagram
• 2D Meshes

Introduction to 20



Polyhedra

[MPI]

• Half-edge data-structure

• Polyhedral surface
(orientable 2-manifold with boundary)

• 2D Nef polygons
• 3D Nef polyhedra

Introduction to 21



Geometric Optimization

[ETH]

• Smallest enclosing circle and ellipse in 2D
• Smallest enclosing sphere in dD
• Largest empty rectangle
• . . .

Introduction to 22



Arrangements

[Tel-Aviv]

• Line segments or polylines

• Conic arcs with Leda or Core

Completely new version in CGAL 3.2

Introduction to 23



Search Structures

Arbitrary dimension

• Range-tree, Segment-tree, kD-tree

• Window query

• Approximate nearest neighbors

• . . .

Introduction to 24



Work in Progress

Kinetic Data Structures
[Russel Karavelas]

Surface reconstruction
[Oudot Rey]

3D Meshes
[Rineau Yvinec]

Parameterization
[Alliez]

Curved Kernel
Extension of the CGAL kernel
Algebraic issues
[Emiris Kakargias Pion Tsigaridas Teillaud SoCG’04]

. . .

Introduction to 25



The Kernel

26



In the kernel

Elementary geometric objects

Elementary computations on them

Primitives Predicates Constructions
2D, 3D, dD • comparison • intersection
• Point • Orientation • squared distance
• Vector • InSphere . . .
• Triangle . . .
• Iso rectangle
• Circle
. . .

Introduction to 27



Affine geometry

Point - Origin → Vector
Point - Point → Vector
Point + Vector → Point

Point Vector

Origin

Point + Point illegal

midpoint(a,b) = a + 1/2 x (b-a)

Introduction to 28



Kernels and Number Types

Cartesian representation

Point
∣∣∣∣ x = hx

hw

y = hy
hw

Homogeneous representation

Point

∣∣∣∣∣ hx
hy
hw

Intersection of two lines{
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x, y) =


˛̨̨̨
˛ b1 c1

b2 c2

˛̨̨̨
˛˛̨̨̨

˛ a1 b1

a2 b2

˛̨̨̨
˛
,−

˛̨̨̨
˛ a1 c1

a2 c2

˛̨̨̨
˛˛̨̨̨

˛ a1 b1

a2 b2

˛̨̨̨
˛



{
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx, hy, hw) =(∣∣∣∣ b1 c1

b2 c2

∣∣∣∣ ,−
∣∣∣∣ a1 c1

a2 c2

∣∣∣∣ ,

∣∣∣∣ a1 b1

a2 b2

∣∣∣∣)

Field operations Ring operations

Introduction to 29



C++ Templates

CGAL::Cartesian< FT > (CGAL::Simple Cartesian)
CGAL::Homogeneous< RT > (CGAL::Simple Homogeneous)

Cartesian Kernels : Field type

double

Quotient<Gmpz>

leda real

Homogeneous Kernels : Ring type

int

Gmpz

double

−→ Flexibility

typedef double NumberType;
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point 2 Point;

Introduction to 30


