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Abstract: Model-based Bayesian Reinforcement Learning (BRL) allows a sound formaliza-
tion of the problem of acting optimally while facing an unknown environment, i.e., avoiding the
exploration-exploitation dilemma. However, algorithms explicitly addressing BRL su�er from such
a combinatorial explosion that a large body of work relies on heuristic algorithms. This paper in-
troduces bolt, a simple and (almost) deterministic heuristic algorithm for BRL which is optimistic
about the transition function. We analyze bolt's sample complexity, and show that under cer-
tain parameters, the algorithm is near-optimal in the Bayesian sense with high probability. Then,
experimental results highlight the key di�erences of this method compared to previous work.
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BRL Quasi-Optimal à l'aide de Transitions Locales
Optimistes (Version Étendue)

Résumé : L'apprentissage par renforcement bayésien basé modèle (BRL) permet une formali-
sation saine du problème consistant à agir optimalement face à un environnement inconnu, c'est-
à-dire en évitant le dilemme exploration-exploitation. Toutefois, les algorithmes s'attaquant ex-
plicitement au BRL sou�rent d'une telle explosion combinatoire qu'un grand nombre de travaux
repose sur des algorithmes heuristiques. Cet article introduit bolt, un algorithme heuristique
simple et (presque) déterministe pour le BRL qui est optimiste vis à vis de la fonction de tran-
sition. Nous analysons la complexité d'échantillon de bolt et montrons que, pour certains
paramètres, l'algorithme est quasi-optimal au sens bayésien avec une grande probabilité. Puis,
des résultats expérimentaux mettent en valeur les principales di�érences entre cette méthode et
des travaux antérieurs.

Mots-clés : Apprentissage par renforcement bayésien, Algorithmes optimistes, PAC-MDP
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4 Araya-López, Thomas, Bu�et

1 Introduction

Acting in an unknown environment requires trading o� exploration (acting so as to acquire
knowledge) and exploitation (acting so as to maximize expected return). Model-Based Bayesian
Reinforcement Learning (BRL) algorithms achieve this while maintaining and using a proba-
bility distribution over possible models (which requires expert knowledge under the form of a
prior).These algorithms typically fall within one of the three following classes [Asmuth et al.,
2009].

Belief-lookahead approaches try to optimally trade o� exploration and exploitation by
reformulating RL as the problem of solving a POMDP where the state is a pair ω = (s, b),
s being the observed state and b the distribution over the possible models; yet, this problem
is intractable, allowing only computationally expensive approximate solutions [Poupart et al.,
2006][Dimitrakakis, 2008].

Optimistic approaches propose exploration mechanisms that explicitly attempt to reduce
the model uncertainty [Brafman and Tennenholtz, 2003, Kolter and Ng, 2009, Sorg et al., 2010,
Asmuth et al., 2009] by relying on the principle of �optimism in the face of uncertainty�.

Undirected approaches, such as ε-greedy or Boltzmann exploration strategies [Sutton and
Barto, 1998], perform exploration actions independent of the current knowledge about the envi-
ronment.

We focus here on optimistic approaches and, as most research in the �eld and without loss of
generality, we consider uncertainty on the transition function, assuming a known reward function.
For some algorithms, recent work proves that they are either PAC-MDP [Strehl et al., 2009]�
with high probability they often act as an optimal policy would do (if the MDP model were
known)�or PAC-BAMDP [Kolter and Ng, 2009]�with high probability they often act as an
ideal belief-lookahead algorithm would do.

This paper �rst presents background on model-based BRL in Section 2, and on PAC-MDP
and PAC-BAMDP analysis in Section 3. Then, Section 4 introduces a novel algorithm, bolt,
which, (1) as boss [Asmuth et al., 2009], is optimistic about the transition model�which is
intuitively appealing since the uncertainty is about the model�and, (2) as beb [Kolter and Ng,
2009], is (almost) deterministic�which leads to a better control over this approach. We then
prove in Section 5 that bolt is PAC-BAMDP for in�nite horizons, by generalizing previous
results known for beb for �nite horizon. Experiments in Section 6 then give some insight as to
the practical behavior of these algorithms, showing in particular that bolt seems less sensitive
to parameter tuning than beb. Due to space constraints and clarity, we have deferred all proofs
of lemmas to the appendix, keeping the main proofs of the theorems.

2 Background

2.1 Reinforcement Learning

A Markov Decision Process (MDP) [Puterman, 1994] is de�ned by a tuple 〈S,A, T,R〉 where S
is a �nite set of states, A is a �nite set of actions, the transition function T is the probability to
transition from state s to state s′ when some action a is performed: T (s, a, s′) = Pr(s′|s, a), and
R(s, a, s′) is the instant scalar reward obtained during this transition. Reinforcement Learning
(RL) [Sutton and Barto, 1998] is the problem of �nding an optimal decision policy�a mapping
π : S 7→ A�when the model (T without R in our case) is unknown but while interacting with

Inria



Bayesian Optimistic Local Transitions 5

the system. A typical performance criterion is the expected discounted return

V πµ (s) = Eπ

[ ∞∑
t=0

γtR(st, at, st+1) | s0 = s, T = µ

]
,

where µ ∈ M is the unknown model and γ ∈ [0, 1] is a discount factor. In this paper we do
not account for uncertainty about the reward function as it can be turned into an uncertainty
about the transition function, meaning that only T is unknown and R is given. Under an optimal
policy, this state value function veri�es the Bellman optimality equation [Bellman, 1954] (for all
s ∈ S):

V ∗µ (s) = max
a∈A

∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γV ∗µ (s′)

]
,

and computing this optimal value function allows to derive an optimal policy by behaving in
a greedy manner, i.e., by picking actions in arg maxa∈AQ

∗
µ(s, a), where the state-action value

function Q∗µ is de�ned as

Q∗µ(s, a) =
∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γV ∗µ (s′)

]
.

Typical RL algorithms either (i) directly estimate the optimal state-action value function Q∗µ
(model-free RL), or (ii) learn T to compute V ∗µ or Q∗µ (model-based RL). Yet, in both cases, a
major di�culty is to pick actions so as to trade o� exploitation of the current knowledge and
exploration to acquire more knowledge.

2.2 Model-based Bayesian RL

We consider here model-based Bayesian Reinforcement Learning [Strens, 2000], i.e., model-based
RL where the knowledge about the model is represented using a probability distribution b over
all possible transition models. An initial prior distribution b0 = Pr(µ) has to be speci�ed, which
is then updated using Bayes rule. At time t the posterior bt depends on the initial distribution
b0 and the state-action history so far ht = s0, a0, · · · , st−1, at−1, st. This update can be applied
sequentially due to the Markov assumption, i.e., at time t + 1 we only need bt and the triplet
(st, at, st+1) to compute the new distribution:

bt+1 = Pr(µ|ht+1, b0) = Pr(µ|st, at, st+1, bt). (1)

The distribution bt is known as the belief over the model, and summarizes the information that
we have gathered about the model at the current time step.

If we consider the belief as part of the state, the resulting belief-MDP over this multivariate
in�nite state space can be solved optimally in theory. Yet this is in practice intractable due to
the increasing complexity along the planning horizon. Remarkably, modelling RL problems as
belief-MDPs provides a sound way of dealing with the exploration-exploitation dilemma, because
both objectives are naturally included in the same optimization criterion.

The belief-state can thus be written as ω = (s, b), which de�nes a Bayes-Adaptive MDP
(BAMDP) 1 [Du�, 2002], a special kind of belief-MDP where the belief-state is factored into the
(visible) system state and the belief over the (hidden) model. Moreover, due to the integration

1BAMDP also stands for Belief-Augmented MDP [Dimitrakakis, 2008].

RR n° 7965



6 Araya-López, Thomas, Bu�et

over all possible models in the value function of the BAMDP, the transition function T (ω, a, ω′)
is given by

Pr(ω′|ω, a) = Pr(b′|b, s, a, s′)E[Pr(s′|s, a)|b],

where the �rst probability is 1 if b′ complies with Eq. (1) and 0 else. The optimal Bayesian policy
can then be obtained by computing the optimal Bayesian value function [Du�, 2002, Poupart
et al., 2006]:

V∗(s, b)

= max
a

[∑
s′

E[Pr(s′|s, a)|b](R(s, a, s′) + γV∗(s′, b′))

]

= max
a

[∑
s′

T (s, a, s′, b)(R(s, a, s′) + γV∗(s′, b′))

]
, (2)

with b′ the posterior after the Bayes update with (s, a, s′). For the �nite horizon case we can
use the same reasoning, so that the optimal value can be computed in theory for a �nite or
in�nite horizon, by performing Bayes updates and computing expectations. However, in practice,
computing this value function exactly is intractable due to the large branching factor of the tree
expansion.

At �rst glance, is obvious to look at POMDP algorithms, because they also deal with belief-
MDPs. Unfortunately, one cannot directly bene�t from classical POMDP algorithms because
of the in�nite dimensional nature of the state space. Other�o�ine or online�approximate
approaches have therefore been introduced, allowing in a number of cases to prove theoretical
properties.

Here, we are interested in heuristic approaches following the optimism in the face of uncer-
tainty principle, which consists in assuming a higher return on the most uncertain transitions.
Some of them solve the MDP generated by the expected model (at some stage) with an added
exploration reward which favors transitions with lesser known models, as in r-max [Brafman
and Tennenholtz, 2003], beb [Kolter and Ng, 2009], or with variance based rewards [Sorg et al.,
2010]. Another approach, used in boss [Asmuth et al., 2009], is to solve, when the model has
changed su�ciently, an optimistic estimate of the true MDP (obtained by merging multiple
sampled models).

2.3 Flat and Structured Priors

The selection of a suitable prior is an important issue in BRL algorithms, because it has a
direct impact on the solution quality and computing time. A naive approach is to consider
one independent Dirichlet distribution for each state-action transition, known as Flat-Dirichlet-
Multinomial prior (FDM), whose pdf is de�ned as

b = f(µ;θ) =
∏
s,a

D(µs,a;θs,a),

where D(·; ·) are independent Dirichlet distributions. FDMs can be applied to any discrete
state-action MDP, but is only appropriate under the strong assumption of independence of the
state-action pairs in the transition function. However, this prior has been broadly used because
of its simplicity for computing the Bayesian update and the expected value. Consider that
the vector of parameters θ are the counters of observed transitions, then the expected value of

Inria
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a transition probability is E[Pr(s′|s, a)|b] =
θs,a(s

′)∑
s′′ θs,a(s

′′) , and the Bayesian update under the

evidence of a transition (s, a, s′), is reduced only to θ′s,a(s′) = θs,a(s′) + 1.
Even though FDMs are useful to analyze and benchmark algorithms, in practice they are

ine�cient because they do not exploit structured information about the problem. One can for
example encode the fact that multiple actions share the same model by factoring multiple Dirich-
let distributions, or allow the algorithm to identify such structures using Dirichlet distributions
combined using Chinese Restaurant Processes or Indian Bu�et Processes [Asmuth et al., 2009].
Also, speci�c problems could lead to other families of distributions di�erent from Dirichlet, for
example the Bayesian distribution over deterministic MDPs presented by Sorg et al. [2010].

3 PAC Algorithms

Probably Approximately Correct Learning (PAC) provides a way of analyzing the quality of learn-
ing algorithms [Valiant, 1984]. The general idea is that with high probability 1 − δ (probably),
a machine with a low training error produces a low generalization error bounded by ε (approx-
imately correct). If the number of steps needed to arrive to this condition is bounded by a
polynomial function, then the algorithm is PAC-e�cient.

3.1 PAC-MDP Analysis

In RL, the PAC-MDP property [Strehl et al., 2009] guarantees that an algorithm generates an
ε-close policy with probability 1−δ in all but a polynomial number of steps. The major di�erence
with PAC Learning is that there is no guarantee on when the non-ε-close steps will occur, but
the number of non-ε-close steps is bounded by a polynomial. An important result is the general
PAC-MDP Theorem 10 in Strehl et al. [2009], where three su�cient conditions are presented
to comply with the PAC-MDP property. First, the algorithm must use at least near optimistic
values with high probability. Also, the algorithm must guarantee with high probability that
it is accurate, meaning that, for the known parts of the model, its actual evaluation will be
ε-close to the optimal value function. Finally, the number of non-ε-close steps (also called sample
complexity) must be bounded by a polynomial function.

In mathematical terms, PAC-MDP algorithms are those for which, with probability 1 − δ,
the evaluation of a policy At, generated by algorithm A at time t over the real underlying model
µ0, is ε-close to the optimal policy over the same model in all but a polynomial number of steps:

V At
µ0

(s) ≥ V ∗µ0
(s)− ε. (3)

Several RL algorithms comply with the PAC-MDP property, di�ering from one another
mainly on the tightness of the sample complexity bound. For example, r-max [Brafman and
Tennenholtz, 2003], mbie-eb [Strehl and Littman, 2005] and Delayed Q-Learning [Strehl et al.,
2009] are some classic RL algorithms for which this property has been proved, whereas BOSS
[Asmuth et al., 2009] is a Bayesian RL algorithm which is also PAC-MDP.

In PAC-MDP analysis the policy produced by an algorithm should be close to the optimal
policy derived from the real underlying MDP model. This utopic policy [Poupart et al., 2006]
cannot be computed, because it is impossible to learn exactly the model with a �nite number
of samples, but it is possible to reason on the probabilistic error bounds of an approximation to
this policy.

In model-based RL, the exploration vs. exploitation dilemma arises as the compromise be-
tween producing accurate estimates of the real model (exploration), and optimally acting with
respect to the current estimates (exploitation). Then, the correctness of an algorithm will depend

RR n° 7965



8 Araya-López, Thomas, Bu�et

on these two di�erent criteria, which are impossible to combine without biasing the results to
certain models.

3.2 PAC-BAMDP Analysis

An alternative to the PAC-MDP approach is to be PAC with respect to the optimal Bayesian
policy, rather than using the optimal utopic policy. We will call this PAC-BAMDP analysis,
because its aim is to guarantee closeness to the optimal solution of the Bayes-Adaptive MDP.
This type of analysis was �rst introduced in Kolter and Ng [2009], under the name of near-
Bayesian property, where it is shown that a modi�ed version of beb is PAC-BAMDP for the
undiscounted �nite horizon case 2.

Let us de�ne how to evaluate a policy in the Bayesian sense:

De�nition 3.1. The Bayesian evaluation V of a policy π is the expected value given a distribution
over models b:

Vπ(s, b) = Eµ[V πµ (s)|b] =

∫
M
V πµ (s)Pr(µ|b)dµ.

This de�nition has already been presented implicitly by Du� [2002] and explicitly by Dim-
itrakakis [2008], but it is very important to point out the di�erence between a normal MDP
evaluation over some known MDP, and the Bayesian evaluation3. This de�nition is consistent
with Eq. 2, where

V∗(s, b) = max
π

∫
M
V πµ (s)Pr(µ|b)dµ

= max
a

[∑
s′

E[Pr(s′|s, a)|b](R(s, a, s′) + γV∗(s′, b′))

]
.

Let us de�ne the PAC-BAMDP property:

De�nition 3.2. We say that an algorithm is PAC-BAMDP if, with probability 1−δ, the Bayesian
evaluation of a policy At generated by algorithm A at time t is ε-close to the optimal Bayesian
policy in all but a polynomial number of steps, where the Bayesian evaluation is parametrized by
the belief b:

VAt(s, b) ≥ V∗(s, b)− ε, (4)

with δ ∈ [0, 1) and ε > 0.

A major conceptual di�erence is that in PAC-BAMDP analysis, the objective is to guarantee
approximate correctness because the optimal Bayesian policy is hard to compute, while in PAC-
MDP analysis, the approximate correctness guarantee is needed because the optimal utopic policy
is impossible to �nd in a �nite number of steps.

4 Optimistic BRL Algorithms

Sec. 2.2 has shown how to theoretically compute the optimal Bayesian value function. This
computation being intractable, it is common to use suboptimal�yet e�cient�algorithms. A

2However, some�recti�able�errors have been spotted in the proof of near-Bayesianness of beb in Kolter and
Ng [2009], as discussed with the authors.

3We use a di�erent notation for the Bayesian evaluation, V, to distinguish it from a normal MDP evaluation
V .

Inria
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Bayes
update

MDP

MDP

bt → bt+1

i

i

i+ 1

i+ 1

t t+ 1

E[µ|bt]

∞

E[µ|bt+1]

0

H

H

Figure 1: exploit-like algorithm. At each time step t, algorithm performs a Bayes update of
the prior, and solves the MDP derived from the expected model of the belief.

popular technique is to maintain a posterior over the belief, select one representative MDP based
on the posterior and act according to its value function. The baseline algorithm in this family is
called exploit [Poupart et al., 2006], where the expected model of b is selected at each time step.
Therefore, the algorithm has to solve a di�erent MDP of horizon H�an algorithm parameter,
not the problem horizon� at each time step t as can be seen in Fig. 1. We will consider for
the analysis that H is the number of iterations i that value iteration performs at each time step
t, but in practice convergence can be reached long before the theoretically derived H for the
in�nite horizon case.

beb [Kolter and Ng, 2009] follows the same idea as exploit, but adding an exploration
bonus to the reward function. In contrast, boss [Asmuth et al., 2009] does not use the exploit
approach, but samples di�erent models from the prior and uses them to construct an optimistic
MDP. beb has the advantage of being an almost deterministic algorithm4 and does not rely on
sampling as boss. On the other hand, boss is optimistic about the transitions, which is where
the uncertainty lies, meanwhile beb is optimistic about the reward function, even though this
function is known.

4.1 Bayesian Optimistic Local Transitions

In this section, we introduce a novel algorithm called bolt (Bayesian Optimistic Local Transi-
tions), which relies on acting, at each time step t, by following the optimal policy for an optimistic
variant of the current expected model. This variant is obtained by, for each state-action pair,
optimistically boosting the Bayesian updates before computing the local expected transition
model. This is achieved using a new MDP with an augmented action space A = A × S, where
the transition model for action α = (a, σ) in state s is the local expected model derived from
bt updated with an arti�cial evidence of transitions ληs,a,σ = {(s, a, σ), . . . , (s, a, σ)} of size η (a
parameter of the algorithm). In other words, we pick both an action a plus the next state σ we

4In case of equal values, actions are sampled uniformly.
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10 Araya-López, Thomas, Bu�et

would like to occur with a higher probability. The MDP can be solved as follows:

V bolt

i (s, bt)

= max
α

∑
s′

T̂ (s, α, s′, bt)
[
R(s, a, s′) + γV bolt

i−1 (s′, bt)
]

with T̂ (s, α, s′) = E[Pr(s′|s, a)|bt, ληs,a,σ].

bolt's value iteration neglects the evolution of bt, but the modi�ed transition function works as
an optimistic approximation of the neglected Bayesian evolution.

Modifying the transition function seems to be a more natural approach than modifying the
reward function as in beb, since the uncertainty we consider in these problems is about the
transition function, not about the reward function.

From a computational point of view, each update in bolt requires |S| times more computa-
tions than each update in beb. This implies computation times multiplied by |S| when solving
�nite horizon problems using dynamic programming, and probably a similar increase for value
iteration. However, under structured priors, not all the next states σ must be explored, but only
those which are possible transitions.

Here, the optimism is controlled by the positive parameter η�an integer or real-valued pa-
rameter depending on the family of distributions�and the behaviour using di�erent parameter
values will depend on the used family of distributions. However, for common priors like FDMs, it
can be proved that bolt is always optimistic with respect to the optimal Bayesian value function.

Lemma 4.1 (bolt's Optimism). Let (st, bt) be the current belief-state from which we apply
bolt's value iteration with an horizon of H and η = H. Let also bt be a prior in the FDM
family, and let VH(st, bt) be the optimal Bayesian value function. Then, we have

V bolt

H (st, bt) ≥ VH(st, bt).

[Proof in App. A.1]

5 Analysis of BOLT

In this section we prove that bolt is PAC-BAMDP in the discounted in�nite horizon case5 solved
at each step., when using a FDM prior. The other algorithm proved to be PAC-BAMDP is beb,
but the analysis provided in Kolter and Ng [2009] is only for �nite horizon domains with an
imposed stopping condition for the Bayes update. Therefore, we include in App. B an analysis of
beb using the results of this section in order to be able to compare these algorithms theoretically
afterwards.

By De�nition 3.2, we must analyze the policy At generated by bolt at time t, i.e., At =
argmaxπ V

bolt,π
H (st), and show that, with high probability and for all but a polynomial number

of steps, this policy is ε-close to the optimal Bayesian policy.

Theorem 5.1 (bolt is PAC-BAMDP). Let At denote the policy followed by bolt at time t
with η = H. Let also st and bt be the corresponding state and belief at that time. Then, with
probability at least 1− δ, bolt is ε-close to the optimal Bayesian policy

VAt(st, bt) ≥ V∗(st, bt)− ε
5To follow the proofs, please keep in mind that H is not the horizon of the problem (which is in�nite in our

analysis), but the computing horizon of the MDPs

Inria
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for all but Õ
(
|S||A|η2
ε2(1−γ)2

)
= Õ

(
|S||A|H2

ε2(1−γ)2

)
time steps.

[Proof in Section 5.2]

In the proof we will see that H depends on ε and γ. Therefore, the sample complexity bound
and the optimism parameter η will depend only on the desired correctness (ε,δ) and the problem
characteristics (γ,|S|,|A|).

5.1 Mixed Value Function

To prove that bolt is PAC-BAMDP we introduce some preliminary concepts and results. First,
let us assume for the analysis that we maintain a vector of transition counters θ, even though the
priors may be di�erent from FDMs for the speci�c lemma presented in this section. As the belief
is monitored, at each step we can de�ne a set K = {(s, a)|‖θs,a‖ ≥ m} of known state-action
pairs [Kearns and Singh, 1998], i.e., state-action pairs with �enough� evidence. Also, to analyze
an exploit-like algorithm A in general (like exploit, bolt or beb) we introduce a mixed value
function Ṽ obtained by performing an exact Bayesian update when a state-action pair is in K,
and A's update when not in K. Using these concepts, we can revisit Lemma 5 of Kolter and
Ng [2009] for the discounted case.

Lemma 5.2 (Induced Inequality Revisited). Let VπH(st, bt) be the Bayesian evaluation of a
policy π, a = π(s, b) be an action from the policy. We de�ne

Ṽπi (s, b) = (5){∑
s′ T (s, a, s′, b)(R(s, a, s′) + γṼπi−1(s′, b′)) if (s, a) ∈ K∑
s′ T̃ (s, a, s′)(R̃(s, a, s′) + γṼπi−1(s′, b′)) if (s, a) /∈ K

the mixed value function, where T̃ and R̃ can be di�erent from T and R respectively. Here, b′

is the posterior parameter vector after the Bayes update with (s, a, s′). Let also AK be the event
that a pair (s, a) /∈ K is generated for the �rst time when starting from state st and following
the policy π for H steps. Assuming normalized rewards for R and a maximum reward R̃max for
R̃, then

VπH(st, bt) ≥ ṼπH(st, bt)−
(1− γH)

(1− γ)
R̃maxPr(AK), (6)

where Pr(AK) is the probability of event AK .
[Proof in App. A.2]

5.2 BOLT is PAC-BAMDP

Let ṼAt

H (st, bt) be the evaluation of bolt's policy At using a mixed value function where

R̃(s, a, s′) = R(s, a, s′) the reward function, and T̃ (s, a, s′) = T̂ (s, α, s′, bt) = E[Pr(s′|s, a)|bt, ληs,a,σ]
the bolt transition model, where a and σ are obtained from the policy At. Note that, even
though we apply bolt's update, we still monitor the belief at each step as presented in Eq. 5.
Yet, for T̂ we consider the belief at time t, and not the monitored belief b as in the Bayesian
update

Lemma 5.3 (boltMixed Bound). The di�erence between the optimistic value obtained by bolt

and the Bayesian value obtained by the mixed value function under the policy At generated by
bolt with η = H is bounded by

V bolt

H (st, bt)− ṼAt

H (st, bt) ≤
(1− γH)η2

(1− γ)m
. (7)
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12 Araya-López, Thomas, Bu�et

[Proof in App. A.3]

Proof of Theorem 5.1. We start by the induced inequality (Lemma 5.2) with At the policy gen-
erated by bolt at time t, and Ṽ a mixed value function using bolt's update when (s, a) /∈ K.
As R̃max = 1, the chain of inequalities is

VAt(st, bt) ≥ VAt

H (st, bt)

≥ ṼAt

H (st, bt)−
1− γH

1− γ
Pr(AK)

≥ V bolt

H (st, bt)−
η2(1− γH)

m(1− γ)
− 1− γH

1− γ
Pr(AK)

≥ V∗H(st, bt)−
η2(1− γH)

m(1− γ)
− 1− γH

1− γ
Pr(AK)

≥ V∗(st, bt)−
η2(1− γH)

m(1− γ)
− 1− γH

1− γ
Pr(AK)− γH

(1− γ)

where the 3rd step is due to Lemma 5.3 (accuracy) and the 4th step to Lemma 4.1 (optimism).

To simplify the analysis, let us assume that γH

(1−γ) = ε
2 and �x m = 4η2

ε(1−γ) .

If Pr(AK) > η2

m = ε(1−γ)
4 , by the Hoe�ding6 and union bounds we know that AK occurs no

more than

O

(
|S||A|m
Pr(AK)

log
|S||A|
δ

)
= O

(
|S||A|η2

ε2(1− γ)2
log
|S||A|
δ

)
time steps with probability 1 − δ. By neglecting logarithms we have the desired theorem. This
bound is derived from the fact that, if AK occurs more than |S||A|m times, then all the state-
action pairs are known and we will never escape from K anymore. Here we are not considering
the information already encoded in the prior, so this bound will be much more tight in practice.

For Pr(AK) ≤ η2

m , we have that

VAt(st, bt) ≥ V∗(st, bt)−
ε(1− γH)

4
− ε(1− γH)

4
− ε

2

≥ V∗(st, bt)−
ε

4
− ε

4
− ε

2
= V∗(st, bt)− ε

which veri�es the proposed theorem.

Following Kolter and Ng [2009], optimism can be ensured for beb with β ≥ 2H2, with

Õ
(
|S||A|H4

ε2(1−γ)2

)
non ε-close steps (see App. B.2), which is a worse result than bolt. Nevertheless,

the bounds used in the proofs are loose enough to expect the optimism property to hold for much
smaller values of β and η in practice.

6Even though the Hoe�ding bound assumes that samples are independent, which is trivially not in MDPs, it
upper bounds the case where samples are dependent. Recent results shows that tighter bounds can be achieve
with a more elaborated analysis [Szita and Szepesvári, 2010].

Inria
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6 Experiments

To illustrate the characteristics of bolt, we present here experimental results over a number of
domains. For all the domains we have tried di�erent parameters for bolt and beb, but also we
have used an ε-greedy variant of exploit, where there is an ε probability of choosing a random
action rather than following the policy of the expected model. However, for all the presented
problems plain exploit (ε = 0.0) outperforms the ε-greedy variant.

Please recall that the theoretical values for parameters β and η�that ensure optimism�
depend on the horizon H of the MDPs solved at each time step. In these experiments, instead of
using this horizon we relied on asynchronous value iteration, stopping when ‖Vi+1 − Vi‖∞ < ε.
Moreover, we reuse the �nal value function at time t as the initial value function at time t + 1
to speed computations. For solving these in�nite MDPs we used γ = 0.95 and ε = 0.01, but be
aware that the performance criterion used here is averaged undiscounted total rewards, following
[Poupart et al., 2006, Asmuth et al., 2009].

6.1 The Chain Problem

In the 5-state chain problem [Strens, 2000, Poupart et al., 2006], every state is connected to state
s1 by taking action b and every state si is connected to the next state si+1 with action a, except
s5 that is connected to itself. At each step, the agent may �slip� with probability p, performing
the opposite action as intended. Staying in s5 had a reward of 1.0 while coming back to s1 had
a reward of 0.2. All other rewards are 0. The priors used for these problems were Full (FDM),
Tied, where the probability p is factored for all transitions, and Semi, where each action has
an independent factored probability.

Algorithm Tied Semi Full
exploit (ε = 0) 366.1 354.9 230.2
beb (β = 1) 365.9 362.5 343.0
beb (β = 150) 366.5 297.5 165.2
bolt (η = 7) 367.9 367.0 289.6
bolt (η = 150) 366.6 358.3 278.7
beetle * 365.0 364.8 175.4
boss * 365.7 365.1 300.3

Table 1: Chain Problem results for di�erent priors. Averaged total reward over 500 trials
for an horizon of 1000 with p = 0.2. The results with * come from previous publications.

Table 1 shows that beb outperforms other algorithms with a tuned up β value for the FDM
prior as already shown by Kolter and Ng [2009]. However, for a large value of β, this performance
decreases dramatically. bolt on the other hand produces results comparable with boss for a
tuned parameter, but does not decrease too much for a large value of η. Indeed, this value
corresponds to the theoretical bound that ensures optimism, η = H ≈ log(ε(1−γ))/ log(γ) ≈ 150.
Unsurprisingly, the results of beb and bolt with informative priors are not much di�erent than
other techniques, because the problem degenerates into a easily solvable problem. Nevertheless,
bolt achieves good results for a large η, in contrast to beb that fails to provide a competitive
result for the Semi prior with large β.

This variability in the results depending on the parameters, rises the question of the sensitivity
to parameter tuning. In a RL domain, one usually cannot tune the algorithm parameters for each
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Low resolution analysis β, η ∈ [1, 100]

High resolution analysis β, η ∈ [0.1, 10]

Figure 2: Chain Problem. Averaged total reward over 300 trials for an horizon of 150, and
for β and η parameters between 1 and 100, and between 0.1 and 10. As a reference, the value
obtained by exploit is also plotted. All results are shown with a 95% con�dence interval.

problem, because the whole model of the problem is unknown. Therefore, a good RL algorithm
must perform well for di�erent problems without modifying its parameters.

Fig. 2 shows how beb and bolt behave for di�erent parameters using a Full prior. In the
low resolution analysis beb's performance decays very fast, while bolt also tends to decrease,
but maintaining good results. We have also conducted experiments for other values of the slip
probability p, the same pattern being ampli�ed when p is near 0, i.e., worse decay for beb and
almost constant bolt results, and obtaining almost identical behavior when p is near 0.5. In the
high resolution results beb goes up and down near 1, while bolt maintains a similar behaviour
as in the low resolution experiment.

6.2 Other Structured Problems

An other illustrative example is the Paint/Polish problem where the objective is to deliver several
polished and painted objects without a scratch, using several stochastic actions with unknown
probabilities. The full description of the problem can be found in Walsh et al. [2009]. Here,

Inria
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Low resolution Analysis β, η ∈ [1, 100]

High resolution Analysis β, η ∈ [0.1, 10]

Figure 3: Paint/Polish Problem. Averaged total reward over 300 trials for an horizon of 150,
for several values of β and η using an structured prior. As a reference, the value obtained by
exploit is also plotted. All results are shown with a 95% con�dence interval.
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16 Araya-López, Thomas, Bu�et

the possible outcomes of each action are given to the agent, but the probabilities of each out-
come are not. We have used a structured prior that encodes this information and the results
are summarized in Fig. 3, using both high and low resolution analyses. We have also performed
this experiment with an FDM prior, obtaining similar results as for the Chain problem. Un-
surprisingly, using a structured prior provides better results than using FDMs. However, the
high impact of being overoptimistic shown in Fig. 3, does not apply to FDMs, mainly because
the learning phase is much shorter using a structured prior. Again, the decay of beb is much
stronger than bolt, but in contrast to the Chain problem, the best parameter of bolt beats the
best parameter of beb.

The last example is the Marble Maze problem7 [Asmuth et al., 2009] where we have explicitly
encoded the 16 possible clusters in the prior, leading to little exploration requirements. exploit
provides very good solutions for this problem, and bolt provides similar results with several
di�erent parameters. In contrast, for all the tested β parameters, beb behaves much worse than
exploit. For example, for the best η = 2.0 bolt scores −0.445, while for the best β = 0.9 beb

scores −2.127, while exploit scores −0.590.
In summary, it is hard to know a priori which algorithm will perform better for a speci�c

problem with a speci�c prior and given certain parameters. However, bolt generalizes well (in
theory and in practice) for a larger set of parameters, mainly because the optimism is bounded
by the probability laws and not by a free parameter as in beb.

7 Conclusion

We have presented bolt, a novel and simple algorithm that uses an optimistic boost to the Bayes
update, which is thus optimistic about the uncertainty rather than just in the face of uncertainty.
We showed that bolt is strictly optimistic for certain η parameters, and used this result to prove
that it is also PAC-BAMDP. The sample complexity bounds for bolt are tighter than for beb.
Experiments show that bolt is more e�cient than beb when using the theoretically derived
parameters in the Chain problem, and in general that bolt seems more robust to parameter
tuning. Future work includes using a dynamic η bonus for bolt, what should be particularly
appropriate with �nite horizons, and exploring general proofs to guarantee the PAC-BAMDP
property for a broader family of priors than FDMs.
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A Technical Proofs

A.1 Proof of Lemma 4.1

Proof. We will prove this lemma by �nding an upper bound for the optimal Bayesian value
function at iteration i. Then, by induction, we prove that the accumulated di�erence between
bolt's value function and this upper bound is lower bounded by a positive quantity.

Let Q∗H(st, bt, a) be the optimal Bayesian state-action value function. We can upper bound
this optimal Bayesian state-action value function at iteration i by

Q∗i (s, b, a) =
∑
s′

θs,a(s′)

‖θs,a‖
(R(s, a, s′) + γV∗i−1(s′, b′))

≤ max
φ

∑
s′

θts,a(s′) + φ(s′)

‖θts,a‖+ ‖φ‖
(R(s, a, s′) + γV∗i−1(s′, b′)),

where b is a descendent of bt, meaning that b is a belief obtained by applying H − i Bayesian
updates from bt, and where ‖φ‖ = ‖θs,a‖ − ‖θts,a‖. This inequality holds since there exists a
vector φ′ such that θs,a = θts,a + φ′. Now, let us de�ne

f(φ) =
∑
s′

θts,a(s′) + φ(s′)

‖θts,a‖+ ‖φ‖
g(s′, s, a, b), with

g(s′, s, a, b) = R(s, a, s′) + γV∗i−1(s′, b′).
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Please note that f(φ) is a linear function because ‖φ‖ = Cs,a is constant for a given state-action
pair. Therefore, maximizing f(·) can be turned into to maximizing g(·, s, a, b) as follows:

Q∗i (s, b, a) ≤ max
φ

f(φ)

=
1

‖θts,a‖+ Cs,a

([∑
s′

θts,a(s′)g(s′, s, a, b)

]

+ max
φ

[∑
s′

φ(s′)g(s′, s, a, b)

])

≤ 1

‖θts,a‖+ Cs,a

([∑
s′

θts,a(s′)g(s′, s, a, b)

]

+Cs,a max
σ

(g(σ, s, a, b))

)
.

(8)

Let us now analyze the di�erence between the state-action value function of bolt, Qbolt

H (st, bt, a) =
maxσ Q

bolt

H (st, bt, (a, σ)), and the optimal Bayesian value function V∗H(st, bt). To prove the in-
ductive step i + 1, let us assume that the di�erence between the value functions at iteration i
is lower bounded by a positive quantity: 0 ≤ ∆i ≤ V bolt

i (s, bt) − V∗i (s, b). Then, we can lower
bound bolt's value at iteration i+ 1 with η = H:

Qbolt

i+1 (s, bt, a)

= max
σ

∑
s′

θts,a(s′) +Hδ(σ, s′)

‖θts,a‖+H
(R(s, a, s′) + γV bolt

i (s′, bt))

= max
σ

∑
s′

θts,a(s′) +Hδ(σ, s′)

‖θts,a‖+H
(R(s, a, s′) + γ(∆i + V∗i (s, b)))

≥ γ∆i +
H maxσ(g(σ, s, a, b)) +

∑
s′ θ

t
s,a(s′)g(s′, s, a, b)

‖θts,a‖+H
. (9)

Using Equations 8 and 9, we can show that the di�erence at iteration i+ 1 can be bounded by

Qbolt

i+1 (s, bt, a)−Qi+1(s, b, a)

≥ γ∆i +
H maxσ(g(σ, s, a, b)) +

∑
s′ θ

t
s,a(s′)g(s′, s, a, b)

‖θts,a‖+H

−
Cs,a maxσ(g(σ, s, a, b)) +

∑
s′ θ

t
s,a(s′)g(s′, s, a, b)

‖θts,a‖+ Cs,a

≥ γ∆i

+
(H − Cs,a)

∑
s′ θ

t
s,a(maxσ(g(σ, s, a, b))− g(s′, s, a, b))

‖θts,a‖+H

≥ γ∆i,

where the last step is due to all the elements in the fraction having positive values (i.e.,H > Cs,a).
This implies that V bolt

i+1 (s, bt)−V∗i+1(s, b) ≥ γ∆i. So, by noticing that the base step is ∆0 = 0�
because V0(s, b) = V bolt(s, bt) = 0�and applying this last equation repeatedly, we obtain the
desired result by induction.

A.2 Proof of Lemma 5.2

Proof. This proof follows the same reasoning as Lemma 5 of [Kolter and Ng, 2009], but gener-
alized to be applied to a mixed value function, and also to the discounted reward case. Let pi
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be a partial path generated by policy π, pi = 〈s0, a0, s1, . . . , ai−1, si〉, Pr(pi) be the probability
of obtaining that path given the prior belief b, and r(pi) the reward for the last step of the
partial path pi, i.e., (si−1, ai, si). Furthermore, let P̃ r(pi) and r̃(pi) be respectively the product
of transition probabilities along pi and the reward for the last step of the mixed value function
Ṽ for a given path pi. Then,

ṼπH(st, bt)− VπH(st, bt)

=

H−1∑
i=1

γi
∑
pi

P̃ r(pi)r̃(pi)−
H−1∑
i=1

γi
∑
pi

Pr(pi)r(pi)

=

H−1∑
i=1

γi

[∑
pi∈K

(
P̃ r(pi)r̃(pi)− Pr(pi)r(pi)

)
+
∑
pi /∈K

(
P̃ r(pi)r̃(pi)− Pr(pi)r(pi)

)]

=

H−1∑
i=1

γi
∑
pi /∈K

(
P̃ r(pi)r̃(pi)− Pr(pt)r(pi)

)

≤
H−1∑
i=1

γi
∑
pi /∈K

P̃ r(pi)r̃(pi) ≤
(1− γH)

(1− γ)
R̃maxPr(AK),

where we divide the sum of paths in those that are always in K and those that escape from K.
If a path is in K, then the rewards and probabilities are equal, so they can be removed (third
step), and in the last step we upper bound the di�erence by taking the maximum possible reward
value, and the de�nition of Pr(AK).

A.3 Proof of Lemma 5.3

Proof. We prove this lemma by induction, where the inductive step i+1 is based on the assump-
tion that the di�erence between the two evaluations at iteration i is bounded by a maximum
quantity ∆i:

V bolt

i (s, bt)− ṼAt
i (s, b) ≤ ∆i. (10)

Now, we compute the maximum delta di�erence for i+ 1, distinguishing between two cases. The
�rst case is when (s, a) /∈ K (with α = At(s, b)), meaning that the probabilities and rewards for
each term are the same. Formally,

∆
(/∈K)
i+1 = V bolt

i+1 (s, bt)− ṼAt
i+1(s, b)

=
∑
s′

T̂ (s, α, s′, bt) (R(s, a, s′)+

γV bolt

i (s, bt)−R(s, a, s′)− γṼAt
i (s, b′)

)
≤ γ∆i

∑
s′

T̂ (s, α, s′, bt)

= γ∆i.
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The second case is when (s, a) ∈ K, where the probabilities di�er,

∆
(∈K)
i+1 = V bolt

i+1 (s, bt)− ṼAt
i+1(s, b)

=
∑
s′

T̂ (s, α, s′, bt)(R(s, a, s′) + γV bolt

i (s, bt))

−
∑
s′

T (s, a, s′, b)(R(s, a, s′) + γṼAt
i (s, b′))

≤ γ∆i +
∑
s′

(
T̂ (s, α, s′, bt)− T (s, a, s′, b)

)
×(

R(s, a, s′) + γṼAt
i (s, b′)

)
= γ∆i +

∑
s′

(
θt
s,a(s

′)+ηδ(σ,s′)

‖θt
s,a‖+η

− θs,a(s
′)

‖θs,a‖

)
×(

R(s, a, s′) + γṼAt
i (s, b′)

)
≤ γ∆i +

∑
s′

ηδ(σ, s′)

‖θts,a‖+ η
(R(s, a, s′) + γṼAt

i (s, b′))

≤ γ∆i +
η2

m
.

Here, the third step is due to the de�nition of ∆i. The �fth inequality holds because θts,a(s′) ≤
θs,a(s′) and ‖θts,a‖+H ≥ ‖θs,a‖. The last step is obtained because the maximum value of Ṽ is
always less than H = η and that ‖θts,a‖ + H ≥ m because we are analyzing state-action pairs
that are in K.

We can now safely de�ne our maximum di�erence at iteration i+1 as the worst case: ∆i+1 =

max(∆
(/∈K)
i+1 ,∆

(∈K)
i+1 ) = η2

m + γ∆i. By applying this equation repeatedly with ∆0 = 0, because

V bolt

0 (s, bt) = ṼAt
0 (s, b) = 0, we obtain the desired result.

B BEB Description and Analysis

B.1 Bayesian Exploration Bonus

The Bayesian Exploration Bonus algorithm (beb) consists in solving at each time step t an MDP
generated by the current expected model with a modi�ed reward function depending on the
current belief. Let R(s, a, s′) be the given reward function and bt the belief state at time t, then
beb performs value iteration as follows:

V beb

i (s, bt)

= max
a

∑
s′

T (s, a, s′, bt)
[
R̂(s, a, s′, bt) + γV beb

i−1 (s′, bt)
]

with R̂(s, a, s′, bt) = R(s, a, s′) +
β

1 + ‖θs,a‖
,

where T = EM[µ | bt] is the expected model of bt, i.e., T (s, a, s′, bt) = E[Pr(s′|s, a)|bt] =
θs,a(s

′)
‖θs,a‖ ,

and β a parameter that controls the optimism of the algorithm. Please note that beb's value
iteration neglects the evolution of bt, so at each time step t the algorithm solves an MDP with
�xed transition and reward functions. If β ≥ 2H2, this algorithm is always optimistic compared
to the optimal Bayesian value function for the undiscounted reward case, as stated in Lemma 4
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of [Kolter and Ng, 2009]. Moreover, we can easily extend this result to the discounted reward
case, where the optimism is maintained for β ≥ 2H(1− γH)/(1− γ). However, for simplicity we
will choose for the analysis β = 2H2 ≥ 2H(1− γH)/(1− γ).

B.2 Analysis of BEB

Theorem B.1 (beb is PAC-BAMDP). Let At denote the policy followed by beb at time t with
β = 2H2. Let also st and bt be the corresponding state and belief at that time. Then, with
probability at least 1− δ, beb is ε-close to the optimal Bayesian policy

VAt(st, bt) ≥ V∗(st, bt)− ε

for all but Õ
(
|S||A|β2

ε2(1−γ)2

)
= Õ

(
|S||A|H4

ε2(1−γ)2

)
time steps.

Let ṼAt

H (st, bt) be the evaluation of the beb policy At at time t using a mixed value function.

In this case, R̃(s, a, s′) = R̂(s, a, s′, bt) the reward with bonus, and T̃ (s, a, s′) = T (s, a, s′, bt) the
expected transition model of bt.

Lemma B.2 (beb Mixed Bound). The di�erence between the value obtained by beb and the
value obtained by the mixed value function under the policy generated by beb, At, with β = 2H2

is bounded by

V beb

H (st, bt)− ṼAt

H (st, bt) ≤
2β(1− γH)

m(1− γ)
. (11)

Proof. Following the same induction technique as for the proof of Lemma 5.3, let us assume that
the di�erence between two evaluations at iteration i is bounded by a maximum quantity ∆i.
Again, we can divide the di�erence ∆i+1 in two cases. The �rst case is when (s, a) /∈ K, and, by
the same arguments as in the proof of Lemma B.2, we have that

∆
(/∈K)
i+1 ≤ γ∆i.
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The second case is when (s, a) ∈ K, where the probabilities and rewards di�er,

∆
(∈K)
i+1 = V beb

i+1 (s, bt)− ṼAt
i+1(s, b)

=
∑
s′

T (s, a, s′, bt)(R̂(s, a, s′, bt) + γV beb

i (s, bt))

−
∑
s′

T (s, a, s′, b)(R(s, a, s′) + γṼAt
i (s, b′))

≤
∑
s′

T (s, a, s′, bt)

(
R̂(s, a, s′, bt) + γV beb

i (s, bt)

−R(s, a, s′)− γṼAt
i (s, b′)

)
+
∑
s′

|T (s, a, s′, bt)− T (s, a, s′, b)| ×

(R(s, a, s′) + γṼAt
i (s, b′))

≤
∑
s′

[
T (s, a, s′, bt)

(
β

1 + ‖θts,a‖
+ γ∆i

)
+

(1− γi)
(1− γ)

∑
s′

|T (s, a, s′, bt)− T (s, a, s′, b)|

]

≤ β

(1 + ‖θts,a‖)
+ γ∆i +

2H(1− γi)
(1− γ)(1 + ‖θts,a‖)

≤ 2β

m
+ γ∆i.

Here, the third step is due to the property∑
x

p(x)f(x)−
∑

q(x)g(x)

≤
∑
x

p(x)(f(x)− g(x)) +
∑
x

|p(x)− q(x)|g(x),

which holds if all functions are positive. The next step is obtained by using the de�nitions of R̂
and ∆i in the left term, and considering the maximum possible value of R(s, a, s′) + γṼAt

i (s, b′).
The �fth step is obtained by Lemma 3 of [Kolter and Ng, 2009], where the sum of the absolute
di�erences

∑′
s |T (s, a, s′, bt)− T (s, a, s′, b)| ≤ 2H

(1+‖θt
s,a‖)

. The last step is due to the facts that

(1− γi)/(1− γ) ≤ H, and that 1 + ‖θts,a‖ ≥ m because we are analyzing state-action pairs that
are in K.

We can now safely de�ne our maximum di�erence at iteration i+1 as the worst case: ∆i+1 =

max(∆
(/∈K)
i+1 ,∆

(∈K)
i+1 ) = 2β

m +γ∆i. By applying this equation repeatedly with the base step ∆0 = 0,

because V beb

0 (s, bt) = ṼAt
0 (s, b) = 0, we obtain the desired result.

With these lemmas, now we are ready to prove Theorem B.1, which shows that beb is
PAC-BAMDP in the discounted in�nite horizon case (without modifying the algorithm to stop
monitoring beliefs as in [Kolter and Ng, 2009]).

Proof of Theorem B.1. Consider the induced inequality (Lemma 5.2) with At the policy gener-
ated by beb at time t, and Ṽ a mixed value function using beb's update when (s, a) /∈ K. As

Inria
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beb's bonus is always decreasing, we can safely de�ne R̃max = 2β (> 1 + β). Lemma B.2 is
de�ned for a computing horizon H, so in order to use this result we �rst need to notice that a
truncated summation is always smaller than the in�nite summation. Starting from these facts,
and assuming normalized rewards, we have that

VAt(st, bt) ≥ VAt

H (st, bt)

≥ ṼAt

H (st, bt)−
2β(1− γH)

(1− γ)
Pr(AK)

≥ V beb

H (st, bt)−
2β(1− γH)

m(1− γ)
− 2β(1− γH)

(1− γ)
Pr(AK)

≥ V∗H(st, bt)−
2β(1− γH)

m(1− γ)
− 2β(1− γH)

(1− γ)
Pr(AK)

≥ V∗(st, bt) −
2β(1− γH)

m(1− γ)
− 2β(1− γH)

(1− γ)
Pr(AK)

− γH

(1− γ)

where the 3rd step is due to Lemma B.2 (accuracy), the 4th step to Lemma 4 of [Kolter and
Ng, 2009] (optimism), and the last step to Lemma 2 of [Kearns and Singh, 1998] (error bound
between �nite and in�nite horizon computation)8.

Here, the error between V∗(st, bt) and VAt(st, bt) depends on H,β,m and γ, besides the

probability Pr(AK). To simplify the analysis, let us assume that γH

(1−γ) = ε
2 and �x m = 8β

ε(1−γ) .

Now we will consider two cases for Pr(AK). First suppose that Pr(AK) > 1
m = ε(1−γ)

8β , then

by the Hoe�ding and union bounds [Valiant, 1984], this occurs in no more than

O

(
|S||A|m
Pr(AK)

log
|S||A|
δ

)
= O

(
|S||A|β2

ε2(1− γ)2
log
|S||A|
δ

)
time steps with probability 1− δ. By using the complexity notation that neglects logarithms we
have the desired sample complexity of the theorem. This bound is derived from the fact that, if
the event AK occurs more than |S||A|m times, then all the state-action pairs are known and we
will never escape from K anymore.

The second case is when Pr(AK) ≤ 1
m , where

VAt(st, bt) ≥ V∗(st, bt)−
2ε(1− γH)

8
− 2ε(1− γH)

8
− ε

2

≥ V∗(st, bt)−
ε

4
− ε

4
− ε

2
= V∗(st, bt)− ε

which veri�es the proposed theorem.

8Lemma 2 of [Kearns and Singh, 1998] is presented for normal MDPs, but its applicability to BAMDPs is
straightforward by using the same arguments.
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