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ABSTRACT
The agent approach, as seen by [9], intends to design “intelligent”
behaviors. Yet, Reinforcement Learning (RL) methods often fail
when confronted with complex tasks. We are therefore trying to
develop a methodology for the automated design of agents (in the
framework of Markov Decision Processes) in the case where the
global task can be decomposed into simpler -possibly concurrent-
sub-tasks. Our main idea is to automatically combine basic behav-
iors using RL methods. This led us to propose two complemen-
tary mechanisms presented in the current paper. The first mecha-
nism builds a global policy using a weighted combination of ba-
sic policies (which are reusable), the weights being learned by the
agent (using Simulated Annealing in our case). An agent designed
this way is highly scalable as, without further refinement of the
global behavior, it can automatically combine several instances of
the same basic behavior to take into account concurrent occurences
of the same subtask. The second mechanism aims at creatingnew
basic behaviors for combination. It is based on an incremental
learning method that builds on the approximate solution obtained
through the combination of older behaviors.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artificial Intelli-
gence—Intelligent Agents; I.2.6 [Computing Methodologies]: Learn-
ing

General Terms
Algorithms, Design, Experimentation

Keywords
reinforcement learning, scalability, adaptation, complex environ-
ments, Markov Decision Processes

1. INTRODUCTION
Our researches aim at automatically designing the behavior of

reactive situatedagents limited to onlylocal perceptions. Rein-
forcement Learning (RL)[11] is a good candidate for this type of
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problem. Nevertheless, as RL algorithms suffer from combinatorial
explosion (as discussed in section 2.1), their use is usually limited
to agents facing only very simple tasks.

Our solution is based on an idea used in the Action Selection
community (see [12] for example): a complex task can often be
solved by a combination of simpler motivations. Figure 1 illustrates
such a situation on the tile world problem: an agent has here to
manage three simple behaviors (the first one intends to avoid a hole,
and the two others to push a tile in the hole).
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Figure 1: A scene with some ob-
jects: the global task is a combina-
tion of sub-tasks
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As suggested by [6] we tried to solve the action-selection prob-
lem using Reinforcement Learning (RL) methods. In previous ex-
periments (detailed in [2]), we provided our agent with basic be-
haviors, which were then weighted and combined into the agent’s
global behavior. The main point was that the weights leading to
the complex behavior arelearned. As such, we derived anadaptive
(through learning relations between behaviors) andscalableagent
(working with various world sizes).

Although this previous approach gave encouraging results, it also
stressed out the importance of using the right basic behaviors. The
aim of this present paper is thus to propose a method for automat-
ically generating the right set of basic behaviors to use. The only
requirements for the agent is to be able to perceive objects and dis-
tinguish between specific reward signals. A notable point is that we
use the former combination of behaviors to help learning new basic
ones, which can then be re-used as new basic behaviors. This can
be seen as a first step towards incremental meta-learning.

The following section develops in more details the context of
our work and presents previous works which inspired us. Then,
in Section 3, we present the behaviors’ combination introduced in
[2] along with the main results obtained. This will lead to the in-
cremental learning proposed in Section 4 to improve our method.
Section 4.3 is devoted to an experimental validation of our work on
the classical tile-world problem. A discussion and a conclusion end
this paper.



2. FRAMEWORK
This section introduces the use of Reinforcement Learning in our

context. Then an analysis of previous works shows their limitations
and help us outline the solution we propose.

2.1 Reinforcement Learning and Limitations
Reinforcement Learning (RL) methods are very appealing ways

to have agents learn optimal reactive behaviors in uncertain worlds,
as only a scalar feedback from the system to the agents is required.
But the convergence of RL algorithms (likeQ-Learningor TD(λ))
has only been proven for Markov Decision Processes (MDP).

Definition 1. A MDP is defined as a〈S,A, T, r〉 tuple where:

• S is a finite set of states.

• A is a finite set of actions.

• T (s, a, s′) is the transition function and gives the probability
of ending in states′ when actiona is chosen with the system
in states.

• r(s, a) is then the reward generated by the environment after
each transition.

The problem is then to find the optimal mappingπ(s, a) between
states and actions so as to maximize the reward received over time,
usually expressed as a utility functionQ(s, a) =

∑∞
t=0 γ

t(rt|s0 =
s, a0 = a). Such a mapping is called apolicy and, for a MDP, it is
well known that an optimaldeterministicpolicy exists [11].

As our agent only has a partial view of its environment, the
learning task we are confronted with belongs to the more general
class of Partially Observed Markov Decision Processes (POMDP),
where the agent has only access to an observation of the current
state. Nevertheless, the assumption that the agent faces a Marko-
vian problem when only considering the observations is often made.
This is truly a weak approximation and the policies learned this way
are clearly sub-optimal as explained by [10]. In fact, it is better in
that case to look forstochasticpolicies, using gradient descent al-
gorithms for example (like in [1] or [8]).

Even under the Markovian approximation, the problem of com-
binatorial explosion remains. The number of an agent’s possible
observations can still be huge, even though the locality of its per-
ceptions helps reducing it. Our combination algorithm takes advan-
tage of the possibility to decompose the task in subtasks to address
this specific problem.

2.2 Previous and Similar Works
A common idea to overcome the curse of dimensionality is to

decompose the Markov Decision Process in some way. A taxon-
omy of MDP decompositions is proposed for example by Wang
and Mahadevan in [13], in which our approach stands in theaction
decompositionclass. But to our knowledge, there is up to now no
satisfying solution to this class of problem in the learning frame-
work.

2.2.1 Why We Need A New Algorithm
If not only considering reinforcement learning, the subject of

Action-Selection –defined by [6] as “the problem of choice be-
tween conflicting and heterogeneous goals”– fits more appropri-
ately to our approach, since it intends to consider some complex
problems as a compromise between simpler ones (eventually at the
expense of optimality properties). The agent being given stochas-
tic policies for each of its basic behaviors, the hard point is then
to combine these basic policies and derive a global policy. At this
point, two major directions can be taken.

Winner-Take-All
A first option, as in the work of Humphrys [6], is to select one
particular behavior as the one to be privileged for the immediate
perception of the agent. To do this, the actions desired by each
behavior and information about the utility of these actions are fed
into a controller which determines the “leader” behavior. Many
strategies for the controller have been studied by Humphrys, all
based on hisW-Learningframework. It is grounded on behaviors
(agents) competing to take the decision, each agent learning for
each state the value of being the winner. Even if a goal of this
work was to have agents get rid of any global reward function, it
requires an adaptation of the local reward functions used (through a
Genetic Algorithm in which the global payoff reappears). As such,
this adaptation is very specific to the global task.

Free-Flow
Another option is to combine the basic policies into a new policy.
This option is more appealing than the preceding one for several
reasons. In some cases, as shown on figure 2, the best action to take
is not given by any sub-policy but could emerge from a combined
policy, especially if the sub-policies are deterministic. Besides, this
option is less task-specific in the sense that we can re-use the basic
behaviors for different complex tasks as we only need to adjust the
weights of the behaviors and not the behaviors themselves.
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Figure 2: No leading behavior. The action desired by the basic
push behaviors is either to go west{hole O3, tile O1} or east
{hole O2, tile O1}, whereas the optimal global action is to go
south.

Calculating a new probability distribution over actions this way
can be seen as afree-flow hierarchyas defined in [12]. One ar-
gument for prefering such a free-flow hierarchy to a hierarchical
decision structure is that the later winner-take-all algorithm will be
subject to its deterministic aspect, not being able to make compro-
mises.

To cite an example of such an approach, the work from Dixon et
al [3] briefly describes a method for combining sub-policies where
the probability distribution on the actions for each sub-task are lin-
early combined. A simple weight is associated to each sub-policy,
and the problem is then to choose the right weights. As this method
only intended to control their exploration, no particular attention
was given on how to choose these weights. This is exactly the prob-
lem we will address in our algorithm bylearning these weights, as
explained in Section 3.4.3.

2.2.2 Scalability is Desired
We lastly want to point out that existing methods do not offer

scalability. When a basic behavior can be applied more than once
in a given situation (for example, two holes are to be avoided),
this must be specifieda priori in the algorithms cited before. This
specific point is also dealt with in our algorithm. To that end, we
learn one weight for each “generic” basic behavior (such asavoid
hole). Thus, even if many instances of the same generic behavior
can be applied in a given situation (several holes to avoid), they



will be combined using only onecommonweight. More details are
given in Sections 3.2 and 3.4.3.

3. PROPOSITION
A key idea of our approach is that a complex behavior is ob-

tained as an answer to many basic motivations. Moreover, simple
basic behaviors can be easily associated to each of these motiva-
tions. Given these two points, we make the hypothesis that, in
many cases, a good solution of the complete problem can be re-
constructed using the basic behaviors. In this section, we will de-
scribe how a scene can be analysed through a decomposition in
basic behaviors, give more details on these basic behaviors, and fi-
nally propose a method to automatically build a complex behavior
by learning1.

3.1 Some Notations
An agent perceives a scene –the accessible part of its environment–

as anobservation, which is composed of a set of percepts. Such an
observation can be broken intoconfigurations (i.e: subsets of the
observation), and a percept can belong to different configurations.
As each percept is characterized by a type (for example a hole, a
tile or a door in our case), we also define the very important notion
of a type of configuration which is described by a set of types of
percepts (i.e.{hole, tile}). With these notations, the next section
shows how to analyse a scene.

3.2 Scene Decomposition by the Agent
The starting point of the behaviors’ combination is that an agent

confronted to a complex situation must decompose it into simpler
known configurations in ascalableway. To this end, the first step is
to look for “familiar” and “useful” configurations in the perceived
situation. As any subset of percepts of the agent’s current observa-
tion can be a configuration associated to a behavior, an agent will
only consider configurations which belong to at least one type of
configuration associated to one existing basic behavior.

For an observationo, let us callU(o) the set of these “useful”
configurations. Then, for each useful configurationc of U(o) we
will note B(c) the set of basic behaviors associated to this config-
uration. Similarly,C(b, o) will be the set of useful configurations
in observationo associated to a given basic behaviorb. Scalability
derives mainly from the fact that one basic behavior (resp. con-
figuration) can be associated to more than one configuration (resp.
basic behavior). This is all the more interesting that, due to the lo-
cality of perceptions, the number of useful configurations changes.

To illustrate this on the tile-world scene presented on figure 1,
the agent’s perceptions concern here objectsO1,O2 andO3. With
two possible behaviors:avoiding the holes (ba) associated to the
type of configuration{hole} andpushing blocs in those holes (bp)
associated to{hole, tile}, the agent has to take into account the
three following (behavior, configuration) pairs: (ba, {O2}),
(bp, {O2, O1}) and(bp, {O2, O3}).

Note that, among the hard points of the method we propose, a
combinatorial explosion can be feared as far as the search for useful
configurations is concerned. In practice, the number of objects seen
remains usually small, as only local perception should be used.

We will now see what knowledge of the basic behaviors is re-
quired so that they may be recombined efficiently.

3.3 Basic Behaviors

Definition 2. A basic behavioris defined by:
1These basic behaviors could be usefully collected into a library
which would be reusable in other situations.

1. a type of configuration,

2. a stochastic decision policy learned by reinforcement and

3. the utility of this policy.

For a basic behaviorb, we will noteCT (b) its type of configura-
tion. This notion of type of configuration is essential for the scala-
bility of our approach, since it allows generic basic behaviors to be
instantiated several times in the same observation. Then, the policy
Pb of the behavior is a mapping from configurationsc of CT (b) to
probability distributions over actions:Pb : CT (b) × A −→ [0, 1].
Note that two different configurations can belong to the same type
of configuration, so the agent can deal with them by using the same
behavior (i.e. the agent can try to avoid two holes at the same time).

The knowledge of this policy for each basic behavior is not suf-
ficient to take efficient decisions when the agent has to deal with
concurrent motivations. To weight them in some way -giving a
higher priority to danger avoidance or to important reward in sight-
we suggest to evaluate a situation by using Q-values, as they will
give us the expectation of discounted reward (i.e. the utility) of
each configuration-action pair. ThisQ-values can be learned while
also learning the policy of a basic behavior2.

To sum it up, for each behaviorb are calculated two tables –both
defined on the same setCT (b)×A– for an upcoming use:

• Pb(c, a): the probability to choose actionawhile seeing con-
figurationc, and

• Qb(c, a): the expected discounted reward when choosing ac-
tion a for the configurationc.

Before considering the way we tried to combine these basic be-
haviors in a complex one, please note that we have not yet discussed
the way to find the right basic behaviors to use.

3.4 Basic Behaviors Combination

3.4.1 General Formula
The next step is to use these useful configurations to choose an

action. There are several ways to make this choice (voting, biding,
random choice) but we decided to compute a policyP(o, a) giving
a probability distribution over actionsa for each possible observa-
tion o. As written previously, we chose to define this policy as a
recombination of basic behaviors using theirP - andQ-tables. To
be more precise, we try to define a linear combination of theP
policies. The general formula is thus:

P(o, a) =
1

K

∑
c∈U(o)

∑
b∈B(c)

w(b, c, a).Pb(c, a)

wherew(b, c, a) are some positive functions of theQ-values called
weightsandK is a normalizing factor (

∑
a P(o, a) = 1). The

action is then chosen according to theP distribution.
How to calculateP optimally using theQ- andP -tables is sub-

ject to discussion. Only the formula that gave us most satisfaction
is presented in this paper.

3.4.2 Chosen formula
We chosew to depend on theQ-values. A first remark is that the

absolute value ofQ-values will be used in a way to give the same
importance to future earnings (Q > 0) and immediate danger (Q <
0). If theseQ-values seem to give good comparisons between state-
action pairs of a single behavior, the relative importance of different
2This subject is discussed further in section 4.2.2



Q-tables can be efficiently corrected by learning a parameterθb for
each behavior (appearing as a factoreθb ).

For a given observation-action pair(o, a), the idea is to consider
that each behavior tells that its probabilityPb(c, a) is the right one
with a force of conviction|eθb ∗Qb(c, a)| 3. This leads to compute
the mean of thePb(c, a) probabilities weighted by|eθb ∗Qb(c, a)|
(for each current behavior):

R(o, a) =
1

k(o,a)

∑
c∈U(o)

∑
b∈B(c)

eθb .|Qb(c, a)|.Pb(c, a)

(k(o,a) =
∑
c∈U(o)

∑
b∈B(c)

eθb .|Qb(c, a)|)

After normalizing and putting in commoneθb for all instances of a
type of behavior, the final version is rewritten as:

P(o, a) =
1

K
.

1

k(o,a)

∑
b∈B

eθb︸︷︷︸
to learn


∑

c∈C(b,o)

|Qb(c, a)|.Pb(c, a)

︸ ︷︷ ︸
already known


3.4.3 Learning and Scalability

Each set ofθ parameters defines a global complex policy for the
agent. Tuning the weights of the formula is like learning an opti-
mal parameterized policy in the framework of reinforcement learn-
ing. To that end, we have simply used a straightforward simulated
annealing algorithm with a geometric decrease of the temperature
(only a few parameters have to be learned: one for each behavior).

The scalability of the process derives also from the fact that only
oneθb coefficient needs to be defined for each behavior. Even when
many configurations are associated to one behavior, the complex
policy can be computed without further learning or refining of the
parameters.

In the next section, we present an example showing an applica-
tion of our methodology on the tile-world problem.

3.5 Experimental results
Here will not be presented completely detailed experiments of

the methodology just described. Such information may be found by
interested readers in [2]. We will rather insist on some remarkable
results that conducted further developments.

3.5.1 The Tile-World

Problem
The tile-world is a grid domain in which a cell may contain a hole,
a tile or an agent. In the complete problem, the agent (we consider
only one agent) has to push tiles in holes as often as possible, while
avoiding to go itself in one of those holes.

To give some details about the simulation, the agent can go freely
in a hole (and also go out), but will get a negative reward doing so.
Moreover, when a tile is pushed in a hole, both the tile and the
hole disappear and reappear anywhere on the grid. Finally, to avoid
some blocking situations, holes and tiles cannot be on cells of the
grid’s border.

In this complete complex problem, many tiles and holes must
be handled. As it appears in previous examples, a simple decom-
position of the problem in basic behaviors can be made intuitively:
[avoid hole] (ba, {hole}) and [push tile in hole]
(bp, {hole, tile}), as shown on figure 1.
3With a single non-zero rewardr, theQ-table is proportional tor.

Agent’s Skills
In these experiments, the agent has always all other objects of the
environment in sight. The principle of locality is nevertheless present
in the fact that perceptions are unprecise. For any objectO in the
scene, the agent’s perceptionof O gives:

• near( O) : tells if objectO is in the 9-cells square centered
on the agent(true|false) ,

• direction(O): gives the object’s direction
(N-NE-E-SE-S-SW-W-NW) .

The only actionsavailable for an agent are to move one cell
North, South, East or West (it cannot ask to stay on a cell). And
to conclude, the rewardgiven is+1 when a tile falls in a hole,−3
when the agent goes in a hole, and0 otherwise.

3.5.2 Performance Evaluation
The best way to appreciate our approach is to compare the aver-

age reward obtained in various observation-spaces with the results
of specifically learned optimal policies (tabula rasa). In our first at-
tempts, the direct stochastic policy search employed (OLPOMDP
described in [1]) stayed most of the time in local optima, only learn-
ing how to avoid holes whereas the agent is expected to also push
tiles in the holes.

Even if the best accessible references are policies obtained through
an adapted BolzmannQ-learning, experimental results (first four
lines of table 1) demonstrate that the basic behaviors’ combination
can be efficient and that, moreover, the weights learned in sim-
ple situations (with two tiles and two holes for example) may be
reused in more complex cases without learning them further (last
three lines).

Table 1: Comparative table between policies obtained tabula
rasa and by recombination

objects reward(for 10.000 steps)
#tiles+holes tabula rasa c(1) c(2)

1 + 1 1380 1017 842
2 + 1 300 302 493
1 + 2 ∼ 0 405 259
2 + 2 200 283 411
3 + 2 - 166 134
2 + 3 - 262 247
3 + 3 - 179 129

• c(1): our combination of policies

• c(2): the same combination with noise added in the decisions
of the basic behaviors

Note: the difference of efficiency between combination c(1) and
results in table 2 comes from basic behaviors whose learning has
been stopped early in this first experiments (and is thus less accu-
rate).

3.5.3 A Particular Problem
To go further in analysing these experiments, the complex be-

haviors obtained have simply been observed while running.
As expected, the agent appears to take pretty good decisions

most of the time, and predictably hesitates when having a symetric
choice between two tiles to push in a hole. So, if we stopped at that
point, the agent should have near-optimal performances, which is
not the case.



In fact, some particular situations emphasize a critical weakness
of our approach. Figures 2 and 3 illustrate this point. In the later
figure, none of three current(behavior, configuration) pairs
suggest the right action to choose: both “push” behaviors are for
going west and the “avoid hole” one has no influence, whereas a
move to the north would be appropriate. This blocking is only re-
solved thanks to the stochastic aspect of the policies, which some-
times brings by chance to choose unfavoured actions.

O2
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Figure 3: Two behaviors making a wrong choice. Both basic
push behaviors lead the combination method to go west, whereas
the optimal global action is to go north (considering that there is a
wall on the west side).

These particular problems –where a linear combination of poli-
cies is far from being the solution– are responsible for the low
agent’s efficiency, since most of the time is spent facing such block-
ings, whereas they only represent a tiny part of the possible obser-
vations. Next section presents a possible solution to overcome this
difficulty and to potentially have a much more automatic agent’s
designing system.

4. INCREMENTAL APPROACH
The study of the behaviors’ combination which has just been

presented confirmed that the resulting policy was close to a good
policy, even if suffering from various drawbacks. This induced us
in the idea that such a policy would be a good initialization for a
complete direct policy search, and consequently for computing a
new behavior. This section will point out in more depth the reasons
of this new developement, show the principle it is based on, and
finally comment its practical efficiency on the tile-world testbed.

4.1 Motivation
The main reason motivating a new algorithm is to overcome

“non-linear” situations. As explained in section 3.5.3 –and as il-
lustrated on figure 3– some configuration cannot be solved by a
linear combination of basic behavior. These configurations require
taking into account more element of the perception to be handled.
Two solutions were studied:

• Learning specific rules to correct just the critic situations
as in [5]. But in fact, for one situation, many rules dealing
with probable preceding situations must be learned to avoid
oscillations. And it is not clear how rules could be combined
with other behaviors. So we opted for a second solution:

• Learning new complete basic behaviors with more com-
plexe types of configuration(involving two tiles and one
hole in the case of figure 3). Unfortunately, the experiments
quickly described in section 3.5.2 showed that learning a
complete behavior from scratch becomes hard even with an
apparently reasonable number of observations. This would
precisely happen if the agent tried to directly learn a “push”
behavior with two tiles and one hole as required for figure 3.

Our idea is then to ease the learning of such new behaviors by
starting from the combination policy learned and increasing it through
gradient learning. This is a kind of bootstrapping process.

4.2 Description
We present here the general scheme of our incremental approach

that aims at designing new basic behaviors.

4.2.1 Principle
To define the new behavior that is to be learned, we must explicit

its type of configurationCT and a global rewardR acting as a mo-
tivation. Then the following three consecutive phases compose the
algorithm, as also illustrated on figure 4 (the second phase does not
appear explicitly):

1. A set of basic behaviorsBB = {bb1, bb2 . . . bbn} being cho-
sen and a new “goal” being considered (given byR), the
algorithm presented in section 3 is executed to adapt a com-
bination behavior by learning optimal weight parameters.

2. The combined behavior obtained by the optimal combina-
tion is converted into a starting behavior〈CT , π,Q〉. π is de-
scribed as a parametrized stochastic policy suitable for gra-
dient learning andQ is initially set to0.

3. π serves as a starting policy to learn a complete behavior
b′ (with an optimized policyπ′) by a gradient descent (here,
the OLPOMDP algorithm from [1]), and simultaneously esti-
mating the relatedQ-values on the observation-action space.

...

(combination)

(RL)

����� ����� �����

�

�	��
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Figure 4: Principle of the incremental method. The proposed
algorithm combines basic behaviorsbb1, bb2 . . . bbn (learns the
weighting parameters), obtains a policyπ, and uses it as a root of
a new learning phase bringing to a new behaviorb′ (with improved
policy π′).

To complete this general description of the algorithm, we de-
velop some aspects below.

4.2.2 Complements

Q-table Estimation
The objective also consists in learning aQ-table estimation. With
the choice of the classical discounted reward (among various pos-
sible definitions of theQ-values), and taking into account the non-
markovianness of our framework, the updating formula used sim-
ply becomes:

Q(o, a)← (1−α)∗Q(o, a) +α∗

(
r + γ

∑
b∈A

[π(b) ∗Q(o′, b)]

)
This subject does not require here more details. But readers more
largely interested in “learning without state-estimation in POMDPs”
are encouraged to refer to [10].



What About Rewards ?
Another aspect to discuss is how to manage rewards for new behav-
iors. The tile-world problem considered in our experiments does
not satisfy the hypothesis made in section 4.2.1 of a single accessi-
ble payoff. The two basic behaviors given as examples correspond
to two different causes of rewards: a negative one when falling in a
hole, and a positive one if a tile is pushed in a hole.

When designing an agent, being able to distinguish sources of
reinforcement seems a reasonable assumption. It of course depends
on the point of view adopted in its conception. But in suitable cases,
we suggest to introduce them on purpose astypes of reward(noted
RT ). Technically, it allows the selection of the agent’s goals when
learning a new behavior.

This ability to separate basic behaviors according to types of re-
ward has a twofold interest:

• On the one hand it permits to sharpen the “classification” of
these basic behaviors, eventually using them in various ways
whether they act as inhibiting or incitating motivations (for
example).

• On the other hand, reinforcement learning algorithms are
prone to fall in local optima. This could sometimes be avoided
by only considering one goal out of many.

The former argument will not be applied in this paper, as it mainly
concerns perspectives on better combinations. On the contrary, the
later argument will bring direct improvements to the methodology,
as shown by experiments on the tile-world.

As written above, this idea may not fit to all situations, but should
be taken into account if possible. Let us finally mention that dealing
with type of reward was of not useful when only combining basic
behaviors , since policies andQ-tables sufficed. The question arose
when dealing with the initialization of new basic behaviors.

4.3 Conducted Experiments
To assess the method described in this paper, we conducted ex-

periments on the tile-world problem. After precising the methodol-
ogy applied, we exhibit and comment the results of our simulations.

4.3.1 Methodology
In this paper, three ways of obtaining policies dedicated to a

given problem have been tested:

1. Tabula rasa: learns this policy from scratch through a classi-
cal direct policy search.

2. By combination: learns the parameters of a basic behaviors’
combination as described in section 3.

3. Incrementally: uses the incremental approach.

The first manner is the reference, even if it may not be success-
ful (because of difficulties to converge, often due to local optima).
The two others relate to the two main steps of our algorithm, and
are both of interest in our framework. On the table 2 that lists the
results of the experiments, the last three columns are dedicated to
these three different methods.

Table 2 presents the simulation conditions we used in its first two
columns. In one column appears the number of tiles and holes of
the simulations performed, and in the other the type of rewardRT
involved. A positive (respectively negative) reward –when a tile is
pushed in a box (resp. when going in a hole)– is symbolized by a
’+’ (resp. ’-’). When both rewards are combined, the ’+-’ symbol
is employed.

Lastly, when trying to obtain a new policy through a combina-
tion, the set of basic behaviors to use has to be defined. Here, the
tests have been conducted in the order given by the table and, begin
with an empty set of BBs, new behaviors considered as basic (in
bold font in the table) have been progressively added.

4.3.2 Results and Analysis
Two types of information can be found in the table 2 that sums

up our tests:

• the average reward for10.000 simulation steps, and

• the approximate number of series of10.000 simulation steps
before reaching the best policy (in parenthesis when avail-
able).

But before considering the table, do not forget that the first zeros
concern an agent that only expect to avoid holes, and thus does not
get any positive payoff when pushing a tile in a hole.

Table 2: Comparative table between policies obtained tabula
rasa, by recombination and through the incremental approach

situation reward(for 10.000 steps)
#tiles+holes RT tabula rasa comb. inc.

0 + 1 - 0 - -
0 + 2 - 0 0 0
1 + 1 + 1380 (20) 1250 1380 (20)
1 + 1 +- 150 (300) 1250 1380 (20)
1 + 2 + 1650 950 1660 (20)
1 + 2 +- 0 380 0
2 + 1 + 1230 (250) 30 1280 (40)
2 + 1 +- 0 30 1250 (40)
2 + 2 + 1250 (200) 250 1260 (80)
2 + 2 +- 0 150 0

• comb.: combination of policies

• inc.: incremental approach

Falling in local optima
If only considering the data of the “tabula rasa” column, the phe-
nomenon of classical learning falling in local optima when both re-
wards are in competition (’+-’) distinctly appears. On any of these
’+-’ lines, the behaviors’ combination always gives better results
and allows pushing a tile in a hole more or less often. This returns
no impressive average rewards, but produces as expected a good
starting policy for our incremental learning.

Only the situation considering two holes and one tile leads to a
failure, probably because of a learning parameter that does not give
enough space to exploration. The fact that the agent goes generally
less than ten times in a hole when just learning to avoid it also
suggests this hypothesis, which would require an in depth analysis.

Computation time
One annoying point about the behaviors’ combination is that its
optimization –here through simulated annealing– requires making
good estimations of the average reward gained for a given set of pa-
rameters. Nevertheless, in our situation, the cost of this optimiza-
tion phase was negligible compared to a complete policy learning
by a gradient descent. This is all the more important that the obser-
vation space in this later algorithm is here approximately multiplied



by 16 for each new object considered (we in fact reduce this size
thanks to symetries of the problem).

In all experiments, the adapting combination phase always lasted
400 ∗ 10.000 simulation steps (even if the optimum was reached
early), i.e. less than a minute on our computer. The number of
simulation steps to learn complete policies –either tabula rasa or
incrementally– was also fixed, but to300 ∗ 10.000 only (these two
duration have not been tuned), such a phase took less than a minute
for 1 object, about5 minutes for2 objects and about1 hour for3.

Considering that optimizing a combination is far from being time-
expansive, it is of real importance to notice that learning incremen-
tally is much faster (in term of simulation steps, and thus in com-
putation time) than from scratch.

Random behavior
As explained in 3.5.3, the so called “blocking situations” induce
most of the loss in efficiency in the basic behaviors’ combination.
Nevertheless, it is well known that adding some noise in the deci-
sion mechanism –a random action being picked from time to time–
is a good way to get rid of these blockings. It brought the idea to
add some chance in our algorithm.

This has been done through an artificialrandombasic behavior,
which has 1- no observation, 2- a uniform probability distribution
over actions and 3- the same positiveQ-value for all actions (a
null value would make the behavior useless). With this, and as
the complementary noise only works up to a point, the weighted
combination modulates this noise by itself.

With the exception of the new random basic behavior, other ex-
periments have been conducted in the same conditions as in table 2.
As expected, they confirmed an increase in efficiency when using
two tiles and one hole (and at least the positive reward). This is in
aggreement with the former experiments in [2] on the combination,
where the used basic behaviors were a little less deterministic.

To conclude
To only speak about the incremental learning, these experiments
succesfully demonstrated the benefits of this approach. The main
controversial point to retain is that the “low computation time” ar-
gument holds only if the simulation of the environment itself is not
a time-consuming algorithm (if considering a simulation as in our
case).

5. DISCUSSION
We propose to first discourse about the combination before in-

sisting on specific aspects and then on possibilities of the incre-
mental learning.

5.1 Combination of Basic Behaviors

Optimality ?
The combination method is clearly not a sure way of reaching op-
timality. One of the reasons is that only a subclass of the possi-
ble policies can be explored. Furthermore, the simulated anneal-
ing which learns the weights of the global behavior converges only
to local optima. The lack of optimality is the price to pay for a
tractable algorithm.

Improved Combination
The really reduced number of parameters to learn may suggest the
idea of refining the level of combination. This could be achieved
thanks to weights depending not only on the behaviors, but also on
the actions, observations... The drawbacks of this approach lies in

a bigger number of parameters to learn. It could even bring toward
learning a completely new policy –as done in the incremental step–
whereas scalability and genericity issues are our main concern in
this part of the work.

Another possibility for a finer control of the global behavior
would be to make use of the sign of the utility of a basic policy.
This way, a clear distinction could be made between basic “neg-
ative” behaviors (forbidden actions) and “positive” behaviors that
could just promote actions. This would require altering the policy
combination function but without bringing too much task-specific
knowledge into the process.

For a Greater Scalability
Considering the sign of a policy’s utility is a first step toward taking
into account the specificity of the basic behaviors, and eventually
relationships between them. The “additive” nature of our present
combination of behaviors is for example well adapted to additive
environments (where the global utility is the sum of sub-tasks util-
ities). Nevertheless, when it is not the case, too many instances of
the same basic behavior (many tiles) could abusively overweight
other behaviors (avoid hole).

Other experiments that we conducted encourage not considering
only additive computations as the linear combination presented in
the current paper (a simple multiplicative approach gave in fact a
little better results on the tile-world). One advanced solution could
be the use of a “critic” module trying to predict the global utility so
as to adapt the way the behaviors are handled (additive, concurrent,
preemptive...). This perspective is yet another argument in favor of
further work on behaviors’ combination, even though other ideas
have been explored first.

5.2 Incremental Learning
We know that, because of its limited perception, an agent is

confronted to a non-Markovian task. Consequently, the Marko-
vian approximation we use cannot give an optimal result. At any
rate, optimality does not seem a reasonable objective as growing
observation-spaces are faced.

Looking for improving methods that mimic a progressive devel-
opment of the agent’s behavior appears to be more satisfying in
that it gives the agent the ability to be adaptive –and scalable in the
present paper–. Nonetheless, such approaches always require an
exploration phase and, thus, the definition of an arbitrary stopping
criterion. It is not a critical aspect, since most optimisation –and
therefore learning– algorithms needs some parameters to be set.

5.3 Tree-Growth ?
The present work would be complete with an automated choice

of basic behaviors, in the sense that an agent would really require
a minimal human intervention. A first problem would be to decide
whether a new behavior has to go in the basic behaviors’ set (the
“base”) or not. But the discussion about a good criterion remains
open.

Nevertheless, knowing how to explore behaviors to augment the
base stays unanswered. The incremental algorithm suggests to be-
gin with simple behaviors taking only few objects into account, and
then use the basic ones to develop others. This description naturally
induces the growing of a “tree” as exemplified on figure 5.

This principle can be compared to the exhaustive observables of
[4] or the U-trees of [7]. And, in a similar way, difficulties should
be met to stop exploring new leaves at a given depth.
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Figure 5: Behaviors’ exploration tree. There is no precision here
on which behaviors are basic or not. But notice that various com-
binations of types of reward must be tested.

6. CONCLUSION
The general framework of this paper is the automated design of

agents facing a complex task through Reinforcement Learning. Our
work is motivated by the fact that complex tasks are often the com-
position of simpler tasks. In this context, we presented a two step
process that, starting from a set of generic low level behaviors and
a given task, learned to define a complex behavior adapted to the
task. Scalability and genericity are two important aspects of our
method.

The first step of our method builds a complex behavior by learn-
ing how to combine basic behavior. This complex behavior is a lin-
ear combination of the basic behavior and the weights are learned
by simulated annealing. Scalability derives from the fact that sev-
eral instances of the same basic behavior can be combined “on line”
without learning new weights, thanks to what we called “types of
configurations”. Furthermore, as the basic behaviors are not modi-
fied in the process, our method allows for genericity and reusability.
The second step of our method uses a gradient learning algorithm
to refine the policies obtained through combined behaviors. It is
possible to build new behaviors that are more efficient. As shown
on examples, such efficiency could not be obtained while learning
from scratch.

Several experimentations have been made to validate and justify
our approach. The next step, which indeed guided our work, is to
derive an incremental algorithm that, starting from a basic set of
behavior, iteratively builds new behaviors and adds them to its set
of basic behaviors to use. This would be a first step toward a kind of
meta-learning, which would serve both complex task solving and
knowledge transfer. But some hard points, like the detection of
useful “types of configuration” and motivations are still to be more
thoroughly studied.
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