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ABSTRACT problem. Nevertheless, as RL algorithms suffer from combinatorial
The agent approach, as seen by [9], intends to design “intelligent’ explosion (a; discussed in _section 2.1), their use is usually limited
behaviors. Yet, Reinforcement Learning (RL) methods often fail to agentslfa.clng. orE)Iy ve(;y S|mpIgCitasks. din th . lecti
when confronted with complex tasks. We are therefore trying to Our SO ution is as;e on an II e-a use |r: the Alitlon S?tectlon
develop a methodology for the automated design of agents (in the COmMMunity (see [12] for example): a complex task can often be
framework of Markov Decision Processes) in the case where the solved byacqmblnatlon qf simpler motivations. Figure 1illustrates
global task can be decomposed into simpler -possibly concurrent- SUch @ situation on the tile world problem: an agent has here to
sub-tasks. Our main idea is to automatically combine basic behav- manage three simple bEhaV'OFS (f[he first one intends to avoid a hole,
iors using RL methods. This led us to propose two complemen- and the two others to push a tile in the hole).

tary mechanisms presented in the current paper. The first mecha-

nism builds a global policy using a weighted combination of ba- agent 7~ avoid hole "\
sic policies (which are reusable), the weights being learned by the N O O ‘ ®
agent (using Simulated Annealing in our case). An agent designed @
this way is highly scalable as, without further refinement of the ™ — n
global behavior, it can automatically combine several instances of pushtile
the same basic behavior to take into account concurrent occurences ' ‘@ ®
of the same subtask. The second mechanism aims at creating /‘ RN /
basic behaviors for combination. It is based on an incremental hole t”&‘,’ — N
learning method that builds on the approximate solution obtained pushtile
. . . |
through the combination of older behaviors. Figure 1: A scene with some ob + ®
. . . jects: the global task is a combina- ] |(=)
Categories and Subject Descriptors tion of sub-tasks ‘

[.2.11 [Computing Methodologieg: Distributed Artificial Intelli-
gence—ntelligent Agentsl.2.6 [Computing Methodologiegd: Learn- As suggested by [6] we tried to solve the action-selection prob-

ing lem using Reinforcement Learning (RL) methods. In previous ex-
periments (detailed in [2]), we provided our agent with basic be-
General Terms haviors, which were then weighted and combined into the agent’s

global behavior. The main point was that the weights leading to
the complex behavior atearned As such, we derived aadaptive
(through learning relations between behaviors) scalableagent

Algorithms, Design, Experimentation

Keywords (working with various world sizes).

reinforcement learning, scalability, adaptation, complex environ-  Although this previous approach gave encouraging results, it also

ments, Markov Decision Processes stressed out the importance of using the right basic behaviors. The
aim of this present paper is thus to propose a method for automat-

1. INTRODUCTION ically generating the right set of basic behaviors to use. The only

requirements for the agent is to be able to perceive objects and dis-
tinguish between specific reward signals. A notable point is that we
use the former combination of behaviors to help learning new basic
ones, which can then be re-used as new basic behaviors. This can
be seen as a first step towards incremental meta-learning.

The following section develops in more details the context of
Permission to make digital or hard copies of all or part of this work for OUr work and presents previous works which inspired us. Then,
personal or classroom use is granted without fee provided that copies arein Section 3, we present the behaviors’ combination introduced in
not made or distributed for profit or commercial advantage and that copies [2] along with the main results obtained. This will lead to the in-
bear this notice and the full citation on the first page. To copy otherwise, to cremental learning proposed in Section 4 to improve our method.
republish, to post on servers or to redistribute to lists, requires prior specific Section 4.3 is devoted to an experimental validation of our work on

permission and/or a fee. . . . . .
AAMAS'03 July 14—18, 2003, Melbourne, Australia. the classical tile-world problem. A discussion and a conclusion end

Copyright 2003 ACM 1-58113-6683-8/03/000%5.00. this paper.

Our researches aim at automatically designing the behavior of
reactive situatechgents limited to onljocal perceptions Rein-
forcement Learning (RL)[11] is a good candidate for this type of



2. FRAMEWORK Winner-Take-All

This section introduces the use of Reinforcement Learning in our A first option, as in the work of Humphrys [6], is to select one
context. Then an analysis of previous works shows their limitations particular behavior as the one to be privileged for the immediate
and help us outline the solution we propose. perception of the agent. To do this, the actions desired by each

: : T behavior and information about the utility of these actions are fed
2.1 Reinforcement Leammg and Limitations into a controller which determines the t“}Ileader” behavior. Many

Reinforcement Learning (RL) methods are very appealing ways strategies for the controller have been studied by Humphrys, all
to have agents learn optimal reactive behaviors in uncertain worlds, hased on hisV-Learningframework. It is grounded on behaviors
as Only a scalar feedback from the system to the agents is required(agents) Competing to take the decision, each agent |earning for

But the convergence of RL algorithms (likg-Learningor TD())) each state the value of being the winner. Even if a goal of this
has only been proven for Markov Decision Processes (MDP). work was to have agents get rid of any global reward function, it
Definition 1. A MDP is defined as &S, A, T, ) tuple where: requires an ad_apta_tlon o_f the local reward functions used (through a
. o &S ) p Genetic Algorithm in which the global payoff reappears). As such,
e Sis afinite set of states. this adaptation is very specific to the global task.
e Ais afinite set of actions. Free-Flow

e T(s,a,s’) is the transition function and gives the probability ~ Another option is to combine the basic policies into a new policy.

of ending in state’ when actioru is chosen with the system  This option is more appealing than the preceding one for several

in states. reasons. In some cases, as shown on figure 2, the best action to take
is not given by any sub-policy but could emerge from a combined
policy, especially if the sub-policies are deterministic. Besides, this
option is less task-specific in the sense that we can re-use the basic
The problem is then to find the optimal mappings, a) between behaviors for different complex tasks as we only need to adjust the
states and actions so as to maximize the reward received over timeweights of the behaviors and not the behaviors themselves.
usually expressed as a utility functi@i(s, a) = >.5° v (re|so =
s,a0 = a). Such a mapping is calledpolicy and, for a MDP, it is
well known that an optimadeterministigpolicy exists [11].

As our agent only has a partial view of its environment, the
learning task we are confronted with belongs to the more general i
class of Partially Observed Markov Decision Processes (POMDP), ' é/l '
where the agent has only access to an observation of the current _ AN _ AN
state. Nevertheless, the assumption that the agent faces a Marko-
vian problem when only considering the observations is often made.

This is truly a weak approximation and the policies learned thisway Figure 2: No leading behavior. The action desired by the basic
are clearly sub-optimal as explained by [10]. In fact, it is better in push behaviors is either to go weghole Os, tile O;} or east
that case to look fostochasticpolicies, using gradient descental-  {hole O,, tile O,}, whereas the optimal global action is to go
gorithms for example (like in [1] or [8]). south.

Even under the Markovian approximation, the problem of com-
binatorial explosion remains. The number of an agent’s possible Calculating a new probability distribution over actions this way
observations can still be huge, even though the locality of its per- can be seen as feee-flow hierarchyas defined in [12]. One ar-
ceptions helps reducing it. Our combination algorithm takes advan- gument for prefering such a free-flow hierarchy to a hierarchical
tage of the possibility to decompose the task in subtasks to addresglecision structure is that the later winner-take-all algorithm will be

e 7(s,a) is then the reward generated by the environment after
each transition.

this specific problem. subject to its deterministic aspect, not being able to make compro-
. . mises.
2.2 Previous and Similar Works To cite an example of such an approach, the work from Dixon et

A common idea to overcome the curse of dimensionality is to al [3] briefly describes a method for combining sub-policies where
decompose the Markov Decision Process in some way. A taxon- the probability distribution on the actions for each sub-task are lin-
omy of MDP decompositions is proposed for example by Wang early combined. A simple weight is associated to each sub-policy,
and Mahadevan in [13], in which our approach stands irattisn and the problem is then to choose the right weights. As this method
decompositiorclass. But to our knowledge, there is up to now no only intended to control their exploration, no particular attention
satisfying solution to this class of problem in the learning frame- was given on how to choose these weights. This is exactly the prob-
work. lem we will address in our algorithm Hgarning these weightss

. lained in Section 3.4.3.
2.2.1 Why We Need A New Algorithm explained i Secion

If not only considering reinforcement learning, the subject of 2.2.2 Scalability is Desired
Action-Selection —defined by [6] as “the problem of choice be- We lastly want to point out that existing methods do not offer
tween conflicting and heterogeneous goals”- fits more appropri- scalability. When a basic behavior can be applied more than once
ately to our approach, since it intends to consider some complexin a given situation (for example, two holes are to be avoided),
problems as a compromise between simpler ones (eventually at thethis must be specified priori in the algorithms cited before. This
expense of optimality properties). The agent being given stochas- specific point is also dealt with in our algorithm. To that end, we
tic policies for each of its basic behaviors, the hard point is then learn one weight for each “generic” basic behavior (suchwasd
to combine these basic policies and derive a global policy. At this holg). Thus, even if many instances of the same generic behavior
point, two major directions can be taken. can be applied in a given situation (several holes to avoid), they



will be combined using only oneommonweight. More details are 1. atype of configuration,

given in Sections 3.2 and 3.4.3. . - . .
2. a stochastic decision policy learned by reinforcement and

3. PROPOSITION 3. the utility of this policy.

A key idea of our approach is that a complex behavior is ob-
tained as an answer to many basic motivations. Moreover, simple  For a basic behavidr, we will noteC” (b) its type of configura-
basic behaviors can be easily associated to each of these motivation. This notion of type of configuration is essential for the scala-
tions. Given these two points, we make the hypothesis that, in bility of our approach, since it allows generic basic behaviors to be
many cases, a good solution of the Comp|ete pr0b|em can be re_instantiated several times in the same observation. Then, the pOllcy
constructed using the basic behaviors. In this section, we will de- P» of the behavior is a mapping from configuratiansf C* () to
scribe how a scene can be analysed through a decomposition inProbability distributions over actions?, : C*(b) x A — [0, 1].
basic behaviors, give more details on these basic behaviors, and fiNote that two different configurations can belong to the same type
nally propose a method to automatically build a complex behavior ©f configuration, so the agent can deal with them by using the same

by learningd. behavior (i.e. the agent can try to avoid two holes at the same time).
. The knowledge of this policy for each basic behavior is not suf-
3.1 Some Notations ficient to take efficient decisions when the agent has to deal with

An agent perceives a scene —the accessible part of its environmengoncurrent motivations. To weight them in some way -giving a
as arobservation, which is composed of a set of percepts. Such an higher priority to danger avoidance or to important reward in sight-
observation can be broken intonfigurations (i.e: subsets of the ~ We suggest to evaluate a situation by using Q-values, as they will
observation), and a percept can belong to different configurations. give us the expectation of discounted reward (i.e. the utility) of
As each percept is characterized by a type (for examp|e a hole, aeach configuration-action pair. Tf'@-values can be learned while
tile or a door in our case), we also define the very important notion also learning the policy of a basic behaior
of atype of configuration which is described by a set of types of To sum it up, for each behaviérare calculated two tables —both
percepts (i.e{hole, tile}). With these notations, the next section defined on the same sét (b) x .A- for an upcoming use:

shows how to analyse a scene. e Py(c,a): the probability to choose actiarnwhile seeing con-

3.2 Scene Decomposition by the Agent figurationc, and
The starting point of the behaviors’ combination is that an agent e Qu(c,a): the expected discounted reward when choosing ac-
confronted to a complex situation must decompose it into simpler tion a for the configuratiore.
known configurations in acalableway. To this end, the first step is
to look for “familiar” and “useful” configurations in the perceived Before considering the way we tried to combine these basic be-

situation. As any subset of percepts of the agent’s current observa-haviors in a complex one, please note that we have not yet discussed
tion can be a configuration associated to a behavior, an agent will the way to find the right basic behaviors to use.
only consider configurations which belong to at least one type of

configuration associated to one existing basic behavior. 3.4 Basic Behaviors Combination
For an observatiom, let us callZ/(o) the set of these “useful”
configurations. Then, for each useful configuratioof /(o) we 3.4.1 General Formula

will note B(c) the set of basic behaviors associated to this config-  The next step is to use these useful configurations to choose an
uration. Similarly,C(b, o) will be the set of useful configurations  action. There are several ways to make this choice (voting, biding,
in observatiorv associated to a given basic behavioScalability random choice) but we decided to compute a poigy, a) giving
derives mainly from the fact that one basic behavior (resp. con- a probability distribution over actionsfor each possible observa-
figuration) can be associated to more than one configuration (resp.tion o. As written previously, we chose to define this policy as a
basic behavior). This is all the more interesting that, due to the lo- recombination of basic behaviors using thBir and Q-tables. To
cality of perceptions, the number of useful configurations changes. be more precise, we try to define a linear combination of khe

To illustrate this on the tile-world scene presented on figure 1, policies. The general formula is thus:
the agent’s perceptions concern here objéxtsO2 andOs. With 1
two possible behaviorsavoiding the holes¥,) associated to the P(o,a) = e Z Z w(b, ¢,a).Py(c,a)
type of configuratio{ hole} andpushing blocs in those holes, c€l (o) beB(c)
associated tdhole, tile}, the agent has to take into account the
three following (behavior, con figuration) pairs: (ba,{O2}),

(bp, {02,01}) and(by, {03, 0s}).

Note that, among the hard points of the method we propose, a
combinatorial explosion can be feared as far as the search for useful
configurations is concerned. In practice, the number of objects see
remains usually small, as only local perception should be used.

We will now see what knowledge of the basic behaviors isre- 3 4.2 Chosen formula
quired so that they may be recombined efficiently.

wherew(b, ¢, a) are some positive functions of tiggvalues called
weightsand K is a normalizing factor_, P(o,a) = 1). The
action is then chosen according to tRalistribution.

How to calculateP optimally using theQ- and P-tables is sub-
ect to discussion. Only the formula that gave us most satisfaction
is presented in this paper.

We chosew to depend on th&-values. A first remark is that the

3.3 Basic Behaviors absolute value of)-values will be used in a way to give the same
importance to future earning®(> 0) and immediate dange€X <
Definition 2. A basic behavioris defined by: 0). If theseQ-values seem to give good comparisons between state-

I - - . . action pairs of a single behavior, the relative importance of different
These basic behaviors could be usefully collected into a library

which would be reusable in other situations. This subject is discussed further in section 4.2.2




Q-tables can be efficiently corrected by learning a parantgtiar
each behavior (appearing as a faatd).

For a given observation-action p&#, a), the idea is to consider
that each behavior tells that its probabiliy(c, a) is the right one
with a force of convictiorie’s * Qy(c, )| . This leads to compute
the mean of the?, (c, ) probabilities weighted bye® * Q,(c, a)|
(for each current behavior):

LYY Qe a)l. P, a)

(0:0) .cta(0) beB(e)

ko) = Y Y. €"]Qu(c,a)))

c€U (o) beB(c)

R(o,a) = A

After normalizing and putting in commatf® for all instances of a
type of behavior, the final version is rewritten as:

1 1

P(o,a) = ?'k( :

S 1Qu(e,a)lPylc,a)

ceC(b,o0)

2 <

bEB 16 learn

already known

3.4.3 Learning and Scalability

Each set of) parameters defines a global complex policy for the
agent. Tuning the weights of the formula is like learning an opti-

Agent’s Skills

In these experiments, the agent has always all other objects of the
environment in sight. The principle of locality is nevertheless present
in the fact that perceptions are unprecise. For any olgjeict the
scene, the agent’s perceptiohO gives:

e near( O): tells if objectO is in the 9-cells square centered
on the agenftrue|false) ,

e direction(D): gives the object’s direction
(N-NE-E-SE-S-SW-W-NW) .

The only actionsavailable for an agent are to move one cell
North, South, East or West (it cannot ask to stay on a cell). And
to conclude, the rewargiven is+1 when a tile falls in a hole--3
when the agent goes in a hole, ahdtherwise.

3.5.2 Performance Evaluation

The best way to appreciate our approach is to compare the aver-
age reward obtained in various observation-spaces with the results
of specifically learned optimal policies (tabula rasa). In our first at-
tempts, the direct stochastic policy search employed (OLPOMDP
described in [1]) stayed most of the time in local optima, only learn-
ing how to avoid holes whereas the agent is expected to also push
tiles in the holes.

Evenifthe best accessible references are policies obtained through
an adapted Bolzman@-learning, experimental results (first four

mal parameterized policy in the framework of reinforcement learn- |ines of table 1) demonstrate that the basic behaviors’ combination

ing. To that end, we have simply used a straightforward simulated can be efficient and that, moreover, the weights learned in sim-

annealing algorithm with a geometric decrease of the temperatureple sjtuations (with two tiles and two holes for example) may be

(only a few parameters have to be learned: one for each behavior).reysed in more complex cases without learning them further (last
The scalability of the process derives also from the fact that only three lines).

oned, coefficient needs to be defined for each behavior. Even when

many configurations are associated to one behavior, the complex

policy can be computed without further learning or refining of the Table 1. Comparative table between policies obtained tabula

parameters. rasa and by recombination
In the next section, we present an example showing an applica- objects reward(for 10.000 steps)
tion of our methodology on the tile-world problem. #tiles+holes|| tabularasa c(1) | c(2)
. 1+1 1380 | 1017 | 842
3.5 Experimental results 241 300 | 302 | 493
Here will not be presented completely detailed experiments of 1+2 ~0| 405| 259
the methodology just described. Such information may be found by 2+2 200 | 283 411
interested readers in [2]. We will rather insist on some remarkable 3+2 - 166 | 134
results that conducted further developments. 2+3 .| 262 247
3.5.1 The Tile-World 3+3 - | 179] 129

Problem e c(1): our combination of policies
The tile-world is a grid domain in which a cell may contain a hole,

a tile or an agent. In the complete problem, the agent (we consider
only one agent) has to push tiles in holes as often as possible, while
avoiding to go itself in one of those holes.

To give some details about the simulation, the agent can go freely
in a hole (and also go out), but will get a negative reward doing so.
Moreover, when a tile is pushed in a hole, both the tile and the
hole disappear and reappear anywhere on the grid. Finally, to avoid
some blocking situations, holes and tiles cannot be on cells of the 3.5.3 A Particular Problem
grid’s border.

In this complete complex problem, many tiles and holes must
be handled. As it appears in previous examples, a simple decom-
position of the problem in basic behaviors can be made intuitively: m
[avoid hole] (ba, {hole}) and [push tile in hole]
(bp, {hole, tile}), as shown on figure 1.

e c(2): the same combination with noise added in the decisions
of the basic behaviors

Note: the difference of efficiency between combination ¢(1) and
results in table 2 comes from basic behaviors whose learning has
been stopped early in this first experiments (and is thus less accu-
rate).

To go further in analysing these experiments, the complex be-
haviors obtained have simply been observed while running.
As expected, the agent appears to take pretty good decisions
ost of the time, and predictably hesitates when having a symetric
choice between two tiles to push in a hole. So, if we stopped at that
point, the agent should have near-optimal performances, which is
not the case.

Swith a single non-zero rewand the Q-table is proportional te.



In fact, some particular situations emphasize a critical weakness
of our approach. Figures 2 and 3 illustrate this point. In the later
figure, none of three currer{behavior, configuration) pairs
suggest the right action to choose: both “push” behaviors are for
going west and the “avoid hole” one has no influence, whereas a
move to the north would be appropriate. This blocking is only re-
solved thanks to the stochastic aspect of the policies, which some-
times brings by chance to choose unfavoured actions.

2
| RN

®

Figure 3: Two behaviors making a wrong choice. Both basic
push behaviors lead the combination method to go west, whereas
the optimal global action is to go north (considering that there is a
wall on the west side).

These particular problems —where a linear combination of poli-
cies is far from being the solution— are responsible for the low
agent’s efficiency, since most of the time is spent facing such block-
ings, whereas they only represent a tiny part of the possible obser-
vations. Next section presents a possible solution to overcome this
difficulty and to potentially have a much more automatic agent’s
designing system.

4. INCREMENTAL APPROACH

The study of the behaviors’ combination which has just been
presented confirmed that the resulting policy was close to a good
policy, even if suffering from various drawbacks. This induced us
in the idea that such a policy would be a good initialization for a
complete direct policy search, and consequently for computing a
new behavior. This section will point out in more depth the reasons
of this new developement, show the principle it is based on, and
finally comment its practical efficiency on the tile-world testbed.

4.1 Motivation

The main reason motivating a new algorithm is to overcome
“non-linear” situations. As explained in section 3.5.3 —and as il-
lustrated on figure 3— some configuration cannot be solved by a
linear combination of basic behavior. These configurations require
taking into account more element of the perception to be handled.
Two solutions were studied:

e Learning specific rules to correct just the critic situations
as in [5]. But in fact, for one situation, many rules dealing
with probable preceding situations must be learned to avoid
oscillations. And it is not clear how rules could be combined
with other behaviors. So we opted for a second solution:

Learning new complete basic behaviors with more com-
plexe types of configuration(involving two tiles and one
hole in the case of figure 3). Unfortunately, the experiments
quickly described in section 3.5.2 showed that learning a
complete behavior from scratch becomes hard even with an

Our idea is then to ease the learning of such new behaviors by
starting from the combination policy learned and increasing it through
gradient learning. This is a kind of bootstrapping process.

4.2 Description

We present here the general scheme of our incremental approach
that aims at designing new basic behaviors.

4.2.1 Principle

To define the new behavior that is to be learned, we must explicit
its type of configuratio” and a global rewar® acting as a mo-
tivation. Then the following three consecutive phases compose the
algorithm, as also illustrated on figure 4 (the second phase does not
appear explicitly):

1. Asetofbasic behavio®BB = {bb1, bb, . .. bby, } being cho-
sen and a new “goal” being considered (given7y, the
algorithm presented in section 3 is executed to adapt a com-
bination behavior by learning optimal weight parameters.

. The combined behavior obtained by the optimal combina-
tion is converted into a starting behavi@t”, 7, Q). = is de-
scribed as a parametrized stochastic policy suitable for gra-
dient learning and) is initially set to0.

. 7 serves as a starting policy to learn a complete behavior
b’ (with an optimized policyr’) by a gradient descent (here,
the OLPOMDP algorithm from [1]), and simultaneously esti-
mating the relate@-values on the observation-action space.

bbby .. Dby
(CW
m
(RL),

b ()

Figure 4: Principle of the incremental method. The proposed
algorithm combines basic behaviobs,, bbs ...bb, (learns the
weighting parameters), obtains a policyand uses it as a root of
a new learning phase bringing to a new beha¥idwith improved

policy 7).

To complete this general description of the algorithm, we de-
velop some aspects below.

4.2.2 Complements

Q-table Estimation

The objective also consists in learningjatable estimation. With

the choice of the classical discounted reward (among various pos-
sible definitions of th&)-values), and taking into account the non-
markovianness of our framework, the updating formula used sim-

ply becomes:

P4y Y (b) * Q0 b)

be A

Q(o,a) — (l—a)*Q(o,a)—i—a*(

apparently reasonable number of observations. This would This subject does not require here more details. But readers more
precisely happen if the agent tried to directly learn a “push” largely interested in “learning without state-estimation in POMDPs”
behavior with two tiles and one hole as required for figure 3. are encouraged to refer to [10].



What About Rewards ? Lastly, when trying to obtain a new policy through a combina-

Another aspect to discuss is how to manage rewards for new behay-ion: the set of basic behaviors to use has to be defined. Here, the
iors. The tile-world problem considered in our experiments does te.sts have been conducted in the order.glven by.the table and,.be.gln
not satisfy the hypothesis made in section 4.2.1 of a single accessi-W'th an empty set of BBs, new behawors_ considered as basic (in
ble payoff. The two basic behaviors given as examples correspondP©!d fontin the table) have been progressively added.
to two different causes of rewards: a negative one when falling in a 4.3.2 Results and Analysis
hole, and a positive one if a tile is pushed in a hole. ) ) .

When designing an agent, being able to distinguish sources of Two types of information can be found in the table 2 that sums
reinforcement seems a reasonable assumption. It of course dependdP OUr tests:
on the point of view adopted in its conception. Butin suitable cases,
we suggest to introduce them on purposéyass of rewardnoted

R™). Technically, it allows the selection of the agent's goals when e the approximate number of serieslof 000 simulation steps

learning a new behavior. before reaching the best policy (in parenthesis when avail-
This ability to separate basic behaviors according to types of re- able).

ward has a twofold interest:

o the average reward fdi0.000 simulation steps, and

But before considering the table, do not forget that the first zeros
e On the one hand it permits to sharpen the “classification” of concern an agent that only expect to avoid holes, and thus does not
these basic behaviors, eventually using them in various ways get any positive payoff when pushing a tile in a hole.
whether they act as inhibiting or incitating motivations (for
example).

) ) ) Table 2: Comparative table between policies obtained tabula
e On the other hand, reinforcement learning algorithms are 555, py recombination and through the incremental approach

prone to fall irl Iogal optima. This could sometimes be avoided Situation reward(for 10.000 steps)
by only considering one goal out of many. #iles+holes| R” | tabularasa | comb.| inc.
The former argument will not be applied in this paper, as it mainly 0+1 - 0 - -
concerns perspectives on better combinations. On the contrary, the 0+2 - 0 0 0
later argument will bring direct improvements to the methodology, 1+1 + || 1380 (20)| 1250 | 1380 (20)
as shown by experiments on the tile-world. 1+1 +- 150 (300)| 1250 | 1380 (20)
As written above, this idea may not fit to all situations, but should 1+2 + 1650 950 | 1660 (20)
be taken into account if possible. Let us finally mention that dealing 1+2 +- 0 380 0
with type of reward was of not useful when only combining basic 2+1 + 1230 (250) 30 | 1280 (40)
behaviors , since policies aigHtables sufficed. The question arose 2+1 +- 0 30 | 1250 (40)
when dealing with the initialization of new basic behaviors. 2+2 + 1250 (200)| 250 | 1260 (80)
2+2 +- 0 150 0

4.3 Conducted Experiments

To assess the method described in this paper, we conducted ex- e comb.: combination of policies
periments on the tile-world problem. After precising the methodol-
ogy applied, we exhibit and comment the results of our simulations.

4.3.1 Methodology

In this paper, three ways of obtaining policies dedicated to a FaIIing in local optima
given problem have been tested:

e inc.: incremental approach

If only considering the data of the “tabula rasa” column, the phe-
1. Tabula rasalearns this policy from scratch through a classi- nomenon of classical learning falling in local optima when both re-
cal direct policy search. wards are in competition ('+-") distinctly appears. On any of these
'+’ lines, the behaviors’ combination always gives better results
and allows pushing a tile in a hole more or less often. This returns
no impressive average rewards, but produces as expected a good
starting policy for our incremental learning.

Only the situation considering two holes and one tile leads to a
The first manner is the reference, even if it may not be success-failure, probably because of a learning parameter that does not give
ful (because of difficulties to converge, often due to local optima). €nough space to exploration. The fact that the agent goes generally
The two others relate to the two main steps of our algorithm, and €ss than ten times in a hole when just learning to avoid it also
are both of interest in our framework. On the table 2 that lists the suggests this hypothesis, which would require an in depth analysis.
results of the experiments, the last three columns are dedicated to . .
these three different methods. Computation time

Table 2 presents the simulation conditions we used iniits first two One annoying point about the behaviors’ combination is that its
columns. In one column appears the number of tiles and holes of optimization —here through simulated annealing— requires making
the simulations performed, and in the other the type of rewfd good estimations of the average reward gained for a given set of pa-
involved. A positive (respectively negative) reward —when a tile is rameters. Nevertheless, in our situation, the cost of this optimiza-
pushed in a box (resp. when going in a hole)- is symbolized by a tion phase was negligible compared to a complete policy learning
'+’ (resp. '-'). When both rewards are combined, the '+-’ symbol by a gradient descent. This is all the more important that the obser-
is employed. vation space in this later algorithm is here approximately multiplied

2. By combination learns the parameters of a basic behaviors’
combination as described in section 3.

3. Incrementally uses the incremental approach.



by 16 for each new object considered (we in fact reduce this size a bigger number of parameters to learn. It could even bring toward
thanks to symetries of the problem). learning a completely new policy —as done in the incremental step—
In all experiments, the adapting combination phase always lastedwhereas scalability and genericity issues are our main concern in
400 * 10.000 simulation steps (even if the optimum was reached this part of the work.
early), i.e. less than a minute on our computer. The number of  Another possibility for a finer control of the global behavior
simulation steps to learn complete policies —either tabula rasa orwould be to make use of the sign of the utility of a basic policy.
incrementally— was also fixed, but 3060 * 10.000 only (these two This way, a clear distinction could be made between basic “neg-
duration have not been tuned), such a phase took less than a minutative” behaviors (forbidden actions) and “positive” behaviors that
for 1 object, aboub minutes for2 objects and abodut hour for3. could just promote actions. This would require altering the policy
Considering that optimizing a combination is far from being time- combination function but without bringing too much task-specific
expansive, it is of real importance to notice that learning incremen- knowledge into the process.
tally is much faster (in term of simulation steps, and thus in com-

putation time) than from scratch. .
For a Greater Scalability

Random behavior Considering the sign of a policy’s utility is a first step toward taking
As explained in 3.5.3, the so called “blocking situations” induce into account the specificity of the basic behaviors, and eventually
most of the loss in efficiency in the basic behaviors’ combination. relationships between them. The “additive” nature of our present
Nevertheless, it is well known that adding some noise in the deci- combination of behaviors is for example well adapted to additive
sion mechanism —a random action being picked from time to time— environments (where the global utility is the sum of sub-tasks util-
is a good way to get rid of these blockings. It brought the idea to ities). Nevertheless, when it is not the case, too many instances of
add some chance in our algorithm. the same basic behavior (many tiles) could abusively overweight

This has been done through an artific@hdombasic behavior, other behaviors (avoid hole).
which has 1- no observation, 2- a uniform probability distribution Other experiments that we conducted encourage not considering
over actions and 3- the same positigevalue for all actions (a only additive computations as the linear combination presented in
null value would make the behavior useless). With this, and as the current paper (a simple multiplicative approach gave in fact a
the complementary noise only works up to a point, the weighted little better results on the tile-world). One advanced solution could
combination modulates this noise by itself. be the use of a “critic” module trying to predict the global utility so

With the exception of the new random basic behavior, other ex- as to adapt the way the behaviors are handled (additive, concurrent,
periments have been conducted in the same conditions as in table 2preemptive...). This perspective is yet another argument in favor of
As expected, they confirmed an increase in efficiency when using further work on behaviors’ combination, even though other ideas
two tiles and one hole (and at least the positive reward). This is in have been explored first.
aggreement with the former experiments in [2] on the combination,
where the used basic behaviors were a little less deterministic. .

5.2 Incremental Learning

To conclude We know that, because of its limited perception, an agent is
To only speak about the incremental learning, these experimentsconfronted to a non-Markovian task. Consequently, the Marko-
succesfully demonstrated the benefits of this approach. The mainvian approximation we use cannot give an optimal result. At any
controversial point to retain is that the “low computation time” ar- rate, optimality does not seem a reasonable objective as growing
gument holds only if the simulation of the environment itself is not observation-spaces are faced.
a time-consuming algorithm (if considering a simulation as in our  Looking for improving methods that mimic a progressive devel-

case). opment of the agent’'s behavior appears to be more satisfying in
that it gives the agent the ability to be adaptive —and scalable in the
5. DISCUSSION present paper— Nonetheless, such approaches always require an

] ) o _exploration phase and, thus, the definition of an arbitrary stopping
We propose to first discourse about the combination before in- qijierion. It is not a critical aspect, since most optimisation —and

sisting on specific aspects and then on possibilities of the incre- yharefore learning— algorithms needs some parameters to be set.
mental learning.

5.1 Combination of Basic Behaviors 53 Tree-Growth ?

Opti T The present work would be complete with an automated choice
ptimality * . R ;

of basic behaviors, in the sense that an agent would really require
The combination method is clearly not a sure way of reaching op- a minimal human intervention. A first problem would be to decide
timality. One of the reasons is that only a subclass of the possi- whether a new behavior has to go in the basic behaviors’ set (the
ble policies can be explored. Furthermore, the simulated anneal-“hase”) or not. But the discussion about a good criterion remains
ing which learns the weights of the global behavior converges only gpen.
to local optima. The lack of optimality is the price to pay for a Nevertheless, knowing how to explore behaviors to augment the
tractable algorithm. base stays unanswered. The incremental algorithm suggests to be-
L gin with simple behaviors taking only few objects into account, and
Improved Combination then use the basic ones to develop others. This description naturally
The really reduced number of parameters to learn may suggest thanduces the growing of a “tree” as exemplified on figure 5.
idea of refining the level of combination. This could be achieved  This principle can be compared to the exhaustive observables of
thanks to weights depending not only on the behaviors, but also on[4] or the U-trees of [7]. And, in a similar way, difficulties should
the actions, observations... The drawbacks of this approach lies inbe met to stop exploring new leaves at a given depth.



Figure 5: Behaviors’ exploration tree. There is no precision here
on which behaviors are basic or not. But notice that various com-

binations of types of reward must be tested.

6. CONCLUSION

(2]

(3]

(4]

(5]

The general framework of this paper is the automated design of (6]

agents facing a complex task through Reinforcement Learning. Our
work is motivated by the fact that complex tasks are often the com-
position of simpler tasks. In this context, we presented a two step

process that, starting from a set of generic low level behaviors and [7]

a given task, learned to define a complex behavior adapted to the
task. Scalability and genericity are two important aspects of our

method.

The first step of our method builds a complex behavior by learn-
ing how to combine basic behavior. This complex behavior is a lin-
ear combination of the basic behavior and the weights are learned
by simulated annealing. Scalability derives from the fact that sev-

(8]

eral instances of the same basic behavior can be combined “on line” [9]

without learning new weights, thanks to what we called “types of

configurations”. Furthermore, as the basic behaviors are not modi-[10]

fied in the process, our method allows for genericity and reusability.
The second step of our method uses a gradient learning algorithm
to refine the policies obtained through combined behaviors. It is

possible to build new behaviors that are more efficient. As shown [17]

on examples, such efficiency could not be obtained while learning

from scratch.

Several experimentations have been made to validate and justify
our approach. The next step, which indeed guided our work, is to
derive an incremental algorithm that, starting from a basic set of
behavior, iteratively builds new behaviors and adds them to its set
of basic behaviors to use. This would be a first step toward a kind of
meta-learning, which would serve both complex task solving and
knowledge transfer. But some hard points, like the detection of
useful “types of configuration” and motivations are still to be more

thoroughly studied.
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