Hyperbolic surfaces: complexity of Delaunay triangulations via systoles

Matthijs Ebbens
University of Groningen

September 25, 2017

Overview

- Background
- Delaunay triangulations on hyperbolic surfaces
- Systole of 'regular' surfaces

Recap

- Delaunay triangulation

Recap

- Delaunay triangulation
- Hyperbolic plane \mathbb{H}^{2}

Recap

- Delaunay triangulation
- Hyperbolic plane \mathbb{H}^{2}
- Möbius transformations

Recap

- Delaunay triangulation
- Hyperbolic plane \mathbb{H}^{2}
- Möbius transformations
- Fuchsian group Γ

Recap

- Delaunay triangulation
- Hyperbolic plane \mathbb{H}^{2}
- Möbius transformations
- Fuchsian group 「
- Hyperbolic surface \mathbb{H}^{2} / Γ

Recap

- Delaunay triangulation
- Hyperbolic plane \mathbb{H}^{2}
- Möbius transformations
- Fuchsian group Γ
- Hyperbolic surface \mathbb{H}^{2} / Γ
- Systole

Recap

- Delaunay triangulation
- Hyperbolic plane \mathbb{H}^{2}
- Möbius transformations
- Fuchsian group Γ
- Hyperbolic surface \mathbb{H}^{2} / Γ
- Systole
- δ_{S} for point set S

Delaunay triangulations on hyperbolic surfaces

- Given: hyperbolic surface \mathbb{H}^{2} / Γ, point set $S \subset \mathbb{H}^{2} / \Gamma$

Delaunay triangulations on hyperbolic surfaces

- Given: hyperbolic surface \mathbb{H}^{2} / Γ, point set $S \subset \mathbb{H}^{2} / \Gamma$
- $\Gamma S=$ set of translates of S

Delaunay triangulations on hyperbolic surfaces

- Given: hyperbolic surface \mathbb{H}^{2} / Γ, point set $S \subset \mathbb{H}^{2} / \Gamma$
- $\Gamma S=$ set of translates of S
- Delaunay triangulation of ΓS in $\mathbb{H}^{2} \rightarrow \mathrm{DT}_{\mathbb{H}}(\Gamma S)$

Delaunay triangulations on hyperbolic surfaces

- Given: hyperbolic surface \mathbb{H}^{2} / Γ, point set $S \subset \mathbb{H}^{2} / \Gamma$
- $\Gamma S=$ set of translates of S
- Delaunay triangulation of ΓS in $\mathbb{H}^{2} \rightarrow \mathrm{DT}_{\mathbb{H}}(\Gamma S)$
- Projection $\pi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2} / \Gamma$

Delaunay triangulations on hyperbolic surfaces

- Given: hyperbolic surface \mathbb{H}^{2} / Γ, point set $S \subset \mathbb{H}^{2} / \Gamma$
- $\Gamma S=$ set of translates of S
- Delaunay triangulation of ΓS in $\mathbb{H}^{2} \rightarrow \mathrm{DT}_{\mathbb{H}}(\Gamma S)$
- Projection $\pi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2} / \Gamma$
- Question: Is $\pi\left(\mathrm{DT}_{\mathbb{H}}(\Gamma S)\right)$ a triangulation?

Delaunay triangulations on hyperbolic surfaces

Theorem
If

$$
\operatorname{syst}\left(\mathbb{H}^{2} / \Gamma\right)>2 \delta_{S},
$$

then $\pi\left(\mathrm{DT}_{\mathbb{H}}(\Gamma \mathrm{S})\right)$ is a triangulation.

How to find the systole of \mathbb{H}^{2} / Γ ?

Relation between geodesics and transformations
$\left\{\right.$ closed geodesics of $\left.\mathbb{H}^{2} / \Gamma\right\} \leftrightarrow\{$ conjugacy classes in $\Gamma\}$

Relation between geodesics and transformations

- Geodesic $c \leftrightarrow$ transformation γ
- Length of $c \leftrightarrow$ trace of matrix γ :

$$
\cosh \left(\frac{1}{2} \ell(c)\right)=\frac{1}{2}|\operatorname{tr}(\gamma)|
$$

Finding the systole

- Optimization problem:
$\operatorname{syst}\left(\mathbb{H}^{2} / \Gamma\right)=\min \ell(c)$,
subject to: c homotopically non-trivial closed curve on \mathbb{H}^{2} / Γ

Finding the systole

- Optimization problem:
$\operatorname{syst}\left(\mathbb{H}^{2} / \Gamma\right)=\min \ell(c)$,
subject to: c homotopically non-trivial closed curve on \mathbb{H}^{2} / Γ
- Sufficient to solve:

$$
\begin{array}{r}
\min \frac{1}{2}|\operatorname{tr}(\gamma)|, \\
\text { subject to } \gamma \in \Gamma \backslash\{\operatorname{Id}\}
\end{array}
$$

'Regular' surfaces

'Regular' surfaces

- Hyperbolic surface M_{g} of genus $g \geq 2$
- Represented by a regular $4 g$-gon
- Side pairing transformations pair opposite sides

Systole of 'regular' surfaces

Conjecture

$$
\cosh \left(\frac{1}{2} \operatorname{syst}\left(M_{g}\right)\right)=1+2 \cos \left(\frac{\pi}{2 g}\right)
$$

Systole of 'regular' surfaces

Conjecture

$$
\cosh \left(\frac{1}{2} \operatorname{syst}\left(M_{g}\right)\right)=1+2 \cos \left(\frac{\pi}{2 g}\right)
$$

Theorem

$$
\cosh \left(\frac{1}{2} \operatorname{syst}\left(M_{g}\right)\right) \leq 1+2 \cos \left(\frac{\pi}{2 g}\right)
$$

with equality for $g=2,3$

Genus $g=2$

Fuchsian group generated by

$$
A_{k}=\left[\begin{array}{cc}
1+\sqrt{2} & \exp \left(\frac{i k \pi}{4}\right) \sqrt{2+2 \sqrt{2}} \\
\exp \left(-\frac{i k \pi}{4}\right) \sqrt{2+2 \sqrt{2}} & 1+\sqrt{2}
\end{array}\right]
$$

for $k=0, \ldots, 7$

Finding the systole

- Optimization problem

$$
\begin{array}{r}
\min \frac{1}{2}|\operatorname{tr}(\gamma)|, \\
\text { subject to } \gamma \in \Gamma \backslash\{\operatorname{Id}\}
\end{array}
$$

- Look at products of the A_{k} 's

Arbitrary products of the A_{k}

- Of the form

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{2+2 \sqrt{2}} \\
\bar{\beta} \sqrt{2+2 \sqrt{2}} & \bar{\alpha}
\end{array}\right]
$$

- $\alpha-1 \in 2 \mathbb{Z}\left[\exp \left(\frac{\pi i}{4}\right)\right]$

Arbitrary products of the A_{k}

- Of the form

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{2+2 \sqrt{2}} \\
\bar{\beta} \sqrt{2+2 \sqrt{2}} & \bar{\alpha}
\end{array}\right]
$$

- $\alpha-1 \in 2 \mathbb{Z}\left[\exp \left(\frac{\pi i}{4}\right)\right]$
- $\operatorname{Re}(\alpha)=m+n \sqrt{2}$ with $|m-n \sqrt{2}|<1$

Arbitrary products of the A_{k}

- Of the form

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{2+2 \sqrt{2}} \\
\bar{\beta} \sqrt{2+2 \sqrt{2}} & \bar{\alpha}
\end{array}\right]
$$

- $\alpha-1 \in 2 \mathbb{Z}\left[\exp \left(\frac{\pi i}{4}\right)\right]$
- $\operatorname{Re}(\alpha)=m+n \sqrt{2}$ with $|m-n \sqrt{2}|<1$
- $\cosh \left(\frac{1}{2} \operatorname{syst}\left(M_{2}\right)\right)=1+\sqrt{2}$

Arbitrary products of the A_{k}

- Of the form

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{2+2 \sqrt{2}} \\
\bar{\beta} \sqrt{2+2 \sqrt{2}} & \bar{\alpha}
\end{array}\right]
$$

- $\alpha-1 \in 2 \mathbb{Z}\left[\exp \left(\frac{\pi i}{4}\right)\right]$
- $\operatorname{Re}(\alpha)=m+n \sqrt{2}$ with $|m-n \sqrt{2}|<1$
- $\cosh \left(\frac{1}{2} \operatorname{syst}\left(M_{2}\right)\right)=1+\sqrt{2}$
- See [Aurich, Bogomolny, Steiner 1990]

Genus $g=3$

- Products of generators of the form

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{6+4 \sqrt{3}} \\
\bar{\beta} \sqrt{6+4 \sqrt{3}} & \bar{\alpha}
\end{array}\right]
$$

- $\alpha-1 \in 2 \mathbb{Z}\left[\exp \left(\frac{\pi i}{6}\right)\right]$

Genus $g=3$

- Products of generators of the form

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{6+4 \sqrt{3}} \\
\bar{\beta} \sqrt{6+4 \sqrt{3}} & \bar{\alpha}
\end{array}\right]
$$

- $\alpha-1 \in 2 \mathbb{Z}\left[\exp \left(\frac{\pi i}{6}\right)\right]$
- $\operatorname{Re}(\alpha)=m+n \sqrt{3}$ with $|m-n \sqrt{3}|<1$

Genus $g=3$

- Products of generators of the form

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{6+4 \sqrt{3}} \\
\bar{\beta} \sqrt{6+4 \sqrt{3}} & \bar{\alpha}
\end{array}\right]
$$

- $\alpha-1 \in 2 \mathbb{Z}\left[\exp \left(\frac{\pi i}{6}\right)\right]$
- $\operatorname{Re}(\alpha)=m+n \sqrt{3}$ with $|m-n \sqrt{3}|<1$
- $\cosh \left(\frac{1}{2} \operatorname{syst}\left(M_{3}\right)\right)=1+\sqrt{3}$

Fuchsian group for arbitrary genus

Group generated by

$$
A_{k}=\left[\begin{array}{cc}
\cot \left(\frac{\pi}{4 g}\right) & \exp \left(\frac{i k \pi}{2 g}\right) \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} \\
\exp \left(-\frac{i k \pi}{2 g}\right) \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} & \cot \left(\frac{\pi}{4 g}\right)
\end{array}\right]
$$

for $k=0, \ldots, 4 g-1$

Upper bound

- $\frac{1}{2} \operatorname{tr}\left(A_{k} A_{k+2 g-1}\right)=1+2 \cos \left(\frac{\pi}{2 g}\right)$

Upper bound

- $\frac{1}{2} \operatorname{tr}\left(A_{k} A_{k+2 g-1}\right)=1+2 \cos \left(\frac{\pi}{2 g}\right)$
- $\Rightarrow \cosh \left(\frac{1}{2} \operatorname{syst}\left(M_{g}\right)\right) \leq 1+2 \cos \left(\frac{\pi}{2 g}\right)$

Fuchsian group for arbitrary genus

Group generated by

$$
A_{k}=\left[\begin{array}{cc}
\cot \left(\frac{\pi}{4 g}\right) & \exp \left(\frac{i k \pi}{2 g}\right) \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} \\
\exp \left(-\frac{i k \pi}{2 g}\right) \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} & \cot \left(\frac{\pi}{4 g}\right)
\end{array}\right]
$$

for $k=0, \ldots, 4 g-1$

Arbitrary products of the A_{k}

- Of the form

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} \\
\bar{\beta} \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} & \bar{\alpha}
\end{array}\right]
$$

- $\alpha \in \mathbb{Z}\left[\zeta_{4 g}\right]$
- $\alpha-1 \in 2 \mathbb{Z}\left[\zeta_{4 g}\right]$ or $\alpha-\cot \left(\frac{\pi}{4 g}\right) \in 2 \mathbb{Z}\left[\zeta_{4 g}\right]$

Automorphisms

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} \\
\bar{\beta} \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} & \bar{\alpha}
\end{array}\right]
$$

Automorphisms

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} \\
\bar{\beta} \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} & \bar{\alpha}
\end{array}\right]
$$

$-|\alpha|^{2}+\left(1-\cot ^{2}\left(\frac{\pi}{4 g}\right)\right)|\beta|^{2}=1$

Automorphisms

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} \\
\bar{\beta} \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} & \bar{\alpha}
\end{array}\right]
$$

- $|\alpha|^{2}+\left(1-\cot ^{2}\left(\frac{\pi}{4 g}\right)\right)|\beta|^{2}=1$
- If $\operatorname{gcd}(k, 4 g)=1$, then ψ_{k} defined by $\zeta_{4 g} \mapsto \zeta_{4 g}^{k}$

Automorphisms

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} \\
\bar{\beta} \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} & \bar{\alpha}
\end{array}\right]
$$

- $|\alpha|^{2}+\left(1-\cot ^{2}\left(\frac{\pi}{4 g}\right)\right)|\beta|^{2}=1$
- If $\operatorname{gcd}(k, 4 g)=1$, then ψ_{k} defined by $\zeta_{4 g} \mapsto \zeta_{4 g}^{k}$
- If $g<k<3 g$, then $\psi_{k}\left(\cot ^{2}\left(\frac{\pi}{4 g}\right)\right)<1$

Automorphisms

$$
\left[\begin{array}{cc}
\alpha & \beta \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} \\
\bar{\beta} \sqrt{\cot ^{2}\left(\frac{\pi}{4 g}\right)-1} & \bar{\alpha}
\end{array}\right]
$$

- $|\alpha|^{2}+\left(1-\cot ^{2}\left(\frac{\pi}{4 g}\right)\right)|\beta|^{2}=1$
- If $\operatorname{gcd}(k, 4 g)=1$, then ψ_{k} defined by $\zeta_{4 g} \mapsto \zeta_{4 g}^{k}$
- If $g<k<3 g$, then $\psi_{k}\left(\cot ^{2}\left(\frac{\pi}{4 g}\right)\right)<1$
- $\Rightarrow\left|\psi_{k}(\alpha)\right|<1$

Intuition for the automorphisms

- Consider the optimization problem for $g=2$ without the automorphism constraint:

$$
\begin{aligned}
& \min |m+n \sqrt{2}| \\
\text { subject to } & m, n \in \mathbb{Z} \\
& (m, n) \neq(0,0),(1,0)
\end{aligned}
$$

Intuition for the automorphisms

- Consider the optimization problem for $g=2$ without the automorphism constraint:

$$
\min |m+n \sqrt{2}|
$$

subject to $m, n \in \mathbb{Z}$,

$$
(m, n) \neq(0,0),(1,0)
$$

- Consider $1+(\sqrt{2}-1)^{n}$ for $n \rightarrow \infty$

Resulting optimization problem

$$
\begin{aligned}
& \min |\operatorname{Re}(\alpha)|, \\
& \text { subject to } \alpha \in 1+2 \mathbb{Z}\left[\zeta_{4 g}\right] \cup \cot \left(\frac{\pi}{4 g}\right)+2 \mathbb{Z}\left[\zeta_{4 g}\right], \\
& \left|\psi_{k}(\alpha)\right|<1 \text { for } g<k<3 g, \operatorname{gcd}(k, 4 g)=1
\end{aligned}
$$

Problems

- Explicitly computing the feasible set

Problems

- Explicitly computing the feasible set
- Feasible set may be larger than in the original problem

Problems

- Explicitly computing the feasible set
- Feasible set may be larger than in the original problem
- Conjectured that this does not affect the minimum

Example: $g=2$

$$
\begin{aligned}
& \min |\operatorname{Re}(\alpha)|, \\
& \text { subject to } \alpha \in 1+2 \mathbb{Z}\left[\zeta_{8}\right] \cup 1+\sqrt{2}+2 \mathbb{Z}\left[\zeta_{8}\right], \\
& \\
& \left|\psi_{k}(\alpha)\right|<1 \text { for } 2<k<6, \operatorname{gcd}(k, 8)=1
\end{aligned}
$$

Example: $g=2$

- $\left|\psi_{k}(\alpha)\right|<1$ for $2<k<6, \operatorname{gcd}(k, 8)=1$

Example: $g=2$

- $\left|\psi_{k}(\alpha)\right|<1$ for $2<k<6, \operatorname{gcd}(k, 8)=1$
- $\psi_{3}: \zeta_{8} \mapsto \zeta_{8}^{3}$

Example: $g=2$

- $\left|\psi_{k}(\alpha)\right|<1$ for $2<k<6, \operatorname{gcd}(k, 8)=1$
- $\psi_{3}: \zeta_{8} \mapsto \zeta_{8}^{3}$
- $\psi_{3}: \frac{1}{2} \sqrt{2}+\frac{1}{2} i \sqrt{2} \mapsto-\frac{1}{2} \sqrt{2}+\frac{1}{2} i \sqrt{2}$

Example: $g=2$

- $\left|\psi_{k}(\alpha)\right|<1$ for $2<k<6, \operatorname{gcd}(k, 8)=1$
- $\psi_{3}: \zeta_{8} \mapsto \zeta_{8}^{3}$
- $\psi_{3}: \frac{1}{2} \sqrt{2}+\frac{1}{2} i \sqrt{2} \mapsto-\frac{1}{2} \sqrt{2}+\frac{1}{2} i \sqrt{2}$
- $\psi_{5}: \zeta_{8} \mapsto \zeta_{8}^{5}$

Example: $g=2$

- $\left|\psi_{k}(\alpha)\right|<1$ for $2<k<6, \operatorname{gcd}(k, 8)=1$
- $\psi_{3}: \zeta_{8} \mapsto \zeta_{8}^{3}$
- $\psi_{3}: \frac{1}{2} \sqrt{2}+\frac{1}{2} i \sqrt{2} \mapsto-\frac{1}{2} \sqrt{2}+\frac{1}{2} i \sqrt{2}$
- $\psi_{5}: \zeta_{8} \mapsto \zeta_{8}^{5}$
- $\psi_{5}: \frac{1}{2} \sqrt{2}+\frac{1}{2} i \sqrt{2} \mapsto-\frac{1}{2} \sqrt{2}-\frac{1}{2} i \sqrt{2}$

Example: $g=2$

$$
\min |m+n \sqrt{2}|
$$

subject to $m, n \in \mathbb{Z}$,
$(m, n) \neq(0,0)$,
$|m-n \sqrt{2}|<1$

Systole of 'regular' surfaces

Conjecture

$$
\cosh \left(\frac{1}{2} \operatorname{syst}\left(M_{g}\right)\right)=1+2 \cos \left(\frac{\pi}{2 g}\right)
$$

Theorem

$$
\cosh \left(\frac{1}{2} \operatorname{syst}\left(M_{g}\right)\right) \leq 1+2 \cos \left(\frac{\pi}{2 g}\right)
$$

with equality for $g=2,3$

