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Introduction
Nowadays, invoices of companies are usually settled after a certain amount of time. Indeed, to pay their in-
voices immediately, companies can use their available liquidity. However, some companies do not have enough
liquidity and depend on other companies. They are waiting to be paid by companies to pay their own bills. So,
some companies can be in difficulty during this period, difficulty which can lead to bankruptcy. Moreover, the
accumulation of debts on global scale creates a systemic risk, which can lead to serious economic incidents [1].

To reduce this debt, a new method of financing companies was developed [2] by analyzing a payment network.
A payment network is a set of interactions between economic actors. Here, the economic actors are companies,
and the interactions take the form of debt and credit relationships. These relationships are invoices which can
be settled by a payment.

We model this economic system as a graph: nodes are companies, and edges are invoices. For an edge, the
source is the invoice issuer, the destination the invoice receiver and the weight the invoice amount. This graph
representation has been the subject of recent studies such as the Sardex monetary network [3]. This system
considers debts and credits as a form of money, and companies can, with a positive balance, buy with this
available balance instead of real money.

This new method of financing companies is called the integral mutual debts compensation. It consists of
injecting a sum of money from a financial center (bank, state) in order to reduce as much as possible, or even
to eliminate the total debt. Companies involved make no profit or loss. The term integral here means that an
invoice can only be settled entirely.

For example, given three companies A, B, C with invoices in euros, owed to each other for services invoiced
but not yet paid (see Figure 1a). A solution of invoice settlement is where the blue invoices are settled (see
Figures 1c and 1b). In the solution presented in Figure 1b, companies B and C has respectively a deficit of 2e
and 3e. So, by financing 2e to B and 3e to C, 40e of invoices can be settled. In the solution of the Figure 1c,
the company B has a deficit of 1e. So, by loaning 1e to B, 54e of invoices can be settled in this solution.
Moreover, the company C ends with a net position positive of 1e. An invoice of 1e from B to C is not settled.
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(c) Graph after another integral
mutual debts compensation

Figure 1: Example of an integral mutual debts compensation: invoices in black are not yet settled, invoices in
blue are settled, net position of the nodes in parentheses

Several solutions exist to settle invoices. The integral mutual debts compensation problem [2] consists of
finding a subset of invoices that attains the best compromise between:

• maximizing the amount of debts contained in a given subset of invoices,
• minimizing the supply of liquidity required to clear this debt.

Furthermore, we work on bigger graphs than these shown in the example and this problem is NP-complete: some
instances of the problem are equivalent to solve the Knapsack problem [4]. The challenge of this internship is to
find a good way to choose these invoices from the multitude of possible choices.

Given a percentage of the amount of debts to clear, the objective of this internship was to develop heuristics
to minimize the supply of liquidity required. It means that we had to first elaborate heuristics to reach this
amount of debts to clear. Then, heuristics which minimize the supply of liquidity required were developed.

To give an account of my internship experience, I will first present the context of the internship. After that, I
will present heuristics which I have developed to reach a percentage of amount of debts to clear. These heuristics
allow us to find a solution where the supply of liquidity is acceptable. Then, I will present the heuristics that
help to minimize the supply of liquidity required given a solution previously obtained.
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1 Background

1.1 Lab presentation
The Lorraine Research Laboratory in Computer Science and its Applications (LORIA) is a research unit common
to INRIA, CNRS and the University of Lorraine. Its research activities are divided into five departments:
Algorithms, Computation, Image and Geometry; Formal methods; Networks, Systems and Services; Natural
language processing and Knowledge discovery; Complex systems, Artificial intelligence and Robotics.

The National Institute for Research in Digital Science and Technology (INRIA) is a research institution
specialized in applied mathematics and computer science1.

This internship took place in the MOCQUA team in the Formal methods department2. The goal of this team
is to face the challenges which come from the emergence of new or future computational models.

Some of the topics explored during this internship can be connected with the team and the department.
Indeed, the Formal methods department deals with the fundamental aspects of complexity and our problem is
NP-complete. Dynamical systems are one of the main subjects of research of the team and of my internship
supervisor. And the evolution of a configuration during simulated annealing used in my work can be seen as a
dynamical system.

1.2 Definitions
To understand the integral mutual debts compensation problem, it is necessary to understand directed multi-
graphs and to define some vocabulary.

1.2.1 Directed multi-graphs

A multi-digraph G = (V,E) is a directed graph in which several directed edges may connect two given nodes.
It is defined by a set of nodes V , with |V | = n and a multi-set of edges E, with |E| = m. An edge is a triplet

in the form u = (A,B,w), where (A,B) ∈ V 2 are respectively source and destination of the edge, and w ∈ N∗ its
weight. We denote by wu the weight of the edge u ∈ E. We choose to not consider edges with a null weight.

Let A ∈ V be a node. The incoming edges of A are I(A) = {u ∈ E|u = (. , A, . )} and the outgoing edges of
A are O(A) = {u ∈ E|u = (A, . , )}.

1.2.2 Integral mutual debts compensation problem

Let us now present more formally our problem [2].
A configuration C ⊂ E is a set of settled invoices. It is the form of a solution of the problem. An edge added

to a configuration C is described as a settled invoice.
The settlement Σ(C) of a configuration C is the total value of debts included in the configuration. This is the

sum of the weights of the edges in C:
Σ(C) =

∑
u∈C

wu.

Let C be a configuration, the net position πC(A) over C of a node A ∈ V is the difference between the flow
which enters A and the flow which leaves A:

πC(A) =
∑

u∈I(A)∩C

wu −
∑

v∈O(A)∩C

wv.

The nodes which are not in C have a zero net position.
The financing Φ(C) of a configuration C is the quantity of liquidity that needs to be provided to clear the

debt contained in C. It is the sum of the negative net positions over C: Φ(C) =
∑

A∈V max(0,−πC(A)).
Given C a configuration, the amplification factor α(C) is the ratio of the settlement to the financing:

α(C) = Σ(C)/Φ(C). We denote that α(∅) = 0. The amplification factor represents the quality of a configuration.
The inclusion factor ι(C) of a configuration C is the ratio of the settlement to the total value of debts in the

graph: ι(C) = Σ(C)/Σ(E).
1www.inria.fr/fr/centre-inria-nancy-grand-est
2www.loria.fr/fr/la-recherche/les-equipes/mocqua/
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The interval that interested us for the inclusion factor is [0.25, 0.5]. Economically, this interval is more
interesting. Some research has already been done [2]. A graphic of the amplification factor as a function of the
inclusion factor exists which we can rely on (cf. Figure 2). Given an inclusion factor, an acceptable amplification
factor for a configuration is close (approx. 0.2 of difference for a smaller value) or greater than the value in the
graphic. This graphic tells us that the amplification factor decreases with the increase of the inclusion factor.
Therefore, for heuristics which increase the inclusion factor, the challenge is that the amplification factor does
not decrease too much with the increase of the inclusion factor.

Figure 2: Evolution of the amplification factor as a function of the inclusion factor (settlement). The two red
lines highlight the amplification factor values 2 and 3. [2]

1.3 Test graphs presentation
For tests, different graphs were used. We used real data and generated data.

These real data were provided by the Infocert company, which does electronic invoicing. It is a set of
invoices between Italian companies. The graph graphPME is made up of invoices between small and medium-sized
enterprises, which are Infocert clients, during January 2019.

Generated data were used too. Tests graphs were generated by another intern, Arthur ROUSSEAU, to model
the economy [5]. The algorithm of graph generation is based on Markov chains. The distribution law for the
weights of the edges follows a power law.

Some statistics of the graphs used for tests are presented in Table 1.

Graph Number of nodes Number of edges Average weight of edges (in euro cents)
Gen_100 96 333 114 159
Gen_1000 868 3 325 123 633
Gen_5000 4 137 16 680 121 370
Gen_20000 16 244 66 382 114 629
Gen_40000 32 808 133 497 116 470
graphPME 38 334 145 540 117 676

Table 1: Number of nodes and edges for each graph used for tests
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1.4 Heuristics implementation
During this internship, the language for the computer programming was Python 3.8.

All heuristics, which will be presented in this internship report, were implemented [6]. We choose to code
them by using classes.

The entities classes which represent nodes, edges and graphs are inherited from previous classes developed by
another intern Yosyp MYKHAILIV. A heritage was used to separate our works and the methods and functions
which were added. The other classes do not have any common point with his work.

To ease the use of these heuristics, a main function with a configuration file was created. This configuration
file contain variables which are read by the function. The file is a .env file and we use dotenv [7] and os libraries
from Python to read it.

2 Heuristics to increase the inclusion factor
During this internship, heuristics to increase the inclusion factor were developed. These heuristics were developed
to find a configuration which has an acceptable amplification factor. The combination of those heuristics allows
us to have a configuration which reaches a desired inclusion factor with an acceptable amplification factor.

2.1 Bilateral settlement
We define the bilateral settlement heuristic as a heuristic that searches for bilateral settlement to reduce debts.
This heuristic is applied on a graph where the configuration is empty. It is used to start the configuration with
a high amplification factor, to then propagate this configuration.

A configuration CRB is a bilateral settlement if there exists A,B ∈ V , A 6= B such as
CRB ⊆ (I(A) ∩O(B)) ∪ (I(B) ∩O(A)), CRB ∩ I(A) ∩O(B) 6= ∅, and CRB ∩ I(B) ∩ O(A) 6= ∅. We say that CRB

is a bilateral settlement between A and B.
For example, we have a simple graph G with companies A,B,C,D (see Figure 3a) and debts in euros, a

bilateral settlement between A and B can be found. By loaning of 1e to A, 33e of invoices can be settled
(cf. Figure 3b).
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(a) Initial graph
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(b) Graph with a bilateral settlement

Figure 3: Example of a graph with a bilateral settlement: invoices in black are not in the configuration, invoices
in blue are in the configurations, net position of the nodes in parentheses

We define αmin as the minimal amplification factor for a bilateral settlement to be considered. Indeed, some
bilateral settlements can be unbalanced, with a low amplification factor. The condition on the amplification
factor provokes a smaller decrease with the inclusion factor than if we had no condition at all.
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The problem is: given a graph G and an admission parameter αmin ∈ R+, determine the best eligible bilateral
settlement for each bilateral settlement.
CRB is the best eligible bilateral settlement between A and B nodes of V if α(CRB) ≥ αmin and for all C′RB

between A and B such as α(C′RB) ≥ αmin, we have ι(CRB) ≥ ι(C′RB).

Finding the best admissible bilateral settlement between two companies is an NP-complete problem. Plus,
for n edges between two nodes, the number of combinations is approximately 2n. In Appendix A.1 we present
the number of combinations and how we limit this number.

2.1.1 Searching for bilateral settlements algorithm

The searching for bilateral settlements algorithm involves looking at the best admissible bilateral settlement for
each pair of nodes which are strongly connected. In Appendix A.2, the algorithm and the way chosen to limit
combinations are presented.

For each combinations of bilateral settlement between two given nodes, the amplification factor and the
inclusion factor are computed. To avoid an error of overused memory during the study of all combinations, a
generator function was implemented (see Appendix A.3).

2.1.2 Invoice settlement

Once all the best admissible bilateral settlements are found, they are added to the configuration.
After several experiments, the inclusion factor of the configuration with all the best admissible bilateral

settlements is small: less than 0.02. Bilateral settlements are small in number among the graph. So keeping a
high amplification factor is quite important for the next steps.

After that, several tests to determine the best αmin given a graph G were done. For example, on the graph
graphPME, the value of αmin can be taken in the interval [3, 5]. Indeed, the inclusion factor is in the interval
[0.01, 0.02] and the final amplification factor is above 5 (see Figure 4). After the first step, the amplification
factor needs to be high because for each step it decreases (cf. Figure 2).

The variations on curves in the graphic are due to adding edges. Indeed, for each edge added to the con-
figuration, new inclusion and amplification factors are computed and this information is then written in a file.
Given a bilateral settlement between A and B two nodes, the outgoing edges of A are first added, and then the
incoming edges of A. So there is an imbalance during the addition of a bilateral settlement. These variations are
greater when the amplification factor is high.

Figure 4: Amplification factor as a function of the inclusion factor during an invoice settlement on bilateral
settlements for different αmin and a nmax = 20
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Consequently, this heuristic is useful to start a configuration. Even if the inclusion factor is very low. In fact,
at the end of this step, the amplification factor is high (greater than 5) and it is important for the next steps.

Open question : In our case, each bilateral settlement is taken alone. It means that a node can be part of
several bilateral settlements. We choose that the net positions of nodes are not taken into account. If the debts
are reduced in a certain order, some bilateral settlements can be admissible. What would be the inclusion factor
and the amplification factor, if an order on finding and financing bilateral settlements was applied ?

Bilateral settlements are not enough to have a configuration with a high inclusion factor. However, after this
step we have a good quality configuration. For the next step, we developed a heuristic based on paths.

2.2 Paths
The paths heuristic is a heuristic that searches for paths in the graph to reduce debts along them. It is useful to
increase the inclusion factor.

We define a path as an ordered finite sequence of edges of E. Two consecutive edges share a same node and
an edge cannot be present twice or more in a path. Moreover, by following the direction of the edges, we can visit
all the edges of the path. A path of length smax is modeled by (un)n∈N where N = {0, 1, . . . , smax − 1}. Given
n ∈ N \ {smax − 1}, if un = (A,B,wun

), A 6= B, then un+1 ∈ O(B). Furthermore ∀i, j ∈ J0, smax − 1K, ui 6= uj .
For example, we have a graph G with companies A,B,C,D (see Figure 5a). A path can be found from A to

B, B to C, C to A and A to B (cf. Figure 5b).
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(a) Initial graph
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(b) Graph with a path: u0 = (A,B, 4), u1 = (B,C, 4),
u2 = (C,A, 5), u3 = (A,B, 5)

Figure 5: Example of a graph with a path: invoices in black are not in the configuration, invoices in blue are in
the configuration, net position of the nodes in parentheses

We define smin ≥ 2 as the minimal number of edges in a path.
The problem is: given a graph G and, admissions parameters smin and the condition on the weight of two

consecutive edges, determine a set of admissible paths.
An admissible path meets both conditions: the length of the path is above smin and the weight of an edge is

close to the weight of the consecutive edge. To measure the last condition, there are two possibilities:
• the ratio r with the weights: this ratio is calculated in way such that it is less than 1. For example, we

consider two edges u1 = (A,B,wu1) and u2 = (B,C,wu2) where A,B,C ∈ V , wu1 , wu2 ∈ N∗. The ratio r
is: if wu1 >= wu2 , r = wu2/wu1 else r = wu1/wu2 . The parameter rmin ∈]0, 1] is the threshold value of the
ratio for the edges to be in the path, i.e. r ≥ rmin.

• the absolute difference d of the weights. For example, we consider two consecutive edges u1 = (A,B,wu1
)

and u2 = (B,C,wu2
) where A,B,C ∈ V and wu1

, wu2
∈ N∗. The difference d is: d = |wu1

− wu2
|. The

parameter dmax ∈ N is the limit value of the difference for the edges to be in the path, i.e. d ≤ dmax.
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2.2.1 Searching for paths algorithm

The searching for paths algorithm looks for an admissible path for each node of the graph G. An example
algorithm is presented in Appendix A.4.

Let r : E2 →]0, 1] be the ratio of the weights of the two edges given in an argument. Let d : E2 → R+ be the
absolute difference of the weight of the two edges given in an argument.

We start from an initial node H. To choose the first two edges, the weight of each incoming edge is compared
to that of each outgoing edge of H. Let O′(H) ⊂ O(H) (respectively I ′(H) ⊂ I(H)) be the set where the edges
of O(H) (resp. I(H)) in a path or in the configuration are not in O′(H) (resp. I ′(H)). The first two edges
u ∈ I ′(H) and v ∈ O′(H) check: if the ratio is the criterion, ∀p ∈ I ′(H)∀q ∈ O′(H), r(u, v) ≥ r(p, q); if the
absolute difference is the criterion ∀p ∈ I ′(H)∀q ∈ O′(H), d(u, v) ≤ d(p, q). We choose an incoming and an
outgoing edge of the initial node instead of only one edge because two edges are already a path. All that’s left to
do is to extend it so that this path is admissible if smin > 2.

When we move forward, we give J the last node and u the last edge chosen where J is its destination. Let
O′(J) ⊂ O(J) be the set where the edges of O(J) in a path or in the configuration are not in O′(J). The next
edge v ∈ O′(J) to choose for the path checks: if the ratio is the criterion, ∀t ∈ O′(J), r(u, v) ≥ r(u, t); if the
absolute difference is the criterion ∀t ∈ O′(J), d(u, v) ≤ d(u, t).

When we move backward, we give u the last edge chosen where K is its source node i.e. u ∈ O(K). Let
I ′(K) ⊂ I(K) be the set where the edges of I(K) in a founded path or in the configuration are not in I ′(K).
The next edge v ∈ I ′(K) to choose for the path checks: if the ratio is the criterion ∀t ∈ I ′(K), r(v, u) ≥ r(t, u);
if the absolute difference is the criterion ∀t ∈ I ′(K), d(v, u) ≤ d(t, u).

For example, we search for a path to complete the configuration obtained previously (cf. Figure 6a) where
smin = 3. We start from the initial node B and we add an incoming and an outgoing edge of B (see Figure 6b).
Then outgoing edges are added to the path i.e. we move forward from the initial node: first an edge from C to
A, and then an edge from A to B (cf. Figure 6c). We are now on node B, but there are no edges available, so
the path is complete. In the case where there is any other outgoing edge of the current node, we then look for
incoming edges by going backwards from the initial node.
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(a) Graph with a
configuration obtained with
the ’bilateral settlement’

heuristic
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(b) Beginning of a path at B
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(c) Continuation of the path
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(d) Adding path to the
configuration

Figure 6: Example of a search for a path: edges in black are not in the configuration, edges in blue are in the
configurations, edges in orange are the path but not yet in the configuration, net position of the nodes in

parentheses
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2.2.2 Invoice settlement

We can compare the effect of the parameter that concerns the weight of two consecutive edges. We start from
an empty configuration.

The amplification factor as a function of the inclusion factor during an invoice settlement on paths found in
graphPME is represented (cf. Figures 7a and 7b). First, we take a look at the amplification factor. The final
amplification factor reached with the ratio criteria is greater than 2 for all amplification factors tested. However,
that’s not the case for the criteria of absolute difference. Then we compare the amplification factor given an
inclusion factor of 0.15: it is higher for paths found with ratio criteria than difference criteria.

(a) Absolute difference of weights (b) Ratio of weights

Figure 7: Amplification factor as a function of the inclusion factor during an invoice settlement on paths of
minimal length smin = 3

After that, we made several tests to determine which parameters to take. For the graph graphPME, the value
of the minimal length of the path is smin = 3. And the heuristic to choose an edge given the weight of the previous
one is the one that computes the ratio of the weights. Indeed, for a given final inclusion factor, the amplification
factor is higher with this heuristic.

During the elaboration of this heuristic, various questions were raised. An hypothesis was that bilateral
settlements could break some paths. However it is not the case, and searching for bilateral settlements before
paths makes higher final inclusion and amplification factors after these two steps. So it is better to apply the
’bilateral settlement’ heuristic before the one with paths. Another question was: what if we apply the ’paths’
heuristic on a given configuration twice in a row. To answer this question, we have applied the ’paths’ heuristic
twice in a row on a configuration with bilateral settlements. The second time, the inclusion factor raised only of
0.01 and the amplification factor decreased. The gain is too poor to do this.

The ’paths’ heuristic is not enough to have a configuration with an inclusion factor over 0.25. Plus, due to
the time complexity of the algorithm, the processing time to find an acceptable path for each node can be very
long (200 seconds for the Gen_40000 graph). However, the gain on the inclusion factor is not negligible. So, this
heuristic can be used after the ’bilateral settlement’ heuristic.

Open question: In our case, to form a path, the next edge is chosen by taking into account the previous
edge weight. An improvement of the heuristic could be the computation of the hypothetical net positions of the
nodes between the edges that are in the path and take into account this net position. It could improve the final
amplification factor by choosing edges that are more suitable or by stopping a path earlier. For example, the
last edge chosen from A to B in the previous example (cf. Figures 6b and 6c) would not be chosen. However,
this improvement might find configurations which have a worst inclusion factor than the current version. What
would be the inclusion factor and the amplification factor if hypothetical net positions of nodes were calculated
when an edge is added to a path ?

This heuristic is still not enough to find a configuration C that attains the maximal inclusion factor ι(C) = 0.5.
So, another heuristic that can attain every inclusion factor wanted was developed.
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2.3 Best edge
The best edge heuristic is a heuristic that searches for the best edge available where the best edge is the edge
which has the better effect on the amplification factor of the configuration.

This heuristic has two algorithms: ’best edge adding’ which adds edges to the configuration and ’best edge
removing’ which removes edges from the configuration. Previous heuristics search for edges to add to a configu-
ration. So these heuristics create a configuration ex nihilo. However, another way is to start from a configuration
C = E, and to remove edges from this configuration.

When we modify a configuration C, by definition α(C) changes. So before doing this modification, we compute
the hypothetical amplification factor for each edge available. Where this availability changes according to adding
or removing edges from the configuration.

For graphs with a very important number of edges (over 50 000 edges) that are given to this algorithm, the
hypothetical amplification factor of all remaining edges cannot be computed each time an edge is added to or
removed from the configuration. Indeed, it would take to much time to compute all hypothetical amplification
factors and to sort the list of edges. To fix it, a parameter stepEdge is introduced. This is the number of best
edges taken in the sorted list, before this list is updated with the new hypothetical amplification factors.

This heuristic allows the configuration to reach any inclusion factor wanted.

2.3.1 Best edge adding

The ’best edge adding’ heuristic is a heuristic that searches for the best edge available to add to the configuration.
So for all edges u ∈ E \ C, the hypothetical amplification factor α(C ∪ {u}) is computed, and then the best edge
u is chosen such as α(C ∪ {u}) = max{x ∈ R+|x = α(C ∪ {v}), v ∈ E \ C}.

For example on the graph graphPME, the amplification factor as a function of the inclusion factor was computed
for several values of stepEdge (see Figure 8). Depending on which inclusion factor is wanted, stepEdge can be
chosen quite high. Let C be the final configuration with the inclusion factor requested. If ι(C) ∈ [0.25, 0.35],
stepEdge needs to be small. However, due to the number of edges needed to reach that inclusion factor, the
processing time increases with the decrease of stepEdge. If ι(C) ∈ [0.35, 0.5], a higher stepEdge can be chosen
to gain time without decreasing the amplification factor.

Figure 8: Amplification factor as a function of the inclusion factor during an invoice settlement with the best
edges to add to the configuration

This heuristic is used when ’bilateral settlement’ and ’paths’ heuristics were not enough to reach the inclusion
factor wanted. It allows the amplification factor of the final configuration to be higher. Indeed, the ’best edge
adding’ heuristic is applied on a graph with a non empty configuration with an acceptable amplification factor.
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2.3.2 Best edge removing

The ’best edge removing’ heuristic is a heuristic that searches for the best edge available to remove from the
configuration. So for all edges u ∈ C, the hypothetical amplification factor α(C \ {u}) is computed, and then the
best edge u is chosen such as α(C \ {u}) = max{x ∈ R+|x = α(C \ {v}), v ∈ C}.

As well as the ’best edge adding’ heuristic, the amplification factor as a function of the inclusion factor
was computed for various stepEdge (cf. Figure 9). Let C be the final configuration with the inclusion factor
requested. If ι(C) ∈ [0.3, 0.5], stepEdge needs to be small. However, due to the number of edges needed to
reach this inclusion factor, the processing time increases with the decrease of stepEdge. Contrary to the ’best
edge adding’ heuristic, if ι(C) ∈ [0.25, 0.3], a higher stepEdge can be chosen to gain time without losing in an
amplification factor.

Figure 9: Amplification factor as a function of the inclusion factor during an invoice settlement with the best
edges to remove from the configuration

This heuristic reaches a local optimum configuration where the inclusion factor is approximately 0.25 for both
adding and removing edges. This is a surprising fact. Indeed, this optimum configuration has approximately a
similar inclusion factor for both adding and removing edges. And we cannot explain this.

To find a configuration that reaches a desired inclusion factor there are several possibilities. On one hand,
by starting from an empty configuration, we can combine ’bilateral settlement’, ’paths’ and ’best edge adding’
heuristics to find a good configuration. On the other hand, by starting from a configuration C = E, we can
use the ’best edge removing’ heuristic to find an acceptable configuration. Consequently, it is better to find a
configuration by removing edges from a configuration C = E, than adding edges to an empty configuration.

Once a configuration is found with the inclusion factor wanted, heuristics that improve the amplification
factor can be applied.

3 Heuristics to improve the amplification factor
Previous heuristics were increasing the inclusion factor to reach a wanted one. This section presents heuristics
which improve the amplification factor with very little impact on the inclusion factor. Note that these heuristics
cannot work on an empty configuration. It means that they can only be used after the previous heuristics have
been applied.
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3.1 Spreading
Let C be a non-empty configuration. We define the spreading as an heuristic that given a node A where πC(A) 6= 0,
the net position available of A can be used to add edges to the configuration. If πC(A) < 0, an incoming edge of
A can be settled if its weight is less than the absolute value of πC(A). If πC(A) > 0, it is the same procedure on
an outgoing edge of A.

This heuristic is used between two heuristics which increase the inclusion factor. It allows the amplification
factor to increase. Indeed, this procedure requires little or no financing to add edges to the configuration. Plus,
the value of the beginning amplification factor has an effect on the final amplification factor after a configuration
is found with a heuristic which increase the inclusion factor.

For example, given three companies A,B,C and a configuration where bilateral settlements were added
(see Figure 10a). The net position of C is positive and greater than the weight of an outgoing edge from C to B.
So, with the spreading, that edge is added to the configuration (see Figure 10b).
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(a) Graph and a configuration before spreading

A
(0)

B
(-1)

5

10

C
(1)

10
20

1

5

4

(b) Configuration after spreading

Figure 10: Example of the application of a spreading on a configuration

3.1.1 Spreading max

Let B ∈ V be a node where πC(B) 6= 0. Let us assume that πC(B) < 0, I(B) ∩ F 6= ∅, where
F = {u ∈ I(B)|wu ≤ |πC(B)|}. The spreading max will choose the edge u ∈ F where wu = max(wv, v ∈ F ), to
add to the configuration.

This heuristic is used between ’bilateral settlement’ and ’paths’ heuristics. As the configuration is small, the
spreading is just used to increase the amplification factor. Indeed, the inclusion factor increases by only 2 · 10−3
and the bilateral settlement heuristic is only used to start a good quality configuration.

3.1.2 Spreading financing

The ’spreading financing’ method authorizes a financing. The parameter that represents the amount authorized
is ϕ ∈ [0; 1]. If ϕ = 0, the ’spreading max’ method is called. This parameter is the portion of the net position of
the nodes A ∈ VC that can be added to the net position where VC = {A ∈ V |(O(A) ∪ I(A)) ∩ C 6= ∅}.

Let D ∈ V a node where πC(D) 6= 0. Let us assume that πC(D) > 0, O(D) ∩ P 6= ∅, where
P = {u ∈ O(D)|wu ≤ πC(D)(1 + ϕ)}. The ’spreading financing’ will choose the edge u ∈ P where
wu = min(|wv − πC(D)|, v ∈ P ).

As the financing is authorized, it can be used to improve the amplification factor and increase the inclusion
factor more than ’spreading max’. It can be used between ’paths’ and ’best edge adding’ heuristics.

The spreading is used between heuristics that increase the inclusion factor. However, the spreading increases
the inclusion factor, even if there are only a few. So, we searched for a method to improve the amplification
factor for the final step when the inclusion factor is reached. This method is simulated annealing.

3.2 Simulated annealing
The previous heuristics are specialized to our current problem. To increase the amplification factor for a given
inclusion factor, a more general approach was studied: simulated annealing. This meta-heuristic approximates a
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global optimization in a large search space.
In our case, we desire a global solution for a fixed inclusion factor. This global solution is the one that

maximizes the amplification factor with a given inclusion factor.
Simulated annealing is inspired by annealing in metallurgy [8]. This is a heat treatment. The material is

heated beforehand to give it a high energy. Then it is slowly cooled, with a slow temperature decrease. This
treatment gives an equilibrium state to the material, with a global minimum of energy.

Two results of statistical physics are presented to better understand the algorithm:

• Given a system S at a temperature T , the probability pj of S being in state j with energy εj is proportional
to the Boltzmann factor [9]

pj ∝ exp

(
− εj
kBT

)
where kB ' 1.380649× 10−23 is the Boltzmann constant [10].

• The Metropolis–Hastings algorithm with the Boltzmann factor as the probability distribution allows to
describe the evolution of a thermodynamic system [8]. Due to the adding or the removing of an edge, there
is a variation ∆α of the amplification factor of the configuration. If ∆α >= 0, the modification is accepted,
or otherwise it can be accepted with a probability exp(∆α/T )[11]. Accepting a "bad" configuration then
allows us to explore a larger part of the set of configurations and tends to avoid locking ourselves too quickly
into a local optimum.

As the inclusion factor is fixed, edges are removed or added to the configuration according to the current
value of the inclusion factor: if the ongoing inclusion factor is greater than the one fixed, an edge is removed
from the configuration, and conversely in the opposite case. So, during simulated annealing, the inclusion factor
varies around the set value. To choose an edge to add to the configuration, it can be done by two different
ways: a random choice or a choice in the set of frontier edges. We define the set of frontier edges F ⊂ E
as edges that are not in the configuration C but share at least one node with an edge in the configuration:
F = {u ∈ E|u = (A,B,wu), (O(A) ∪ I(A) ∪ O(B) ∪ I(B)) ∩ C 6= ∅ and u /∈ C}. When we start from a
configuration obtained with the ’best edge removing’ heuristic, a better amplification factor is reached with the
random choice in simulated annealing.

The variation of ∆α is in the order of 10−3, 10−4. So the initial temperature needs to be close to this variation.
The higher the temperature, the higher the probability to accept modifications to the configuration which are
decreasing the amplification factor. The evolution of the temperature T follows a law of geometric decay with
a coefficient of 0.999. This coefficient was chosen empirically and the results were satisfying. As the algorithm
needs to stop, we have fixed a limit of iterations. For example, this limit is 100 000 for the graph graphPME.

With these parameters, we have made some tests. In Figure 11, the amplification factor as a function of the
inclusion factor with the ’best edge removing’ heuristic is represented in blue. After this invoice settlement, we
applied simulated annealing on configurations C with an inclusion factor ι(C) ∈ {0.25, 0.3, 0.35, 0.4, 0.45, 0.5} to
see the improvement of the amplification factor when simulated annealing is applied as a final step on different
configurations obtained previously. The improvement of the amplification factor is approximately between 0.1
and 0.06 for this case (cf. Figure 11). Moreover, the improvement is greater for smaller inclusion factors.

Open problem: If this internship were longer, we could study the different laws of evolution of the temperature
and their effects on the results. We could also put a limit on the temperature with or instead of the limit of
iterations. Furthermore, we could better optimize the parameters of the simulated annealing as explained in
Appendix A.5.

The simulated annealing is important as a final step. Indeed, the amplification factor is greater. However, we
find just a better configuration given an initial configuration as it is an NP-complete problem.
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Figure 11: Amplification factor as a function of the inclusion factor during an invoice settlement with the ’best
edge removing’ heuristic and simulated annealing applied on some configuration with fixed inclusion factors

.
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Conclusion
Given an inclusion factor in the interval [0.25, 0.5], we tried to find an optimal configuration by developing
heuristics. Compared to the results obtained previously [2] (cf. Figure 2), given an inclusion factor, some
configurations found have a greater amplification factor. It means that our results are encouraging.

Firstly, heuristics that increase the inclusion factor were developed and two ways to reach this inclusion factor
were studied. We discovered that removing edges from a configuration which contains all the edges of the graph is
better than adding edges to an empty configuration. In this section, there was a lot of thinking to find heuristics
which work. Moreover, a long process of reasoning and modifications were necessary to optimize these heuristics.
Indeed, heuristics were applied on large graphs and their execution time needed to be low (less than some minutes
for bigger graphs).

Then, we developed heuristics that improve the amplification factor. The improvement is significant. This
part allowed me to discover the meta-heuristic of simulated annealing. The major difficulty in this section was
to find good parameters for the simulated annealing. Indeed, the bibliography gave us some clues for the choice
of those parameters. However, tests were needed for finer adjustment.

Several tracks exist to enhance the results obtained during this internship:
• by improving the current heuristics:

– the ’bilateral settlement’ heuristic: by applying an order on finding and financing bilateral settlements,

– the ’paths’ heuristic: by updating net positions of nodes in the path when paths are searched,

– simulated annealing: by studying other laws of evolution of the temperature and their effect;

• by searching for new ideas:

– genetic algorithms could be used after several configurations are found,

– instead of a static system, a dynamical system could be used. More information would be in nodes,
and this information would change when an edge is added or removed from the current configuration.
They could guide the search for an optimal configuration.

This internship was my first research experience, and it was an amazing experience. Indeed, I was able to put
into practice my theoretical knowledge acquired during my university studies, and to learn a new way of working
by creating my own tools to reach my goal. Moreover, I was able to observe and understand how a research
process works. I am glad to have been welcomed by the staff and thank them again for their warm welcome.
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A Appendix

A.1 Combinations finding
Before trying to find all combinations, the question was how many combinations there are when the number of
edges between two nodes is known.

Let n be the number of edges between two nodes A and B. Let m be the number of incoming edges in A
coming from B, and m′ the number of outgoing edges from A going to B. We have n = m+m′. The number of
combinations Cm of m edges without repetition is

Cm =

m∑
k=1

(
m

k

)
= 2m − 1.

Consequently, there is Cn combinations of bilateral settlement between A and B, where

Cn = Cm · Cm′ = (2m − 1)(2m
′
− 1) < 2n.

For example, 220 = 1, 048, 576. As the time taken by the algorithm to research all combinations needs to be low,
the number of combinations is limited.

During this internship, two ways to limit the number of combinations were developed. Let nmax be the
maximal number of edges per combination. The number of edges n = m+m′ is greater than nmax.

First, we introduce nmin the minimal number of edges per combination. Instead of finding all combinations,
the number of edges in the computed combinations is limited by nmin. So combinations contain less than or equal
to nmin edges. In that case, the number of combinations Cnmin

is

Cnmin =

nmin∑
k=1

(
n

k

)
.s

After that, another way is to choose nmax edges in the set of available edges. Those edges can be chosen
randomly, but in our case the criterion is their weight. Indeed, the goal is to reach an inclusion factor quite high.
So more the settlement is high, faster the inclusion factor wanted is reached. The number of combinations in
that case is Cnmax = 2nmax − 1.

As we are more informed about the number of combinations, bilateral settlements can be searched.

A.2 Search bilateral settlement algorithm
The algorithm (cf. Algorithm 1) searches the best bilateral settlement for each pair of nodes which are strongly
connected.

The different heuristics to choose the edges when the number of combinations is high were tested. Processing
times were measured to compare the computation speed of search bilateral settlement algorithms on several
graphs tests. In this test, nmax = 20, αmin = 5.

In the algorithm Combi_min, if there are too many combinations, it searches all the combinations with a size
less than or equal to nmin = 5. In the algorithm Combi_choice, it searches all combinations in a defined set of
edges with a size nmax.

The algorithm Combi_min is slower than the other for graphPME. It is due to some bilateral settlements that
have over 50 edges and the number of combinations that is greater than the two others algorithms. Indeed, the
number of combinations can be greater than 2nmax .

The bilateral settlements are added to the configuration. The results with bilateral settlements obtained
with algorithms Combi_min and Combi_choice are quite similar. However, the processing time to search all
bilateral settlements in algorithm Combi_min is greater than in algorithm Combi_choice. Therefore, algorithm
Combi_choice is preferred to algorithm Combi_min.

A.3 Generator function
To search all combinations of a bilateral settlement between A and B two nodes, we first compute all combinations
of incoming edges in A coming from B, and of outgoing edges from A going to B. So we have two generator
iterators as output. Then with loops, we make combinations between those two generator iterators.
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Algorithm 1 Search bilateral settlement
Input:
graph G = (V,E)
maximal number of edges per combination nmax

Output: bests bilateral settlements for each pair of nodes that are strongly connected listBestsBilSet
for node in V that are not marked do

node is marked
destinationNodes ← set of nodes that have an incoming edge from node
for nodeDest in destinationNodes do

if nodeDest is not marked then
n← number of edges between node and nodeDest
if n > nmax then

Computing combinations with the way chosen
else

Computing all combinations
end if
Search for the best bilateral settlement bestBilSet among all combinations
Adding bestBilSet to listBestsBilSet

end if
end for

end for

Combinations have different lengths. The generator function find all combinations without repeat value for
each length of possible combinations (cf. Algorithm 2). It deals with the position of the edges in the input list.
To avoid repeating a position, listIndices is always ordered before generating the edges combination.

A.4 Search path algorithm
The algorithm that search paths takes nodes randomly and then find a path by calling the algorithm with the
wanted heuristic, for example the one with ratio (cf. Algorithm 3).

A.5 Statistics of simulated annealing
The parameters chosen to have the results show in Figure 11 are not optimized for all the configurations. The
amplification factor as a function of the iterations was represented for some configurations with different inclusion
factors (cf. Figures 12 and 13).

The function represented in Figure 12 does not seem to have a horizontal asymptote, contrary to the one
represented in Figure 13. So, the number of iterations is not optimized for the configuration with an inclusion
factor of 0.3. The variation of the temperature could not be optimal either.

Furthermore, in Figure 12 the decrease of the function in the beginning of simulated annealing have a variation
of 3029 iterations in abscissa and approximately 0.013 in ordinate. To compare, in Figure 13 the variation is 831
iterations in abscissa and approximately 0.002 in ordinate. So, the variation of the amplification factor in Figure
12 of the configuration between the initial configuration and the configuration with the minimal amplification
factor is greater than the one of Figure 13. Thus, a larger part of the space of possible configurations with an
inclusion factor of 0.3 was explored. The initial configuration, the initial temperature and the variation of the
temperature are the elements which influence this decrease.
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Algorithm 2 Generator function
Input:
list of edges listEdges
length of combination combiLength

Output: a generator of tuples which have the weight of all edges in the combination and the combination
(edgesCap, combination)

nbrEdges ← the number of edges in listEdges
existCombi ← True
if combiLength > nbrEdges then

return
end if
for i = 0 to combiLength - 1 do . Initialization of the list of indices

listIndices append i
combination append listEdges[i]
edgesCap ← edgesCap + weight of listEdges[i]

end for
yield edgesCap, combination
while existCombi do

for k ← combiLength− 1 to 0 do
if listIndices[k] < k + nbrEdges− combiLength then

. Boundary to avoid index out of the listEdges range
listIndices[k] ← listIndices[k] + 1
for j ← k + 1 to nbrEdges do

. Reset next indices to their smallest possible value to not miss any combination
listIndices[j]← listIndices[j − 1] + 1

end for
combination ← empty list
edgesCap ← 0
for i = 0 to combiLength - 1 do

. Generating the edges combination corresponding to the current indices combination
combination append listEdges[i]
edgesCap ← edgesCap + weight of listEdges[i]

end for
yield edgesCap, combination
break . Restart the loop to find a new combination

end if
end for
else . No more combinations to find, all iterations through the for loop are done
.....existCombi ← False

end while
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Algorithm 3 Search path from an initial node with ratio
Input:
graph G,
initial node initNode,
minimal value for the ratio limitRatio ∈]0, 1],
minimal size of the path sizeMin

Output: list of edges that makes one path listEdgesChosen or None
a tuple tup := (inEdge, outEdge) of non marked edges of initNode is chosen where the ratio between the 2
edges capacity is over limitRatio
if tup is not in ({(None, None), (None, outEdge), (inEdge, None)}) then

inEdge and outEdge are marked
nextN ← the destination of outEdge
previous N ← the source of inEdge
Append inEdge and outEdge in listEdgesChosen
while nextN is not None do . i.e. outEdge is found for nextN

an edge Edge from nextN is chosen where the ratio between its capacity and the outEdge capacity is
over limitRatio

if Edge is not None then
outEdge ← Edge
nextN ← the destination of outEdge
Append outEdge in listEdgesChosen

else
nextN ← None

end if
end while
while inEdge is not None do . i.e. inEdge is found for previousN

an edge Edge from previousN is chosen where the ratio between its capacity and the inEdge capacity
is over limitRatio

inEdge ← Edge
previousN ← the source of inEdge
Append inEdge in listEdgesChosen

end while
if size of the path is less than sizeMin then

return
else

return listEdgesChosen
end if

end if
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Figure 12: Amplification factor as a function of the iterations during simulated annealing. The configuration has
an inclusion factor of 0.3 and was obtained with the ’best edge removing’ heuristic with stepEdge = 750.

Figure 13: Amplification factor as a function of the iterations during simulated annealing. The configuration has
an inclusion factor of 0.4 and was obtained with the ’best edge removing’ heuristic with stepEdge = 750.
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Abstract
Given an amount of debts to settle, the objective of this internship was to find a solution of invoices that minimize
the supply of liquidity required to clear this amount. This is an NP-complete problem.

First, we present heuristics that find a good solution given an amount of debts to settle. Then, we present
heuristics that minimize the supply of liquidity required given a solution.

Keywords: graphs, heuristics, integral mutual debts compensation, NP-complete problem
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