
Looking for Scalable gents

Olivier Buffet buffet@loria.fr

Alain Dutech dutech@loria.fr

LORIA/INRIA, BP 239, 54506 Vandœuvre-lès-Nancy,
FRANCE

Introduction

Reinforcement Learning intends to ease and possibly
to perform automatically the design of systems such as
software or robot agents. An important aspect is the
ability of learning agents to adapt to their environment
and to the task they have to accomplish. This kind of
learning is unfortunately restrained by problems like
combinatorial explosion of the state space that limits
the number of sensors or objects an agent can reason-
ably deal with, especially in the case of Multi-Agent
Systems.

Considering Markov Decision Processes, different solu-
tions exist to overcome the difficulties related to large
state spaces: hierarchical structures (Parr, 1998) or
factored representations (Kearns & Koller, 1999) of the
agent’s behavior for example. Nevertheless, these tools
require manual preparations before going through the
learning step, and result in an agent designed for a
specific task.

The work presented here intends to define agents able
to be efficient in several complex situations, reusing
prior knowledge (see also (Dixon et al., 2000)). The
design is based on the use of many basic behav-
iors which the agent will have to manage, each be-
havior corresponding to a different motivation. For
now, Reinforcement Learning is mainly employed for
the “recording” of these basic behaviors. Neverthe-
less there is place for improvements of our framework
through other uses of Reinforcement Learning.

Basic behaviors

For each motivation, a basic behavior b is learned
as a stochastic policy mapping perceptions to actions
(Dutech et al., 2001). And for a given behavior, per-
ceptions only consider subsets of the set of all objects
and are called configurations. Useful data concern-
ing each behavior are stored in two tables:

• θb(c, a): gives the probability to choose action a
while seeing configuration c, and

• Qb(c, a): is the expected discounted reward when
choosing action a for the configuration c.

For a given behavior, both tables are learned through
Reinforcement Learning. More precisely, a gradient
descent is used to search for the stochastic policy πθb ,
and afterwards the Qb-table can be learned while the
agent behaves according to the stochastic policy.

An agent confronted to a single configuration c of a
behavior b will simply use θb(c, .) to make the choice
of its next action. If this agent has to deal with more
configurations, from possibly different behaviors, the
θ-tables are not sufficient to weight the relative impor-
tance of the different decisions that can be taken. The
Q-tables will thus give a measure of current motiva-
tions.

Scene decomposition

When choosing among its available actions, an agent
has to analyse the present situation. This is done by
searching in the scene which configurations are linked
to behaviors, and are therefore of interest. If P is the
perception, the useful configurations are in

C = {c ⊂ P | ∃b ; Qb(c, .) and θb(c, .) are well defined}.1

A configuration may be related to different behaviors,
leading to the use of

B(c) = {b | Qb(c, .) and θb(c, .) are well defined}.1

agent

O1

O2 O3

hole blocs

Figure 1. A not so simple scene
In the scene shown on this figure, the agent perceives
objects O1, O2 and O3. With two behaviors: avoiding
holes (ba) and pushing blocs in holes (bp), the agent has
to manage three different (behavior, configuration) pairs:
(ba, {O2}), (bp, {O1, O2}) and (bp, {O3, O2}).

1By “well defined”, we mean that the Qb and θb tables
are defined for configuration c. For a given behavior b,
only a restricted subset of all possible configurations are of
interest, and are therefore defined.

Basic behaviors combination

Once the scene is decomposed, the agent has to use
its knowledge to decide its next action. This is
done by calculating a weighted distribution P (a) =
1
K

∑
c∈C
∑
b∈B(c) w(b, c, a).Pb(c, a) for each action a,

resulting in a probability distribution over actions. In
this formula, the w(b, c, a) are positive functions that
can be defined in various ways, and K is a normalizing
factor.

The basis of this computation is a heuristic lacking
of theoretical support. Nevertheless, this part of the
method is subject to discussion, as tools like fuzzy
logic (Zadeh, 1973) or learned parameters could be
efficiently used. For now our experiments only present
different w functions that helped us analyze the prob-
lem.

Some experiments

One task we tried to deal with thanks to this method
was for four predators to catch a prey while avoiding
a wall. Two basic behaviors: hunt and avoid were
already known (learned θ- and Q-tables) and had only
to be adequately combined to obtain Θ. Five methods
have been tried:

1. hunt behavior alone: P (a) = Phunt(a|ch),

2. avoid behavior alone: P (a) = Pavoid(a|ca),

3. both behaviors with equal weights:
P (a) = 1

2 [Phunt(a|ch) + Pavoid(a|ca)],

4. both behaviors weighted by
w(b, c) = maxa{abs(Qb(c, a))}, and

5. hunt behavior with certain moves forbidden if
Qavoid(c, a) < 0.

Some results are shown on table 1 for this particular
application.

�����
�����
�����
�����

�����
�����
�����
�����

method #captures #hits
hunt 802 349
avoid 1 0

3 91 65
4 790 220
5 834 0

Table 1. Results in a 7× 7 grid-world
(Number of prey-captures and wall-hits for one predator in
10000 time steps.)

Results and Perspectives

The method was tried on two different problems: 1-
predators catching a prey while avoiding a wall, and 2-
agents having to merge pairs of blocs (with different
possible fusions at the same time). These examples
involve various forms of motivations (reaching a goal
or avoiding an injury) and various relations between
them (different levels of priority, or equal priority mo-
tivations). Whereas it illustrated the complexity of a
behavior composed of many basic behaviors, the effi-
ciency obtained through this method is encouraging.

The next step will be to learn parameters so as to bet-
ter tune the relative importance of the different be-
haviors. But we also would like to dynamically learn
hierarchies of basic behaviors, and automatize the cre-
ation of a behaviors’ library.

References

Dixon, K., Malak, R., & Khosla, P. (2000). Incorporat-
ing prior knowledge and previously learned informa-
tion into reinforcement learning agents (Technical
Report). Carnegie Mellon University, Institute for
Complex Engineered Systems.

Dutech, A., Buffet, O., & Charpillet, F. (2001). Multi-
agent systems by incremental gradient reinforce-
ment learning. Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-01.

Kearns, M., & Koller, D. (1999). Efficient reinforce-
ment learning in factored mdps. Proceedings of the
16th International Joint Conference on Artificial In-
telligence, IJCAI’99, Stockholm.

Parr, R. (1998). Hierarchical control and learning
for markov decision processes. Doctoral disserta-
tion, Computer Science, University of California at
Berkeley.

Zadeh, L. A. (1973). Outline of a new approach to the
analysis of complex systems and decision processes.
IEEE Transactions on Systems, Man and Cybernet-
ics, SMC-3, 28–44.

