
Adaptive Combination of Behaviors in an gent
Olivier Buffet 1 and Alain Dutech1 and François Charpillet1

Abstract. Agents are of interest mainly when confronted with com-
plex tasks. We propose a methodology for the automated design of
such agents (in the framework of Markov Decision Processes) in the
case where the global task can be decomposed into simpler -possibly
concurrent- sub-tasks. This is accomplished by automatically com-
bining basic behaviors using Reinforcement Learning methods.The
main idea is to build a global policy using a weighted combination
of basic policies, the weights being learned by the agent (using Sim-
ulated Annealing in our case). These basic behaviorscan either be
learned or reused from previous tasks since they will not need to
be tuned to the new task. Furthermore, the agents designed by our
methodology are highly scalable as, without further refinement of the
global behavior, they can automatically combine several instances of
the same basic behavior to take into account concurrent occurences
of the same subtask.

1 Introduction

Our researches aim at automatically designing the behavior ofreac-
tive situatedagents limited to onlylocal perceptions. Reinforcement
Learning (RL)[9] can be applied in that field. Nevertheless good RL
algorithms are usually used for simple cases and generally suffer
from combinatorial explosion, as discussed in section 2.1.

To overcome these difficulties, we make the hypothesis, as in
Brook’s subsumption architecture [2], that a complex problem can
be efficiently dealt with if considered as a combination of simple
problems. An example is given by the tile-world represented on fig-
ure 1, where the agent has to manage three simple behaviors (the first
one intends to avoid a hole, and the two others to push a tile in the
hole).

O2

O1

O3

agent

hole tiles

Figure 1. A scene with some objects:
the global task is a combination of

sub-tasks O2 O3

O2

O1

O2

+
push tile

push tile
+

avoid hole

Our method is twofold. First we provide our agent with basic be-
haviors, either through RL or transfers from previous tasks. Then,
this basic behaviors are weighted and combined into the agent’s

1 LORIA, BP 239 F-54506 Vandœuvre-lès-Nancy
{buffet,dutech,charp}@loria.fr

global behavior. The main point is that the weights arelearned. As
such, we derive anadaptive(through learning relations between be-
haviors) andscalableagent (working with various world sizes).

The following section of this paper develops in more details the
context of our work and presents previous works that inspired us.
Then, in Section 3, we give the details of our algorithm with a special
focus to learning and scalability. Section 4 is devoted to an experi-
mental validation of our work on the well known tile-world problem.
A discussion and a conclusion end this paper.

2 Framework

This section introduces the use of Reinforcement Learning in our
context. Then an analysis of previous works shows their limitations
and help us outline the solution we propose.

2.1 Reinforcement Learning and limitations

Reinforcement Learning (RL) methods are very appealing ways to
have agents learnoptimal reactive behaviors in uncertain worlds, as
only a scalar feedback from the system to the agents is required.

But the convergence of RL algorithms (likeQ-Learningor TD(λ))
has only been proven for Markov Decision Processes (MDP). A
MDP is defined as a< S,A, T, r > tuple,S being a finite set of
states andA a finite set of actions. When the system is in given state
s, an actiona being chosen, the probability for the system to end
in states′ is given byT (s, a, s′). After each transition, the environ-
ment generates a rewardr(s, a). The problem is then to find the op-
timal mappingπ(s, a) between states and actions so as to maximize
the reward received over time, usually expressed as a utility func-
tion Q(s, a) =

∑∞
t=0

γtE(rt|s0 = s, a0 = a). Such a mapping
is called apolicy and, for a MDP, it is well known that an optimal
deterministicpolicy exists [9].

As our agent only has a partial view of its environment, the learn-
ing task we are confronted with belongs to the more general class
of Partially Observed Markov Decision Processes.Nevertheless, the
assumption that the agent faces a Markovian problem is often made.
This is truly a weak approximation and the policies learned this way
are clearly sub-optimal as explained by [7]. In fact, it is better in that
case to look forstochasticpolicies, using gradient descent algorithms
for example (like in [1] or [6]).

Even under the Markovian approximation, the problem of combi-
natorial explosion remains. The number of an agent’s possible obser-
vations can still be huge, even though the locality of its perceptions
helps reducing it. Our algorithm takes advantage of the possibility to
decompose the task in subtasks to address this specific problem.

2.2 Previous and similar works.

A common idea to overcome the curse of dimensionality is to de-
compose the Markov Decision Process in some way. A taxonomy
of MDP decompositions is proposed for example by Wang and Ma-
hadevan in [10], in which our approach stands in theaction decom-
positionclass. But to our knowledge, there is up to now no satisfying
solution to this class of problem in the learning framework.

2.2.1 Why we need a new algorithm

The starting point of our approach is to give the agent stochastic poli-
cies for each of its basic behaviors.The hard point is then to combine
these basic policies to derive a global policy. At this point, two major
directions can be taken.

A first option, as in the work of Humphrys [5], is to select one
particular behavior as the one to be privileged for the immediate per-
ception of the agent. To do this, the actions desired by each behavior
and information about the utility of these actions are fed into a con-
troller which determines the “leader” behavior. Many strategies for
the controller have been studied by Humphrys, all based on hisW-
Learningframework.The best one requires an adaptation of the re-
ward functions used to teach each basic behavior, as the selection of a
behavior is based on minimizing the difference between the expected
and received local reward associated toeachbehavior. As such, this
adaptation is very specific to the global task.

Another option is to combine the basic policies into a new pol-
icy. This option is more appealing than the preceding one for several
reasons. In some cases, as shown on figure 2, the best action to take
is not given by any sub-policy but could emerge from a combined
policy, especially if the sub-policies are deterministic. Besides, this
option is less task-specific in the sense that we can re-use the basic
behaviors for different complex tasks as we only need to adjust the
weights of the behaviors and not the behaviors themselves.

O3O2 O1

Figure 2. No leading behavior.The action desired by the basicpush
behaviors is either to go left{hole O3, tile O1} or right

{hole O2, tile O1}, whereas the optimal global action is to go down.

The work from Dixon et al [3] briefly describes a method for com-
bining sub-policies where the probability distribution on the actions
for each sub-task are linearly combined. A simple weight is associ-
ated to each sub-policy, and the problem is then to choose the right
weights.As this method only intended to control their exploration, no
particular attention were given on how to choose these weights.This
is exactly the problem we will address in our algorithm bylearning
these weights, as explained in Section 3.4.3.

2.2.2 Scalability is desired

We lastly want to point out that existing methods do not offer scal-
ability. When a basic behavior can be applied more than once in a
given situation (for example, two holes are to be avoided), this must
be specifieda priori in the algorithms cited before. This specific

point is also dealt with in our algorithm. To that end, we learn one
weight for each “generic” basic behavior (such asavoid hole). Thus,
even if many instances of the same generic behavior can be applied
in a given situation (several holes to avoid), they will be combined
using only onecommonweight. More details are given in Sections
3.3 and 3.4.3.

3 Proposition

The starting point of our approach is the idea that a complex behav-
ior is obtained as an answer to many basic motivations. Moreover,
simple basic behaviors can be easily associated to each of these mo-
tivations. Given these two points, we make the hypothesis that, in
many cases, a good solution of the complete problem can be recon-
structed using the basic behaviors. In this section, we will give more
details on these basic behaviors, describe how a scene can be anal-
ysed through a decomposition in basic behaviors, and finally propose
a method to automatically build a complex behavior by learning2.

3.1 Some notations

An agent perceives a scene as anobservation, which is composed of
a set of percepts. Such an observation can be broken intoconfigu-
rations (i.e: subsets of the observation), and a percept can belong to
different configurations. As each percept is characterized by a type
(for example a hole, a tile or a door in our case), we also define the
very important notion of atype of configuration which is described
by a set of types of percepts (i.e.{hole, tile}). With these notations,
the next section defines a basic behavior.

3.2 Basic behaviors

A basic behavior is defined by 1- a type of configuration, 2- a
stochastic decision policy learned by reinforcement and 3- the utility
of this policy. For a basic behaviorb, we will noteCT (b) its type of
configuration. This notion of type of configuration is essential for the
scalability of our approach, since it allows generic basic behaviors to
be instantiated several times in the same observation. Then, the pol-
icy Pb of the behavior is a mapping from configurationsc of CT (b)
to probability distributions over actions :Pb : CT (b)×A −→ [0, 1].
Note that two different configurations can belong to the same type
of configuration, so the agent can deal with them by using the same
behavior (i.e. the agent can try to avoid two holes at the same time).

The knowledge of this policy for each basic behavior is not suffi-
cient to take efficient decisions when the agent has to deal with con-
current motivations. To weight them in some way -giving a higher
priority to danger avoidance or to important reward in sight- we
suggest to evaluate a situation by using Q-values, as they will give
us the expectation of discounted reward (i.e. the utility) of each
configuration-action pair. This Q-values can be learned while also
learning the policy of a basic behavior3.

To sum it up, for each behaviorb are calculated two tables4 for an
upcoming use:

• Pb(c, a): the probability to choose actiona while seeing configu-
rationc, and

• Qb(c, a): the expected discounted reward when choosing actiona
for the configurationc.

2 These basic behaviors could be usefully collected into a library which would
be reusable in other situations.

3 Q-values depend on the chosen policy.
4 Both tables have the same definition setCT (b)×A.

How to use these basic behaviors is discussed in the following
subsections. Please note that how to find which basic behaviors to
use for a given complex problem is not discussed in this paper.

3.3 Scene decomposition by the agent

When an agent is confronted to a complex situation, it must decom-
pose it into simpler known configurations in ascalableway. To this
end, the first step is to look for “familiar” and “useful” configurations
in the perceived situation. As any subset of percepts of the agent’s
current observation can be a configuration associated to a behavior,
an agent will only consider configurations which belong to at least
one type of configuration associated to one existing basic behavior.

For an observationo, let us callU(o) the set of these “useful” con-
figurations. Then, for each useful configurationc of U(o) we will
noteB(c) the set of basic behaviors associated to this configuration.
Similarly, C(b, o) will be the set of useful configurations in obser-
vation o associated to a given basic behaviorb. Scalability derives
mainly from the fact that one basic behavior (resp. configuration) can
be associated to more than one configuration (resp. basic behavior).
This is all the more interesting that, due to the locality of perceptions,
the number of useful configurations changes.

In the tile-world scene presented on figure 1, the agent’s per-
ceptions concern objectsO1, O2 andO3. With two possible be-
haviors:avoiding the holes (ba) associated to{hole} andpushing
blocs in those holes (bp) associated to{hole, tile}, the agent has to
take into account three different(behavior, configuration) pairs:
(ba, {O2}), (bp, {O2, O1}) and(bp, {O2, O3}).

Among the hard points of the method we propose, a combinatorial
explosion can be feared as far as the search for useful configurations
is concerned. In practice, the number of objects seen remains usually
small, as only local perception should be used.

3.4 Basic behaviors combination

3.4.1 General formula

The next step is to use these useful configurations to choose an ac-
tion. There are several ways to make this choice (voting, biding, ran-
dom choice) but we decided to compute a policyP(o, a) giving a
probability distribution over actionsa for each possible observation
o. As written previously, we chose to define this policy as a recom-
bination of basic behaviors using theirP - andQ-tables. To be more
precise, we try to define a linear combination of theP policies. The
general formula is thus:

P(o, a) =
1

K

∑
c∈U(o)

∑
b∈B(c)

w(b, c, a).Pb(c, a)

wherew(b, c, a) are some positive functionsQ-values calledweights
andK is a normalizing factor (

∑
a
P(o, a) = 1). The action is then

chosen according to theP distribution.
How to calculateP optimally using theQ- andP -tables is sub-

ject to discussion. Only the formula that gave us most satisfaction is
presented in this paper.

3.4.2 Chosen formula

We chosew to depend on theQ-values. A first remark is that the
absolute value ofQ-values will be used, in a view to give the same
importance to future earnings (Q > 0) and immediate danger (Q <

0). If theseQ-values seem to give good comparisons between state-
action pairs of a single behavior, the relative importance of different
Q-tables can be efficiently corrected by learning a parameterθb for
each behavior (appearing as a factoreθb).

For a given observation-action pair(o, a), the idea is to consider
that each behavior tells that its probabilityPb(c, a) is the right one
with a force of conviction|eθb ∗ Qb(c, a)| 5. This leads to compute
the mean of thePb(c, a) probabilities weighted by|eθb ∗ Qb(c, a)|
(for each current behavior):

R(o, a) =
1

k(o,a)

∑
c∈U(o)

∑
b∈B(c)

eθb .|Qb(c, a)|.Pb(c, a)

(k(o,a) =
∑
c∈U(o)

∑
b∈B(c)

eθb .|Qb(c, a)|)

After normalizing and putting in commoneθb for all instances of a
type of behavior, the final version is rewritten as:

P(o, a) =
1

K
.

1

k(o,a)

∑
b∈B

eθb︸︷︷︸
to learn

∑

c∈C(b,o)

|Qb(c, a)|.Pb(c, a)︸ ︷︷ ︸
already known

3.4.3 Learning and Scalability

Each set ofθ parameters defines a global complex policy for the
agent. Tuning the weights of the formula is like learning an optimal
parameterized policy in the framework of reinforcement learning.To
that end, we have simply used a straightforward simulated annealing
algorithm with a geometric decrease of the temperature (only a few
parameters have to be learned: one for each behavior).

The scalability of the process derives also from the fact that only
oneθb coefficient needs to be defined for each behavior. Even when
many configurations are associated to one behavior, the complex pol-
icy can be computed without further learning or refining of the pa-
rameters.

In the next section, we present an example showing an application
of our methodology on the tile-world problem.

4 Experiments

4.1 The tile-world

4.1.1 Problem

The tile-world is a grid domain in which a cell may contain a hole,
a tile or an agent. In the complete problem, the agent (if we consider
only one agent) has to push tiles in holes as often as possible, while
avoiding to go itself in one of those holes.

To give some details about the simulation, the agent can go freely
in a hole (and also go out), but will get a negative reward doing so.
Moreover, when a tile is pushed in a hole, both the tile and the hole
disappear and reappear anywhere on the grid. Finally, to avoid some
blocking situations, holes and tiles cannot be on cells of the grid’s
border.

In this complete complex problem, many tiles and holes must be
handled. As it appears in previous examples, a simple decomposition
of the problem in basic behaviors can be made:[avoid hole]
(ba, {hole}) and[push tile in hole] (bp, {hole, tile}), as
shown on figure 1.

5 With a single non-zero rewardr, theQ-table is proportional tor.

4.1.2 Agent’s skills

In these experiments, the agent has always all other objects of the
environment in sight. The principle of locality is nevertheless present
in the fact that perceptions are unprecise. For any objectO in the
scene, the agent’s perceptionof O gives:

• near(O) : tells if objectO is in the 9-cells square centered on
the agent(true|false) ,

• direction(O): gives the object’s direction
(N-NE-E-SE-S-SW-W-NW) .

The only actionsavailable for an agent are to move one cell North,
South, East or West (it cannot ask to stay on a cell). And to conclude,
the rewardgiven is+1 when a tile falls in a hole,−3 when the agent
goes in a hole, and0 otherwise.

4.2 Conducted experiments

To assess the method described in this paper, we first learn the needed
basic behaviors, then also learn complex behaviors by classical ap-
proaches (so as to have references), and we finally compare these
behaviors with the ones obtained by recombination.6

4.2.1 Basic behaviors’ preparation

The first step was simply to learn the basic behaviors we would have
to use. The evolution of both policies’ efficiencies is shownon the
two sample runs offigure 3, where thex axis gives the number of
simulation steps (to be multiplied by10000), and they axis gives the
agent’s reward for the last10000 simulation steps. In both cases, the
reward must be maximized, with a maximum of zero for theavoid
behavior (since the reward is always negative), and a positive maxi-
mum for thepushbehavior.

-200

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

to
ta

l r
ew

ar
d

(f
or

 1
00

00
 s

te
ps

)

�

number of steps (*10000)

avoid hole
push tile in hole

Figure 3. learning of basic behaviors(just notice that the very simple
[avoid hole] behavior is practically immediately learned)

4.2.2 Classical approach

In order to compare our approach with classical Reinforcement
Learning, we tried to apply both a gradient ascent [1] and an adapted
BolzmannQ-learning on the complete tile-world problem with dif-
ferent numbers of tiles and holes in the environment. Whereas in the
[1 tile/1 hole] case learning is quite fast and efficient, there
is a really fast increase of the difficulty when adding other objects.
The gradient ascent did only succeed in the simplest case, bringing
us to present just the results of theQ-learning.

6 The environment considered always has a size of6× 6 cells.

The sizes of the different observation-spaces shown on table 1 ex-
plain this phenomenon7. It appears that with these large problems the
gradient method is prone to fall in local optima: the agent only avoids
holes and does not push tiles in holes.

Table 1. Size of the different observation-spaces

objects size of the number of
#tiles #holes observation-space configurations

1 1 162/4 = 64 1 + 1 = 2
2 1 163/4 = 1024 1 + 2 = 3
1 2 163/4 = 1024 2 + 2 = 4
2 2 164/4 = 16384 2 + 4 = 6

The results shown on figure 4 may be far from optimum solu-
tions, but are quite realistic: the more objects are present, the more
the agent suffers from its unprecise perceptions (and is obstructed in
its moves).

-200

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

to
ta

l r
ew

ar
d

(f
or

 1
00

00
 s

te
ps

)

�

number of steps (*10000)

1 tile - 1 hole
2 tiles - 1 hole
1 tile - 2 holes

2 tiles - 2 holes

Figure 4. Examples of complexbehaviors learned tabula rasa
(the slow decrease of the highest curve is a classical phenoma due to an

evolution toward a deterministic behavior)

4.2.3 Comparisons

At last an agent -knowing the two basic behaviors- is put in the
same situations, and learns the weights to balance both behaviors.
The statistical results that follow have been collected after learning
the weights. There were only few variations in our samples, so this
means are nearly always reached.

Basic behaviors’ recombinations are compared to the policies
learned tabula rasa in the first four lines of table 2.We used in one
case “optimal” basic behaviors (columnc(1)), and more noisy basic
behaviors (columnc(2)) in a second set of experiments (where each
action has at least a5% probability of being chosen), as we hope
to get out of some blocking situations.Even in the case of figure 2,
the learned weights give enough importance to the[avoid hole]
behavior to prevent the agent from falling into the holes.

The quality of the solutions with at most four objects is very sat-
isfying if we consider that the average reward reached is at least as
good as the one obtained through the classical approach (except in
the simplest case).Moreover, the comparison of columnsc(1) and
c(2) shows –as we expected– that adding some noise may be useful
in certain situations.

The three last situations presented in table 2 (at least five objects)
could not be learned tabula rasa. The results presented for them are

7 The division by4 is possible since the problem does not depend on the
orientation.

Table 2. Comparative table between policies obtained by
recombination and tabula rasa(see text for details)

objects reward(for 10000 steps)
#tiles #holes tabula rasa c(1) c(2)

1 1 1300 1017 842
2 1 300 302 493
1 2 ∼ 0 405 259
2 2 200 283 411
3 2 - 166 134
2 3 - 262 247
3 3 - 179 129

• c(1): our combination of policies
• c(2): the same combinationwith noise added in the decisions of the basic

behaviors

the efficiencies obtained in an8 × 8 grid (to have enough space)
reusing theθ parameters learned with[2 tiles/2 holes] .

5 Discussion

5.1 Optimality ?

It is clear that, with our method, we cannot be sure of reaching opti-
mality. One of the reasons is that, as we use only a combination of ba-
sic policies, only a subclass of the possible policies can be explored.
Furthermore, because of their limited perception, the agents are con-
fronted to a non-Markovian task. As a consequence, the Markovian
approximation we use cannot give an optimal result. Finally, the sim-
ulated annealing which learns the weights of the global behavior con-
verges only tolocal optima. The lack of optimality is the price to pay
for a tractable algorithm.

5.2 Combination of basic behaviors

One could argue that a finer level of combination could improve the
performances of our algorithm. This could be achieved with weights
depending not only the behaviors, but also on the actions, observa-
tions... The drawbacks of this approach lies in a bigger number of
parameters to learn. One would have to pay attention to scalability
and genericity issues.

Another possibility for a finer control of the global behavior would
be to make use of the sign of the utility of a basic policy. This way, we
could for example make a clear distinction between basic “negative”
behaviors (forbidden actions) and “positive” behaviors that could just
promote actions. To do that would require altering the policy combi-
nation function but without bringing too much task-specific knowl-
edge into the process.

5.3 For a greater scalability

The “additive” nature of our present combination of behaviors is well
adapted to additive environments (where the global utility is the sum
of sub-tasks utilities). When it is not the case, too many instances of
the same basic behavior (many tiles) could abusively overweigh other
behaviors (avoid hole). One solution could be the use of a “critic”
module trying to predict the global utility so as to adapt the way the
behaviors are handled (additive, concurrent, preemptive...). This is
yet another argument in favor of further work on behaviors’ combi-
nation.

5.4 Scope of our methodology

The application presented in Section 4 to validate our approach be-
longs to what Wang and Mahadevan [10] called theaction decom-
positionclass of problem. As our framework makes no assumption
on the transition and reward functions of the system, it should also
be well suited to problems ofpolicy decomposition. In fact, we have
also tested our approach on a modified version of the prey-predator
problem (see [8]) where the predators must also avoid obstacles in
their environment. Because of the limited perceptions of the agents,
the policy of one agent alters the transitions probability of the other
agents. Actually, even the basic behaviors are more difficult to learn
and a special kind of incremental Reinforcement Learning [4] had to
be used. Nevertheless, the tests we conducted are highly satisfying
and show good performances. Lack of space prevented us to present
this more complex application here.

6 Conclusion

This paper presented an automated process for designing agents solv-
ing a complex task. In the general framework of Reinforcement
Learning, our algorithm learns how to combine basic low-level be-
haviors into complex ones. Thus, as many complex problems are
a combination of simpler tasks, which may be concurrent, we can
take advantage of this decomposition for automatically building our
agents. Scalability is another strength of our method as it allows an
agent to dynamically combine several instances of the same type of
basic behaviors without having to learn or modify its global behavior.

The main idea of our work is to learn how to weight the differ-
ent basic behaviors needed by the agent, with onlyone weight by
typeof behavior. This was made possible by usinggenericbasic be-
haviors which, through their associatedtype of configuration, can be
instantiated several times. The validity of the approach is tested on a
classical tile-world problem and can be used on a wide range of com-
plex problems. Future work will focus on improving the combination
of basic behaviors in order to build finer complex behaviors.

REFERENCES
[1] J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation.

Journal of Artificial Intelligence Research, 15:319–350, 2001.
[2] R. Brooks. A robust layered control system for a mobile robot. Tech-

nical report, September 1985.
[3] K. Dixon, R. Malak, and P. Khosla. Incorporating prior knowledge

and previously learned information into reinforcement learning agents.
Technical report, Carnegie Mellon University, 2000.

[4] A. Dutech, O. Buffet, and F. Charpillet. Multi-agent systems by incre-
mental gradient reinforcement learning. InProc. of IJCAI’01, 2001.

[5] M. Humphrys. Action selection methods using reinforcement learning.
In Proc. of SAB’96, September 1996.

[6] L. Peshkin, K. Kim, N. Meuleau, and L. Kaelbling. Learning to coop-
erate via policy search. InProc. of UAI’00, 2000.

[7] S. Singh, T. Jaakkola, and M. Jordan. Learning without state estima-
tion in partially observable markovian decision processes. InProc. of
ICML’94, 1994.

[8] P. Stone and M. Veloso. Multiagent systems: a survey from a machine
learning perspective.Autonomous Robotics, 8(3), 2000.

[9] R. Sutton and G. Barto.Reinforcement Learning. Bradford Book, MIT
Press, 1998.

[10] G. Wang and S. Mahadevan. Hierarchical optimization of policy-
coupled semi-Markov decision processes. InProc. of ICML’99, 1999.

