Delaunay triangulation:

Implementation

Monique Teillaud
Ínría

Choosing an algorithm

(not only) laziness

Incremental algorithm
fully dynamic any dimension

Choosing an algorithm

(not only) laziness
Incremental algorithm
fully dynamic any dimension

Choosing an algorithm

(not only) laziness
Incremental algorithm
fully dynamic any dimension

Choosing an algorithm

(not only) laziness

Incremental algorithm
fully dynamic any dimension

Choosing an algorithm

(not only) laziness
Incremental algorithm
fully dynamic any dimension

Representation

walk: access to

- vertices of a triangle
- neighbors of a triangle in constant time

Representation

walk: access to

- vertices of a triangle
- neighbors of a triangle in constant time

combinatorics: store
- d-simplices
- vertices
adjacency relations as pointers
geometry
store
- points in vertices

Representation

walk: access to

- vertices of a triangle
- neighbors of a triangle
in constant time

what about the infinite region? unbounded size...

Representation

add a bounding box?

Representation

add a bounding box?

creates ugly triangles

Representation

\Longrightarrow triangulation of the sphere \mathbf{S}^{d}

Representation

Representation

what if all points are collinear?

Representation

triangulation of \mathbf{S}^{1}
$d \mathrm{D}$ triangulation, $d \geq 2$
"incomplete" simplices

what if all points are collinear?

Representation

triangulation of \mathbf{S}^{1}
what if all points are collinear?
what if a non-collinear point comes in ?

Representation

triangulation of \mathbf{S}^{1}
 \longrightarrow triangulation of \mathbf{S}^{2}

what if all points are collinear?
what if a non-collinear point comes in ?

Representation

triangulation of \mathbf{S}^{1}
\longrightarrow triangulation of \mathbf{S}^{2}
\longrightarrow triangulation of \mathbf{S}^{3}
what if all points are collinear?
what if a non-collinear point comes in ?
what if a non-coplanar point comes in ?

Arithmetic computations

Arithmetic computations

Arithmetic computations

Combinatorial structure

only predicates

Arithmetic computations

Geometric embedding
constructions
same underlying combinatorial structure

Arithmetic computations

inexact evaluation of predicates
NOT just an imprecision in the result
 in_disk $_{1}(p)=$ true in_disk $_{2}(p)=$ false

Arithmetic computations

inexact evaluation of predicates

NOT just an imprecision in the result

$$
\begin{aligned}
& \operatorname{in_ disk}_{1}(p)=\text { true } \\
& \text { in_disk }_{2}(p)=\text { false }
\end{aligned}
$$

inconsistencies!
algorithms fail

Arithmetic computations

Arithmetic computations

Predicate

Is s inside or outside the disk?
circle \mathcal{C} through p, q, r
unknowns c, ρ
solve \longrightarrow

- center c
- radius ρ

Arithmetic computations

Bad idea... reals do not exist!
rounding errors $\hookrightarrow p, q, r \notin \mathcal{C}(c, \rho)$
"random" result for s

Arithmetic computations

Arithmetic computations

Arithmetic computations

double numbers are not reals 53 binary digits

fast, but wrong

Arithmetic computations

a solution:
rely on an exact arithmetic package (multiprecision, etc) powerful, but slow

Arithmetic computations

Exact Geometric Computing paradigm

$=$ exact predicates, \neq exact arithmetics
Filtering

> Approximate evaluation $P^{a}(x)$
> + Error ε

easy cases are more frequent
\Longrightarrow cost \simeq cost of approximate (double) computation

Arithmetic computations

Dynamic filtering interval arithmetic

$$
\begin{aligned}
& \text { error on }+,-, *, /, \sqrt{ } \text { known (IEEE 754) } \\
& \qquad[\underline{a}, \bar{a}]+[\underline{b}, \bar{b}]=[\underline{a} \pm \underline{a}, \bar{a} \bar{\mp} \bar{b}] \\
& \text { and propagate... }
\end{aligned}
$$

Arithmetic computations

Dynamic filtering interval arithmetic

$$
\begin{aligned}
& \text { error on }+,-, *, /, \sqrt{ } \text { known (IEEE 754) } \\
& \qquad[\underline{a}, \bar{a}]+[\underline{b}, \bar{b}]=[\underline{a} \pm \underline{a}, \bar{a} \overline{+} \bar{b}] \\
& \text { and propagate... }
\end{aligned}
$$

Choosing an algorithm

Degree of predicates \& number of operations
\longrightarrow constant in $O()$
\longrightarrow size of errors
\longrightarrow length of integers for exact arithmetic

Choosing an algorithm

Degree of predicates \& number of operations
\longrightarrow constant in $O()$
\longrightarrow size of errors
\longrightarrow length of integers for exact arithmetic
Incremental algorithm only uses intrinsic predicates orient, in_disk any algorithm computing Delaunay triangulation is able to answer them

Sweep
uses ad hoc higher degree predicates

Choosing an algorithm

Degree of predicates \& number of operations
\longrightarrow constant in $O()$
\longrightarrow size of errors
\longrightarrow length of integers for exact arithmetic
Incremental algorithm only uses intrinsic predicates orient, in_disk any algorithm computing Delaunay triangulation is able to answer them

Sweep
uses ad hoc higher degree predicates

Degeneracies

Degeneracies

what if p lies on a circle?

yes, it does happen!
input data are rounded

Degeneracies

non-simplicial faces

Degeneracies

Degeneracies

Degeneracies

Simulating the absence of degeneracies

Degeneracies

Simulating the absence of degeneracies

as if p outside

Degeneracies

Simulating the absence of degeneracies

as if p inside

Degeneracies

Degeneracies

decisions must be made in a consistent way

Degeneracies

Symbolic perturbation
Input data \mapsto data depending on a symbolic parameter ε

- $\varepsilon=0: \quad$ (maybe) degenerate problem
- $\varepsilon \neq 0$: non-degenerate problem $\mapsto \operatorname{Result}(\varepsilon)$

Final result $=\lim _{\varepsilon \rightarrow 0^{+}} \operatorname{Result}(\varepsilon)$

Degeneracies

SoS: simulation of simplicity
Input: n points $p_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$
$\forall i,\left(x_{i}, y_{i}\right) \mapsto\left(x_{i}, y_{i}\right)+\varepsilon^{2^{i}}\left(i, i^{2}\right)$

Degeneracies

SoS: simulation of simplicity
Input: n points $p_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$
$\forall i,\left(x_{i}, y_{i}\right) \mapsto\left(x_{i}, y_{i}\right)+\varepsilon^{2^{i}}\left(i, i^{2}\right)$
$\operatorname{orient}\left(O, p_{i}, p_{i}\right)=\operatorname{sign}\left|\begin{array}{ll}x_{i} & x_{j} \\ y_{i} & y_{j}\end{array}\right|$
$\left|\begin{array}{ll}x_{3} & x_{1} \\ y_{3} & y_{1}\end{array}\right| \mapsto\left|\begin{array}{ll}x_{3}+3 \varepsilon^{8} & x_{1}+\varepsilon^{2} \\ y_{3}+9 \varepsilon^{8} & y_{1}+\varepsilon^{2}\end{array}\right|=$

$$
\left.\left|\begin{array}{ll}
x_{3} & x_{1} \\
y_{3} & y_{1}
\end{array}\right|+\varepsilon^{2}\left|\begin{array}{ll}
x_{3} & 1 \\
y_{3} & 1
\end{array}\right|+\varepsilon^{8}\left|\begin{array}{ll}
3 & x_{1} \\
9 & y_{1}
\end{array}\right|+\varepsilon^{10} \right\rvert\, \begin{array}{ll}
3 & 1 \\
9 & 1
\end{array}
$$

Degeneracies

SoS: simulation of simplicity
Input: n points $p_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$
$\forall i,\left(x_{i}, y_{i}\right) \mapsto\left(x_{i}, y_{i}\right)+\varepsilon^{2^{i}}\left(i, i^{2}\right)$
$\operatorname{orient}\left(O, p_{i}, p_{i}\right)=\operatorname{sign}\left|\begin{array}{ll}x_{i} & x_{j} \\ y_{i} & y_{j}\end{array}\right|$
non-null polynomial
$\left|\begin{array}{ll}x_{3} & x_{1} \\ y_{3} & y_{1}\end{array}\right| \mapsto\left|\begin{array}{ll}x_{3}+3 \varepsilon^{8} & x_{1}+\varepsilon^{2} \\ y_{3}+9 \varepsilon^{8} & y_{1}+\varepsilon^{2}\end{array}\right|=$
$\left.\left|\begin{array}{ll}x_{3} & x_{1} \\ y_{3} & y_{1}\end{array}\right|+\varepsilon^{2}\left|\begin{array}{ll}x_{3} & 1 \\ y_{3} & 1\end{array}\right|+\varepsilon^{8}\left|\begin{array}{ll}3 & x_{1} \\ 9 & y_{1}\end{array}\right|+\varepsilon^{10} \right\rvert\, \begin{array}{ll}3 & 1 \\ 9 & 1\end{array}$
sign $=$ sign of first non-null coefficient

Degeneracies

SoS: simulation of simplicity
Input: n points $p_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$
$\forall i,\left(x_{i}, y_{i}\right) \mapsto\left(x_{i}, y_{i}\right)+\varepsilon^{2^{i}}\left(i, i^{2}\right)$

$$
\begin{gathered}
\operatorname{orient}\left(O, p_{i}, p_{i}\right)=\operatorname{sign}\left|\begin{array}{ll}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right| \\
\longrightarrow \text { always }>0 \text { or }<0
\end{gathered}
$$

same for in_disk

Degeneracies

SoS: simulation of simplicity
Input: n points $p_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$
$\forall i,\left(x_{i}, y_{i}\right) \mapsto\left(x_{i}, y_{i}\right)+\varepsilon^{2^{i}}\left(i, i^{2}\right)$

$$
\begin{gathered}
\operatorname{orient}\left(O, p_{i}, p_{i}\right)=\operatorname{sign}\left|\begin{array}{ll}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right| \\
\longrightarrow \text { always }>0 \text { or }<0
\end{gathered}
$$

same for in_disk

Degeneracies

Perturbing points in $d+1^{\text {th }}$ dimension

Degeneracies

Perturbing points in $d+1^{\text {th }}$ dimension

Degeneracies

Perturbing points in $d+1^{\text {th }}$ dimension

Degeneracies

Perturbing points in $d+1^{\text {th }}$ dimension

$$
\begin{aligned}
& \operatorname{orient}\left(\pi_{i}^{\varepsilon}, \pi_{j}^{\varepsilon}, \pi_{k}^{\varepsilon}, \pi_{l}^{\varepsilon}\right)=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x_{i} & x_{j} & x_{k} & x_{l} \\
y_{i} & y_{j} & y_{k} & y_{l} \\
z_{i} & z_{j} & z_{k} & z_{l} \\
t_{i}+\varepsilon^{n-i} & t_{j}+\varepsilon^{n-j} & t_{k}+\varepsilon^{n-k} & t_{l}+\varepsilon^{n-l}
\end{array}\right| \\
&=\mathcal{D}\left(p_{i}, p_{j}, p_{k}, p_{l}\right) \\
& \quad-\operatorname{orient}\left(p_{i}, p_{j}, p_{k}\right) \varepsilon^{n-l} \\
&+\operatorname{orient}\left(p_{i}, p_{j}, p_{l}\right) \varepsilon^{n-k} \\
& \quad-\operatorname{orient}\left(p_{i}, p_{k}, p_{l}\right) \varepsilon^{n-j} \\
&+\operatorname{orient}\left(p_{j}, p_{k}, p_{l}\right) \varepsilon^{n-i}
\end{aligned}
$$

4 cocircular points \longrightarrow non-null polynomial in ε
point with highest index
in the disk of the other 3

Degeneracies

Perturbing points in $d+1^{\text {th }}$ dimension
orientation predicate not perturbed
\Longrightarrow NO flat simplex created
global indexing $=$ lexicographic order
\longrightarrow Delaunay triangulation uniquely defined
easy to implement

Computational Geometry Algorithms Library
wWW. cgal. org
open source
distributed under GPL
commercial licences distributed by GeometryFactory

(6) (6)

 AComputational Geomette Algorithms Library
WWW .
2D, 3D, $d \mathrm{D}$ [weighted] Delauay triangulations
$2 \mathrm{D} \simeq 10$ million points / second $3 \mathrm{D} \simeq 1$ million points / second (on a standard laptop) fully dynamic fully robust

(6) (G) E

Computational Geometry Algorithms Library
わWWW/. cgar. org
soon (?)

Computational Geometry Algorithms Library
wWW. cgal. org
used by astrophysicists, biologists,

Computational Geometry Algorithms Library
wWw. cgal. org
used by astrophysicists, biologists, mathematician(s?) ...

Take home (?)

There is a long way from the algorithm to the software
Needed
clean mathematical models
good algorithms
knowledge of computers

union makes strength

