2 Delaunay triangulation: definitions, motivations, properties, classical algorithms.

2.1 Drawing

Draw the Delaunay triangulation of the attached point set.

2.1 Correction:

2.2 Nearest neighbor graphs

S a set of n points. $q_{0} \in S$. Let q_{1} denote the nearest neighbor of q_{0} in $S \backslash\left\{q_{0}\right\}$. Let q_{2} denote the second nearest neighbor of q_{0} in S, i.e., the nearest neighbor in $S \backslash\left\{q_{0}, q_{1}\right\}$. Similarly q_{i} the $i^{\text {th }}$ nearest neighbor.

The directed nearest neighbor graph of S is the graph whose vertices are the points in S and $p q$ is an edge of the graph if q is the nearest neighbor of p.

Fact: The degree of the nearest neighbor graph is ≤ 6. (proof optional).

2.2.1 Nearest neighbor

Prove that $q_{0} q_{1}$ is an edge of the Delaunay triangulation of S.

2.2.2 Second nearest neighbor

Prove that $q_{0} q_{2}$ or $q_{1} q_{2}$ is an edge of the Delaunay triangulation of S.

2.2.3 $k^{\text {th }}$ nearest neighbor

Prove that $\forall k \exists i<k$ such that $q_{k} q_{i}$ is an edge of the Delaunay triangulation of S.

2.2.4 Nearest neighbor graph

Write an algorithm that takes the Delaunay triangulation of S and output the directed nearest neighbor graph of S.

You can write things like:
for v enumerating all vertices of $D T(S)$,
for w enumerating the neighbor of v in $D T(S)$,
or output edge (v, w),
or $v . c o l o r=$ red to add some information in a vertex (or edge or...)
What is the complexity of this algorithm?

2.2.5 Nearest neighbor graph

Write an algorithm that takes the Delaunay triangulation of S and output the directed second nearest neighbor graph of S.

What is the complexity of this algorithm?

2.2 Correction:

2.2.1 Nearest neighbor

The disk centered at q_{0} passing through q_{1} contains only q_{0}, thus the disk of diameter $q_{0} q_{1}$, which is included in the previous one is empty. By the empty circle property, $q_{0} q_{1}$ is a Delaunay edge.

2.2.2 Second nearest neighbor

The disk D_{2} centered at q_{0} passing through q_{2} contains only q_{0} and q_{1}, thus we consider the two disks Z_{0} and Z_{1} passing through q_{2} tangent in q_{2} to D_{2} and respectively passing through q_{0} and q_{1}. We have to cases:

- $Z_{0} \subset Z_{1} \subset D_{2}$ and Z_{0} is empty, by the empty circle property, $q_{0} q_{2}$ is a Delaunay edge.
$-Z_{1} \subset Z_{0} \subset D_{2}$ and Z_{1} is empty, by the empty circle property, $q_{1} q_{2}$ is a Delaunay edge.

2.2.3 $k^{\text {th }}$ nearest neighbor

The disk of center q_{0} through q_{k} verifies $D_{k} \cap S=\left\{q_{0}, q_{1} \ldots q_{k-1}\right\}$. Consider the pencil of circles through q_{k} tangent to D_{k} The bigest empty circle of that pencil inside D_{k} pass through a point inside D_{k} that is some q_{i} with $i<k$ and by the empty circle property, $q_{i} q_{k}$ is a Delaunay edge.

2.2.4 Nearest neighbor graph

```
for }u\mathrm{ enumerating all vertices of }DT(S) 
    d=\infty;
    for w enumerating the neighbor of }u\mathrm{ in }DT(S) 
        if |uw|<d then {nn=w;\quadd=|uw|; }
    }
    output edge(u,nn),
}
```

The inside loop costs $d^{\circ}(u)$, thus the total cost of the algorithm is $\sum_{u \in S} d^{\circ}(u)<6 n$.

2.2.5 Nearest neighbor graph

```
for }u\mathrm{ enumerating all vertices of }DT(S) 
        u.d=\infty;
        for w enumerating the neighbor of }u\mathrm{ in DT(S) {
            if |uw|<d then {u.nn=w; d=|uw|; }
    }
}
for }u\mathrm{ enumerating all vertices of }DT(S) 
    d=\infty;
    for w enumerating the neighbor of }u\mathrm{ in }DT(S) 
        if (|uw|<d and w\not=u.nn) then {sn=w; d=|uw|; }
        for w enumerating the neighbor of u.nn in DT(S) {
            if (|uw|<d and w\not=u) then {sn=w; d=|uw|; }
        output edge(u,sn),
        }
}
```

 The cost is
 $$
\begin{aligned}
\sum_{u \in S}\left(d_{D T}^{\circ}(u)+d_{D T}^{\circ}(u . n n)\right) & =\sum_{u \in S} d_{D T}^{\circ}(u)+\sum_{u \in S} \sum_{v \in\{u . n n\}} d_{D T}^{\circ}(v) \\
& =\sum_{u \in S} d_{D T}^{\circ}(u)+\sum_{v \in S} \sum_{u \text { such that } v=u . n n} d_{D T}^{\circ}(v) \\
& =\sum_{u \in S} d_{D T}^{\circ}(u)+\sum_{v \in S} d_{N N}^{\circ}(v) \cdot d_{D T}^{\circ}(v) \\
& =\sum_{u \in S} d_{D T}^{\circ}(u)+\sum_{v \in S} 6 d_{D T}^{\circ}(v) \leq 42 n
\end{aligned}
$$

