
A Self-Made Agent Based on Action-Selection

Olivier Buffet buffet@loria.fr

Alain Dutech dutech@loria.fr

LORIA / INRIA-Lorraine, BP 239 - 54506 Vandœuvre-lès-Nancy - France

Abstract

Some agents have to face multiple objectives
simultaneously. In such cases, and consider-
ing partially observable environments, classi-
cal Reinforcement Learning (RL) is prone to
fall in pretty low local optima, only learn-
ing straightforward behaviors. We present
here a method that tries to identify and learn
independent “basic” behaviors solving sepa-
rate tasks the agent has to face. Using a
combination of these behaviors (an action-
selection algorithm), the agent is then able
to efficiently deal with various complex goals
in complex environments.

1. Introduction

Considering the design of autonomous agents, an im-
portant difficulty we met was to learn a policy not
only in a partially observable environment (without
model), but also considering various goals. Such a
situation is shown by the example given on figure 1,
where an agent has to push tiles in holes while avoiding
the holes. A classical RL algorithm (Kaelbling et al.,
1996) may only find out how to avoid the holes, what
is a low local optimum.

O2

O1

O3

agent

hole tiles

Figure 1. A scene with some ob-
jects: the global task is a com-
bination of sub-tasks.

O2 O3

O2

O1

O2

+
push tile

push tile
+

avoid hole

Tools developped to precisely answer to such prob-
lems of managing multiple goals belong to the field
of Action Selection (AS) (Tyrrell, 1993). Yet, existing

approaches are generally non-adaptive winner-take-all
algorithms (selecting one behavior to apply) and pro-
duce deterministic behaviors. We have thus proposed
our own algorithm (see (Buffet et al., 2002)), which
has moreover made it possible to overcome some local
optima (Buffet et al., 2003) and also to automatically
determine the “basic behaviors” the agent requires.

2. Basic Behaviors’ Combination

We in fact studied several Action Selection algorithms,
all based on simple combinations of stochastic policies.
As we work in an “object-oriented” environment, such
a policy is defined for a set of types of objects. Addi-
tionally, the knowledge of the corresponding Q-values
has proved to be useful to balance the policies (a pol-
icy gives an opinion with a strength depending on the
Q-values). From these remarks, we can go to the defi-
nition of a behavior b as a tuple 〈CTb , Pb, Qb〉, where:

1. CTb is a type of configuration, that is, a tuple
of types of objects involved in the behavior.

2. Pb(o, c, a) is a stochastic decision policy.
Given an appropriate configuration, it maps its
observations to probability distributions over ac-
tions.

3. Qb(o, c, a) is the Q-table of this policy, giving
the expected discounted reward of an observation.

Having selected a set B of “basic” behaviors (bbs) (as
[avoid hole] and [push tile] in the case of Figure
1), the action selection mechanism has to identify the
subsets of perceived objects (called configurations) cor-
responding to a bb’s type of configuration. Having for
each b ∈ B the set of current configurations C(b, o), the
probability of choosing action a under observation o is
obtained by (we give only an example of a satisfying
computation we experimented):

Pr(a|o) =
1

K
.

1

k(o,a)

∑
b∈B

eθb︸︷︷︸
to learn

[
∑

c∈C(b,o)

|Qb(o, c, a)|.Pb(o, c, a)

︸ ︷︷ ︸
already known

]

(with k(o,a) =
∑

(b,c)∈BC(o)

eθb .|Qb(o, c, a)|).

In these formulas appears a set of θb parameters used
to automatically balance the bbs, which may have dif-
ferent relative importances from one problem faced by
the agent to another. The adaptation has simply been
made through simulated annealing.

3. Incremental Learning

The results of the combination described above are
globally satisfying: the policy observed is near an op-
timal one in most cases. Yet, some particular situa-
tions are problematic, since there “non-linear” nature
makes it impossible for the combination to propose an
appropriate decision (see Fig. 2).

O2

O1 O3

Figure 2. Blocking with 2 tiles and 1 hole (and an east
wall): Both “push” basic behaviors suggest to go west,
whereas the right option is to go north.

This problem encouraged us to use this policy ob-
tained by the combination as an initialisation for a
direct policy search (through a gradient ascent (Baxter
et al., 2001)). This process led to really good stochas-
tic policies overcoming local optima in which classical
approaches would have felt. The problem is then to
decide if this new policy must be added to the existing
bbs...

4. A Growing Tree of BBs

From this point, it was natural to think of a method to
automatically determine the set B of the agent’s basic
behaviors. This just requires:

• exploring a tree of behaviors to evaluate, this tree
being ordered according to: 1- growing types of
configurations and 2- growing combinations of re-
wards (in our example, the elementary rewards
correspond to the two intuitive behaviors used in
Fig. 1), and
• deciding if a new behavior bn must be retained in
B thanks to a chosen criterion which measures the
knowledge it brings.

The result is shown on Fig. 3, where both intuitive bbs
have been found, along with the bb resolving Fig. 2’s
blocking.

+

+−
−

+−
(−)+ +

+−
−

+−
−

(+)

+−
−

(+)+

+−
−

+

+−
−0

subtree of types of rewards

type of configuration

tile

hole

Figure 3. The tree of tested behaviors and (in parenthesis)
the ones kept (the ’+’ and ’-’ signs indicate the use of the
positive or negative elementary rewards).

5. Conclusion

The scheme proposed here is a simple heuristic and
suffers from the approximations it is based on. Yet,
the agent’s autonomy is important –as it is able to find
its required bbs, what is rarely done– and this process
is an interesting progressive approach for the design of
intelligent entities.

References

Baxter, J., Bartlett, P., & Weaver, L. (2001). Experi-
ments with infinite-horizon, policy-gradient estima-
tion. Journal of Artificial Intelligence Research, 15,
351–381.

Buffet, O., Dutech, A., & Charpillet, F. (2002). Adap-
tive combination of behaviors in an agent. Proc. of
ECAI’02.

Buffet, O., Dutech, A., & Charpillet, F. (2003). Auto-
matic generation of an agent’s basic behaviors. Proc.
of AAMAS’03. [to appear].

Kaelbling, L., Littman, M., & Moore, A. (1996). Rein-
forcement learning: A survey. Journal of Artificial
Intelligence Research, 4, 237–285.

Tyrrell, T. (1993). Computational mechanisms for ac-
tion selection. Doctoral dissertation, University of
Edinburgh.

