Delaunay triangulation: Implementation

Monique Teillaud

Innin -

(not only) laziness

Incremental algorithm

(not only) laziness

Incremental algorithm

(not only) laziness

Incremental algorithm

(not only) laziness

Incremental algorithm fully dynamic any dimension

(not only) laziness

Incremental algorithm

walk: access to

- vertices of a triangle
- neighbors of a triangle

in constant time

walk: access to

- vertices of a triangle
- neighbors of a triangle

in constant time

combinatorics:

store

- *d*-simplices
- vertices

adjacency relations as pointers

geometry

store

• points in vertices

walk: access to

- vertices of a triangle
- neighbors of a triangle
- in constant time

combinatorics:

store

- *d*-simplices
- vertices

adjacency relations as pointers

geometry

what about the infinite region? unbounded size...

add a bounding box?

requires to know points in advance

add a bounding box?

requires to know points in advance creates ugly triangles

no *point* in the infinite vertex

what if all points are collinear?

•

triangulation of \mathbf{S}^1

 $d\mathsf{D}$ triangulation, $d \geq 2$

"incomplete" simplices

what if all points are collinear?

triangulation of \mathbf{S}^1

what if all points are collinear? what if a non-collinear point comes in ?

triangulation of S^1 \longrightarrow triangulation of S^2

what if all points are collinear? what if a non-collinear point comes in ?

triangulation of S^1 \longrightarrow triangulation of S^2 \longrightarrow triangulation of S^3

what if all points are collinear? what if a non-collinear point comes in ? what if a non-coplanar point comes in ?

Combinatorial structure

only predicates

inexact evaluation of predicates NOT just an imprecision in the result

 $\mathsf{in}_{\mathsf{disk}_1}(p) = \mathsf{true}$

 $in_disk_2(p) = false$

inexact evaluation of predicates NOT just an imprecision in the result

 $\mathsf{in}_{\mathsf{disk}_1}(p) = \mathsf{true}$

 $\mathsf{in}_{-}\mathsf{disk}_2(p) = \mathsf{false}$

Predicate Is *s* inside or outside the disk?

Predicate

Is \boldsymbol{s} inside or outside the disk?

circle ${\mathcal C}$ through p,q,r

unknowns c, ho

solve \longrightarrow

- $\bullet\,$ center c
- radius ρ

Predicate

Is \boldsymbol{s} inside or outside the disk?

circle ${\mathcal C}$ through p,q,r

unknowns c, ho

solve \longrightarrow

- \bullet center c
- radius ρ

Bad idea... reals do not exist! rounding errors $\hookrightarrow p, q, r \notin C(c, \rho)$ "random" result for s

A simpler predicate Is r on the left or right side?

$$\mathsf{orient}(p,q,r) \qquad \begin{array}{c|c} \mathsf{sign} & 1 & 1 & 1 \\ p_x & q_x & r_x \\ p_y & q_y & r_y \end{array}$$

double numbers are not reals 53 binary digits

 $p = (0.5+x.u, \ 0.5+y.u)$ $0 \le x, y < 256,$ $u = 2^{-53}$ q = (12, 12) r = (24, 24)orient(p, q, r) $0 \ge 0$ = 0 < 0(a)

fast, but wrong

a solution:

rely on an exact arithmetic package (multiprecision, etc) powerful, but slow

Exact Geometric Computing paradigm

= exact predicates, \neq exact arithmetics

easy cases are more frequent

 \implies cost \simeq cost of approximate (double) computation

Dynamic filtering interval arithmetic

error on $+, -, *, /, \sqrt{\text{known}}$ (IEEE 754)

$$\left[\underline{a},\overline{a}\right] + \left[\underline{b},\overline{b}\right] = \left[\underline{a} \pm \underline{a}, \ \overline{a} \mp \overline{b}\right]$$

and propagate...

Dynamic filtering

interval arithmetic

error on $+, -, *, /, \sqrt{\text{known}}$ (IEEE 754)

$$\left[\underline{a},\overline{a}\right] + \left[\underline{b},\overline{b}\right] = \left[\underline{a} \pm \underline{a}, \ \overline{a} \mp \overline{b}\right]$$

and propagate...

Degree of predicates & number of operations

- \rightarrow constant in O()
- \longrightarrow size of errors
- $\longrightarrow \mathsf{length}$ of integers for exact arithmetic

Degree of predicates & number of operations

 \longrightarrow constant in O()

 \longrightarrow size of errors

 \longrightarrow length of integers for exact arithmetic

Incremental algorithm

only uses intrinsic predicates orient, in_disk any algorithm computing Delaunay triangulation is able to answer them

Sweep

uses ad hoc higher degree predicates

Choosing an algorithm

Degree of predicates & number of operations

 \longrightarrow constant in O()

 \longrightarrow size of errors

 \longrightarrow length of integers for exact arithmetic

Incremental algorithm

only uses intrinsic predicates orient, in_disk any algorithm computing Delaunay triangulation is able to answer them

Sweep

uses ad hoc higher degree predicates

laziness is not the only criterion

what if p lies on a circle?

yes, it does happen! input data are rounded

Simulating the absence of degeneracies

Simulating the absence of degeneracies

as if p outside

Simulating the absence of degeneracies

as if p inside

decisions must be made in a consistent way

Symbolic perturbation

Input data \mapsto data depending on a symbolic parameter ε

- $\varepsilon = 0$: (maybe) degenerate problem
- $\varepsilon \neq 0$: non-degenerate problem $\mapsto \mathsf{Result}(\varepsilon)$

Final result = $\lim_{\varepsilon \to 0^+} \text{Result}(\varepsilon)$

SoS: simulation of simplicity Input: n points $p_i = (x_i, y_i), i = 1, ..., n$ $\forall i, (x_i, y_i) \mapsto (x_i, y_i) + \varepsilon^{2^i}(i, i^2)$

SoS: simulation of simplicity Input: n points $p_i = (x_i, y_i), i = 1, ..., n$ $\forall i, (x_i, y_i) \mapsto (x_i, y_i) + \varepsilon^{2^i}(i, i^2)$

$$\mathsf{orient}(O, p_i, p_i) = \mathsf{sign} \begin{vmatrix} x_i & x_j \\ y_i & y_j \end{vmatrix}$$

SoS: simulation of simplicity Input: n points $p_i = (x_i, y_i), i = 1, \ldots, n$ $\forall i, (x_i, y_i) \mapsto (x_i, y_i) + \varepsilon^{2^i}(i, i^2)$ $\operatorname{orient}(O, p_i, p_i) = \operatorname{sign} \left| \begin{array}{cc} x_i & x_j \\ y_i & y_i \end{array} \right|$ non-null polynomial $\begin{vmatrix} x_3 & x_1 \\ y_3 & y_1 \end{vmatrix} \mapsto \begin{vmatrix} x_3 + 3\varepsilon^8 & x_1 + \varepsilon^2 \\ y_3 + 9\varepsilon^8 & y_1 + \varepsilon^2 \end{vmatrix} =$ $\begin{vmatrix} x_3 & x_1 \\ y_3 & y_1 \end{vmatrix} + \varepsilon^2 \begin{vmatrix} x_3 & 1 \\ y_3 & 1 \end{vmatrix} + \varepsilon^8 \begin{vmatrix} 3 & x_1 \\ 9 & y_1 \end{vmatrix} + \varepsilon^{10} \begin{vmatrix} 3 & 1 \\ 9 & 1 \end{vmatrix}$

sign = sign of first non-null coefficient

SoS: simulation of simplicity Input: n points $p_i = (x_i, y_i), i = 1, ..., n$ $\forall i, (x_i, y_i) \mapsto (x_i, y_i) + \varepsilon^{2^i}(i, i^2)$

$$\operatorname{orient}(O, p_i, p_i) = \operatorname{sign} \begin{vmatrix} x_i & x_j \\ y_i & y_j \end{vmatrix}$$

$$\longrightarrow$$
 always > 0 or < 0

same for in_disk

SoS: simulation of simplicity Input: n points $p_i = (x_i, y_i), i = 1, ..., n$ $\forall i, (x_i, y_i) \mapsto (x_i, y_i) + \varepsilon^{2^i}(i, i^2)$

$$\operatorname{orient}(O, p_i, p_i) = \operatorname{sign} \left| \begin{array}{cc} x_i & x_j \\ y_i & y_j \end{array} \right|$$

$$\longrightarrow$$
 always > 0 or < 0

same for in_disk

Perturbing points in $d + 1^{\text{th}}$ dimension

Perturbing points in $d + 1^{\text{th}}$ dimension

Perturbing points in $d + 1^{\text{th}}$ dimension

Perturbing points in $d + 1^{\text{th}}$ dimension

$$\operatorname{orient}(\pi_{i}^{\varepsilon}, \pi_{j}^{\varepsilon}, \pi_{k}^{\varepsilon}, \pi_{l}^{\varepsilon}) = \begin{vmatrix} 1 & 1 & 1 & 1 \\ x_{i} & x_{j} & x_{k} & x_{l} \\ y_{i} & y_{j} & y_{k} & y_{l} \\ z_{i} & z_{j} & z_{k} & z_{l} \\ t_{i} + \varepsilon^{n-i} & t_{j} + \varepsilon^{n-j} & t_{k} + \varepsilon^{n-k} & t_{l} + \varepsilon^{n-l} \end{vmatrix}$$
$$= \mathcal{D}(p_{i}, p_{j}, p_{k}, p_{l})$$
$$-\operatorname{orient}(p_{i}, p_{j}, p_{k})\varepsilon^{n-l}$$
$$+\operatorname{orient}(p_{i}, p_{k}, p_{l})\varepsilon^{n-k}$$
$$-\operatorname{orient}(p_{i}, p_{k}, p_{l})\varepsilon^{n-i}$$
$$+\operatorname{orient}(p_{j}, p_{k}, p_{l})\varepsilon^{n-i}$$

4 cocircular points \longrightarrow non-null polynomial in ε

point with highest index in the disk of the other 3

Perturbing points in $d + 1^{\text{th}}$ dimension

orientation predicate not perturbed \implies NO flat simplex created

global indexing = lexicographic order \longrightarrow Delaunay triangulation uniquely defined

easy to implement

Computational Geometry Algorithms Library

www.cgal.org

open source

distributed under GPL

commercial licences distributed by GeometryFactory

Computational Geometry Algorithms Library

www.cgal.org

2D, 3D, dD [weighted] Delaunay triangulations

 $2D \simeq 10$ million points / second $3D \simeq 1$ million points / second (on a standard laptop)

> fully dynamic fully robust

2D, 3D periodic [weighted] Delaunay triangulations (flat torus)

Computational Geometry Algorithms Library

www.cgal.org

used by astrophysicists, biologists,

Computational Geometry Algorithms Library

www.cgal.org

used by astrophysicists, biologists, mathematician(s?) ...

Take home (?)

There is a long way from the algorithm to the software

Needed

- clean mathematical models good algorithms
- knowledge of computers

union makes strength