4 Robustness issues: numerical issues, degenerate cases.

4.1 double arithmetic

4.1.1 Small questions

Let us use double arithmetic. For each of the following statements, answer whether it is true or false, and justify in less than one line.

$$a > b \quad \Leftrightarrow \quad a - b > 0 \tag{1}$$

$$(a * b) * c = a * (b * c)$$
 (2)

$$a+b = b+a \tag{3}$$

$$a * (b+c) = a * b + a * c \tag{4}$$

$$x > y \Rightarrow sqrt(x) > sqrt(y)$$
 (5)

$$(\text{for } x, y \ge 0) \quad x \ast x \ge y \ast y \quad \Rightarrow \quad x \ge y \tag{6}$$

$$a, b, c \text{ integers in } [-2^{20}, 2^{20}] \Rightarrow (a-b) * (a-c) = a * a + a * (c-b) - b * c$$
(7)

4.1.2 A function

What does the following function return when called on a double in the open interval $]-2^{50}, 2^{50}[?]$

```
double WhoAmI{double x}
```

```
{
    double a = 3377699720527872.0; // 2^50 + 2^51
    double s = x+a;
    double r = s-a;
    return r;
}
```

4.2 Circle intersection

Let C_1 and C_2 be two circles of respective centers (x_1, y_1) and (x_2, y_2) and respective radii r_1 and r_2 ,

4.2.1 Predicate

Write the predicate testing if C_1 and C_2 intersect as the sign of a polynomial in $x_1, y_1, r_1, x_2, y_2, r_2$.

4.2.2 Precision

Assume that the input data $x_1, y_1, r_1, x_2, y_2, r_2$ are integers in $[-2^b, 2^b]$, and that the computations are performed with **double**. For which values of b is the predicate guaranteed to give the correct result?

(Recall that according to IEEE754 norm, double are stored with 53 significant bits.)