4 Robustness issues: numerical issues, degenerate cases.

4.1 double arithmetic

4.1.1 Small questions

Let us use double arithmetic. For each of the following statements, answer whether it is true or false, and justify in less than one line.

$$
\begin{align*}
a>b & \Leftrightarrow a-b>0 \tag{1}\\
(a * b) * c & =a *(b * c) \tag{2}\\
a+b & =b+a \tag{3}\\
a *(b+c) & =a * b+a * c \tag{4}\\
x>y & \Rightarrow \operatorname{sqrt}(x)>\operatorname{sqrt}(y) \tag{5}\\
(\text { for } x, y \geq 0) x * x \geq y * y & \Rightarrow x \geq y \tag{6}\\
a, b, c \text { integers in }\left[-2^{20}, 2^{20}\right] & \Rightarrow(a-b) *(a-c)=a * a+a *(c-b)-b * c \tag{7}
\end{align*}
$$

4.1.2 A function

What does the following function return when called on a double in the open interval $]-2^{50}, 2^{50}[?$

```
double WhoAmI{double x}
    {
        double a = 3377699720527872.0; // 2^50 + 2^51
        double s = x+a;
        double r = s-a;
        return r;
    }
```


4.2 Circle intersection

Let C_{1} and C_{2} be two circles of respective centers $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ and respective radii r_{1} and r_{2},

4.2.1 Predicate

Write the predicate testing if C_{1} and C_{2} intersect as the sign of a polynomial in $x_{1}, y_{1}, r_{1}, x_{2}, y_{2}, r_{2}$.

4.2.2 Precision

Assume that the input data $x_{1}, y_{1}, r_{1}, x_{2}, y_{2}, r_{2}$ are integers in $\left[-2^{b}, 2^{b}\right]$, and that the computations are performed with double. For which values of b is the predicate guaranteed to give the correct result?
(Recall that according to IEEE754 norm, double are stored with 53 significant bits.)

