
Active Learning of MDP Models

Mauricio Araya-López, Olivier Buffet,
Vincent Thomas, and François Charpillet

Nancy Université / INRIA
LORIA – Campus Scientifique – BP 239

54506 Vandoeuvre-lès-Nancy Cedex – France
firstname.lastname@loria.fr

Abstract. We consider the active learning problem of inferring the
transition model of a Markov Decision Process by acting and observ-
ing transitions. This is particularly useful when no reward function is a
priori defined. Our proposal is to cast the active learning task as a util-
ity maximization problem using Bayesian reinforcement learning with
belief-dependent rewards. After presenting three possible performance
criteria, we derive from them the belief-dependent rewards to be used in
the decision-making process. As computing the optimal Bayesian value
function is intractable for large horizons, we use a simple algorithm to ap-
proximately solve this optimization problem. Despite the sub-optimality
of this technique, we show experimentally that our proposal is efficient
in a number of domains.

1 Introduction

Learning in Markov Decision Processes (MDPs) is usually seen as a means to
maximize the total utility for a given problem. Nevertheless, learning the transi-
tion model of an MDP independently of the utility function—if it exists—can be
a very useful task in some domains. For example, this can be used for learning
the transition model in a batch process, where in a first stage we are interested in
choosing the good actions for optimizing the information gathering process, and
afterwards in a second stage, we are interested in earning rewards [5]. Moreover,
there are some cases where we do not have access to the utility function, such
as models for simulations or model refinement, where we want only to learn a
good model, no matter which task the model will be used for.

Learning stochastic MDP models is an easy task if an exploration policy is
given. In this case, the history of transitions can be seen as the data, and the
problem of finding the optimal parameters for the selected distribution over the
models can be solved by using likelihood maximization.

Here, we are concerned with actively learning the transition model, what
raises a control problem. This amounts to finding a policy that explores optimally
an MDP in order to acquire the best distribution over possible models. This
differs from active supervised learning, where any sample can be queried at any
time. In our setting, a sequence of actions is needed to reach a specific state

2

from which to acquire a new sample. This is a complex problem since one has
to reason on an imperfect model in order to improve that same model.

To our knowledge, there is not much research in active learning for arbitrary
stochastic MDP models [19]. Indeed, one of the few works in this domain is
about learning Dynamic Bayesian Networks (DBNs) for representing factored
MDPs [9], where the authors conclude that actively learning transition models
is a challenging problem and new techniques are needed to address this problem
properly.

Our proposal is to use the Bayesian Reinforcement Learning (BRL) machin-
ery with belief-dependent rewards to solve this active learning task. First we cast
the learning problem as a utility maximization problem by using rewards that
depend on the belief that is being monitored. Then, we define some performance
criteria to measure the quality of distributions produced by different policies.
Using these criteria, we derive the belief-dependent rewards that will be used
to find exploration policies. Due to the intractability of computing the optimal
Bayesian value function, we solve this problem sub-optimally by using a simple
myopic technique called exploit.

Belief-dependent rewards have been used as heuristic methods for POMDPs.
For example, in coastal navigation [15], convergence is sped up by using re-
ward shaping based on an information-based criterion. Moreover, POMDPs
with belief-dependent rewards have been recently studied in [1], where classical
POMDP algorithms are applied to this type of rewards only with little modifi-
cations. Unfortunately, these techniques cannot be applied, for the same reason
why POMDP algorithms are not used for standard BRL: the special type of
beliefs used are not suitable for these algorithms.

The remainder of the paper is organized as follows. In Section 2 we give a
short review of BRL and the algorithms that have been proposed so far. Then,
in Section 3 we introduce the methodology used to solve this active learning
problem as a BRL problem with belief-dependent rewards, including the selected
performance criteria and their respective derived rewards. In Section 4 we present
the results of several experiments over some MDP models taken from the state
of the art. Finally, in Section 5 we close with the conclusion and future work.

2 Background

2.1 Reinforcement Learning

A Markov Decision Process (MDP) [13] is defined by a tuple 〈S,A, T,R〉 where
S is a finite set of system states, A is a finite set of possible actions, the transition
function T indicates the probability to transition from one state s to another s′

when some action a is performed: T (s, a, s′) = Pr(s′|s, a), and R(s, a, s′) is the
instant scalar reward obtained during this transition. Reinforcement Learning
(RL) [18] is the problem of finding an optimal decision policy—a mapping π :
S → A—when the model (T and R) is unknown but while interacting with the

3

system. A typical performance criterion is the expected return

V πH(s) = Eπ

[
H∑
t=0

R(St, At, St+1)|S0 = s

]
,

where H is the planning horizon1. Under an optimal policy, this state value
function verifies the Bellman optimality equation [3] (for all s ∈ S):

V ∗H(s) = max
a∈A

∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + V ∗H−1(s′)

]
,

and computing this optimal value function allows to derive an optimal policy
by behaving in a greedy manner, i.e., by picking actions in arg maxa∈AQ

∗(s, a),
where a state-action value function Qπ is defined as

QπH(s, a) =
∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + V πH−1(s′)

]
.

Typical RL algorithms either (i) directly estimate the optimal state-action
value function Q∗ (model-free RL), or (ii) learn T and R to compute V ∗ or Q∗

(model-based RL). Yet, in both cases, a major difficulty is to pick actions so as
to make a compromise between exploiting the current knowledge and exploring
to acquire more knowledge.

2.2 Model-based Bayesian Reinforcement Learning

We consider here model-based Bayesian Reinforcement Learning [17] (BRL), i.e.,
model-based RL where the knowledge about the model—now a random vector
b—is represented using a—generally structured—probability distribution over
possible transition models. An initial distribution Pr(b0) has to be specified,
which is then updated using the Bayes rule after each new transition (s, a, s′):

Pr(bt+1|b0, ht+1) =Pr(bt+1|bt, st, at, st+1)Pr(bt|b0, ht),

where ht = s0, a0, · · · , st−1, at−1, st is the state-action history until t. This ran-
dom variable is usually known as the belief over the model, and therefore defines
a belief-MDP with an infinite state space. Solving optimally this belief-MDP
is intractable due to the increasing complexity along the planning horizon, but
formulating the reinforcement learning problem using a Bayesian approach pro-
vides a sound way of dealing with the exploration-exploitation dilemma. Even
though POMDP algorithms deal with belief-MDPs, one cannot directly benefit
from classical POMDP algorithms because of the particular type of belief space.
Other—offline or online—approximate approaches have therefore been intro-
duced, allowing in a number of cases to prove theoretical properties. Several ap-
proaches and approximation techniques have been proposed for BRL and, as pre-
sented in [2], most approaches belong to one of the three following classes, from

1 For simplicity, in this paper we are focused on undiscounted finite horizon problems.
However, a similar technique can be applied to the discounted infinite horizon case.

4

the simplest to the most complex: undirected approaches, myopic approaches and
belief-lookahead approaches.

Undirected approaches do not consider the uncertainty about the model to
select the next action, and therefore do not reason about the possible gain of
information. They often rely on picking random actions occasionally, e.g., using
an ε-greedy or softmax exploration strategy, the computed Q-value being based
on the average model. These algorithms usually converge to the optimal value
function in the limit, but with no guarantee on the convergence speed.

Myopic approaches select the next action so as to reduce the uncertainty
about the model. Some of them solve the current average MDP with an added
exploration reward which favors transitions with lesser known models, as in R-
max [4], BEB [10], or with variance based rewards [16]. Another approach, used
in BOSS [2], is to solve, when the model has changed sufficiently, an optimistic
estimate of the true MDP (obtained by merging multiple sampled models). For
some of these algorithms, such as BOSS and BEB, there is a guarantee that,
with high probability, the value function is close to some optimum (Bayesian or
PAC-MDP) after a given number of samples. Yet, they may stop exploring after
some time, preventing the convergence to the optimal value function.

Belief-lookahead approaches aim at optimally compromising between ex-
ploration and exploitation. One can indeed [7] reformulate BRL as the problem
of solving a POMDP where the current state is a pair ω = (s, b), where s is the
current observable state of the BRL and b is the belief on the hidden model. Each
transition (s, a, s′) is an observation that provides new information to include to
b. beetle [12] is one of the few such approaches, one reason for their rarity being
their overwhelming computational requirements. Other option is to develop the
tree of beliefs and use branch-and-bound to prune the infinite expansion [6].

2.3 Chosen Family of Probability Distributions

Among various possible representations for the belief b over the model, we use
here one independent Dirichlet distribution per state-action pair. We denote one
of them at time t by its sufficient statistic: a positive integer vector θts,a where
θts,a(s′) is the number of observations of transition (s, a, s′), including θ0s,a(s′) a
priori observations. The complete belief state of the system can thus be written
ω = (s,θ), where θ = {θs,a,∀s, a}. This is called a Belief-Augmented MDP
(BAMDP), a special kind of belief-MDP where the belief-state is factored into
the system state and the model. A triplet (s, a, s′) leads to a Bayesian update
of the model, θ′ differing from θ only in that θ′s,a(s′) = θs,a(s′) + 1. Moreover,
due to the properties of Dirichlet distributions, the transition function of the

BAMDP T (ω, a, ω′) is given by: Pr(ω′|ω, a) =
θs,a(s

′)
‖θs,a‖1 .

To sum up, BRL transforms the problem of facing an unknown model into
that of making decisions when the state contains unobserved system parameters.
The problem of finding a sound compromise between exploration and exploita-
tion becomes that of solving a BAMDP given an initial set of belief-parameters
θ0.

5

3 Active Learning of MDP models using BRL

In this paper we are interested in learning the hidden model of an MDP by
observing state transitions online, under an active exploration strategy. From
this arises a decision-making problem, where the best policy of actions must be
selected in order to optimize the learning process. For a given policy, the learn-
ing process is straightforward using the Bayesian setting, because the likelihood
maximization for the joint Dirichlet distribution corresponds to the sequential
Bayes update of the θ parameter described in Section 2.2. Therefore, the op-
timal policy will depend on the criterion used to compare two joint Dirichlet
distributions produced from different policies. Among the possible options, we
have selected three performance criteria that will be described in Section 3.2.

For finding the optimal policy, we can cast the active learning task as a BRL
problem with belief-dependent rewards, where these rewards can be derived from
the performance criterion. In other words, we extend the classical definition of
BRL to rewards that depend on the θ parameter, where the Bellman equation
takes the form:

VH(θ, s) = max
a

[∑
s′

Pr(s′|s, a,θ)(ρ(θ, a,θ′) + VH−1(θ′, s′))

]
, (1)

with θ′ the posterior parameter vector after the Bayes update with (s, a, s′),
and ρ(θ, a,θ′) = ρ(s, a, s′,θ) the immediate belief-dependent reward. Within
this formulation the problem of actively learning MDP models can be optimally
solved using a dynamic programming technique. Yet, as in normal BRL, comput-
ing the exact value function is intractable because of the large branching factor
of the tree expansion, so approximation techniques will be needed to address
this problem.

3.1 Derived Rewards

In order to define the belief-dependent rewards needed for Equation 1, we will
use the analytical expressions of the performance criteria to derive analytical
expressions for immediate reward functions. As our problem has a finite horizon,
one can say that the performance criteria could be used directly as a reward in
the final step, whereas the rewards would be zero for the rest of the steps. Yet,
this type of reward functions forces to develop the complete tree expansion in
order to obtain non-zero rewards, which turns out to be extremely expensive for
large horizons.

Therefore, we need a way of defining substantial immediate rewards at each
step. As rewards are defined over a transition (s, a, s′) and the current belief-
parameter θ, we will use the Bayesian update for computing the performance
difference between the current belief and the posterior belief. This is a standard
reward shaping technique, which allows decomposing a potential function—here
the performance criteria—in immediate rewards for each step, with the property
of preserving the optimality of the generated policy [11].

6

Let D(θt,θ0) be a distance between the initial prior and the posterior pa-
rameters after t Bayes updates such that maximizing this distance amounts to
maximizing the gain of information. From this we define the derived reward as
follows,

ρ(s, a, s′,θt) = D(θt+1,θ0)−D(θt,θ0),

where θt+1 is the set of parameters after the transition (s, a, s′) from θt. Please
recall that the Bayes update only modifies one state-action pair per update,
meaning that only one state-action pair component of our distribution will
change per update. This provides important simplifications in computing the
performance of one transition.

In some cases, the performance criterion complies with the triangular equality,
meaning that the derived rewards can be simply computed as

ρ(s, a, s′,θt) = D(θt,θt+1), (2)

removing the dependency from the initial prior.

3.2 Performance Criteria

Assuming that the real model is unknown, we must define a way to compare two
distributions produced by different policies. As there is no a priori best criterion,
we have selected three information-based criteria under the constraint that they
can be computed analytically: the variance difference, the entropy difference and
the Bhattacharyya distance.

Variance Difference The first criterion is based on the simple intuition that we
are seeking those policies that produce low-variance distributions. The variance
for the multivariate distribution over the models corresponds to a heavily sparse
matrix of size |S|2|A|×|S|2|A|, but here we will consider that the sum of marginal
variances (the trace of the matrix) is enough as a metric. The variance of the i-th

element of a Dirichlet distribution is given by σ2(Xi|α) = αi(‖α‖1−αi)
‖α‖21(‖α‖1+1)

. Then,

we define the variance difference as follows,

DV (θt,θ0) =
∑
s,a

∑
s′

(σ2(Xs′ |θ0s,a)− σ2(Xs′ |θts,a)).

Entropy Difference An other common measure for probability distributions
is the entropy, which measures the uncertainty of a random variable. Computing
the uncertainty of beliefs seems to be a natural way of quantifying the quality
of distributions. The entropy of a multivariate random variable distributed as
a Dirichlet distribution with parameters α is given by H(α) = log(B(α)) +

(‖α‖1 −N)ψ(‖α‖1)−
∑N
j=1((αj − 1)ψ(αj) , where B(·) is the generalized beta

function, N is the dimensionality of the vector α, and ψ(·) is the digamma
function. Then, we define the entropy difference as

DH(θt,θ0) =
∑
s,a

(H(θ0s,a)−H(θts,a)).

7

Bhattacharyya Distance The two measures described above attempt to quan-
tify how much information the distribution contains. In this context, information
theory provides several notions of information such as Chernoff’s, Shannon’s,
Fisher’s or Kolmogorov’s. As stated in [14], the last three are inappropriate for
Dirichlet distributions, because an analytical solution of the integral does not
exist or due to the non-existence for some specific values. Using the result in
[14] for computing the Chernoff information between two Dirichlet distributions
Cλ(α,α′), and fixing the parameter λ to 1/2, we obtain the Bhattacharyya dis-
tance between two belief-states as follows,

DB(θt,θ0) =
∑
s,a

− log

 B(
θt
s,a

2 +
θ0
s,a

2)√
B(θts,a)B(θ0s,a)

 .

3.3 From Criteria to Rewards

It can be shown that the first two criteria presented in Section 3.2 comply with
the triangular equality, so we can use Equation 2 to compute their respective
derived reward functions. Even though this is not always true for the Bhat-
tacharyya distance, we will also use Equation 2 for simplicity, knowing that we
are not preserving optimality for this specific case.

Therefore, after some trivial but tedious algebra, we can define the variance,
entropy and Bhattacharyya instant rewards. For presenting these expressions we
use the helper variables x = θs,a(s′) and y = ‖θs,a‖1 for all the rewards, and
also z = ‖θs,a‖22 for the variance reward:

ρV (s, a, s′,θ) =
1

y + 1
− z

y2(y + 1)
+

2x− y + z

(y + 1)2(y + 2)
,

ρH(s, a, s′,θ) = log
(y
x

)
+
|S|+ 1

y
−

y∑
j=x

1

j
,

ρB(s, a, s′,θ) = log

[
Γ (x)

√
x

Γ (x+ 1/2)

]
− log

[
Γ (y)

√
y

Γ (y + 1/2)

]
.

Also, we would like to introduce a simple reward function, motivated by the
exploration bonus of BEB [10], which only focuses on the difference of informa-
tion from one state-action pair to another. This state-action count reward can
be simply defined as

ρS(s, a, s′,θ) =
1

‖θs,a‖1
=

1

y
.

This reward is easier to compute than the other three, but preserves the same
principle of quantifying the information gain of a Bayes update. In fact, this
reward function optimizes the performance criterion

DS(θt,θ0) =
∑
s,a

(ψ(‖θts,a‖)− ψ(‖θ0s,a‖)),

8

which turns out to be a quantity appearing in both the entropy difference and
the Bhattacharyya distance.

A key property of the rewards presented above is that they tend to zero for
an infinite belief evolution, meaning that there is no more to learn at this stage.
Specifically, the two last rewards ρB and ρS are always positive and decreasing
functions with the belief evolution, while the two first ρV and ρH can have
negative values, but their absolute values are always decreasing, all of them
converging to zero in the limit.

3.4 Solving BRL with Belief-dependent Rewards

It is clear that the algorithms that have been introduced in Section 2.2 will
require some modifications to work with belief-dependent rewards. For example,
beetle uses a polynomial representation of the value function, where rewards
are scalar factors multiplying monomials. In our setup, rewards will be functions
multiplying monomials, which makes offline planning even more complex.

exploit, which is one of the simplest online algorithms for BRL, consists in
solving the MDP corresponding to the current average model or, in other words,
iterating over the Bayesian value function without performing the Bayes update.
Then, exploit executes the best action for this simple MDP, updates its belief
by observing the arrival state, and starts again by solving the MDP for the new
average model. Please note that exploit does not guarantee converging to an
optimal policy (as in ε-greedy Q-learning).

For the belief-dependent reward scenario, exploit takes the form

VH(θ, s) = max
a

[∑
s′

Pr(s′|s, a,θ) (ρ(s, a, s′,θ) + VH−1(θ, s′))

]
,

where the MDP to solve is defined by a transition model T (s, a, s′) = θs,a(s′)/‖θs,a‖
and reward function R(s, a, s′) = ρ(s, a, s′,θ).

If we consider now the belief-dependent rewards presented in Section 3.1,
solving this MDP will not provide a lower bound—neither an upper bound—of
the Bayesian value function, but only an approximation. This simple algorithm
will exploit the current information about the belief to explore parts of the
model where the information is still weak, and despite the sub-optimality of
the approximation, this algorithm exhibits a fair exploration behavior where all
state-action pairs are visited infinitely often in the limit.

4 Experiments

4.1 Experimental Setup

We have selected three small MDP models to learn, taken from the BRL state
of the art: the classic Bandit [8] problem, and the Chain and Loop problems
[17]. For each problem, we have tested several transition models, varying the

9

b
aa a a a

b

b

b

b

s1 s2 s3 s4 s5

Fig. 1. Chain MDP model used for the experiments (without transition probabilities).

transition probabilities of the arcs to test our technique under different scenarios.
However, due to space constraints we will present here only the results for the
Chain problem, with a short discussion of the other problems.

In the 5-state Chain MDP (Figure 1), every state is connected to the state
s1 by taking action b and every state si is connected to the next state si+1

with action a, except state s5 that is connected to itself. In the normal case,
the agent can “slip” at each time step with a probability of 0.2, performing the
opposite action as intended. We have also tested the deterministic case when
the probability of slipping is zero. Finally, we have tested a mixed version, where
the probability of slipping is zero for action b, but 0.5 for action a. These two
variations decrease the chances to arrive “by luck” to the states at the right of
the chain.

The initial conditions of the problem are that we always start at state s1 with
the uniform distribution over the transition models as an initial prior. Other
priors can be used—such as informative or structured priors—but for simplicity
we will consider for this paper only the uniform one.

For evaluating the behavior of exploit, we have considered two other poli-
cies, namely the random and greedy policies. The random policy chooses
homogeneously a random action at each step, while the greedy policy selects
the action with largest expected immediate reward.

The three performance criteria have been tested, where the rewards for ex-
ploit and greedy are the respective derived rewards of Section 3.1 ρV , ρH and
ρB depending on the evaluated performance criterion. Also, we have tested the
state-action count reward ρS for each criterion and experiment.

For approximately solving the finite horizon MDPs within exploit, we have
truncated the planning horizon to a small value h = min(2|S|, H). Increasing
h will provide better results, but to be similar in execution time with random
and greedy, we have selected this small horizon.

4.2 Results

We have tested all the strategies on each problem for the first 100 to 1000 steps,
and for each performance criterion. Figure 2 shows the average performance over

10

Normal Deterministic Mixed

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 100 200 300 400 500 600 700 800 900 1000

V
a

ri
a

n
c
e

 D
if
fe

re
n

c
e

Steps

exploit(var)
greedy(var)

random
exploit(sac)

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 100 200 300 400 500 600 700 800 900 1000

V
a

ri
a

n
c
e

 D
if
fe

re
n

c
e

Steps

exploit(var)
greedy(var)

random
exploit(sac)

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 100 200 300 400 500 600 700 800 900 1000

V
a

ri
a

n
c
e

 D
if
fe

re
n

c
e

Steps

exploit(var)
greedy(var)

random
exploit(sac)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800 900 1000

E
n

tr
o

p
y
 D

if
fe

re
n

c
e

Steps

exploit(ent)
greedy(ent)

random
exploit(sac)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 100 200 300 400 500 600 700 800 900 1000

E
n

tr
o

p
y
 D

if
fe

re
n

c
e

Steps

exploit(ent)
greedy(ent)

random
exploit(sac)

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

E
n

tr
o

p
y
 D

if
fe

re
n

c
e

Steps

exploit(ent)
greedy(ent)

random
exploit(sac)

 5

 10

 15

 20

 25

 30

 35

 40

 100 200 300 400 500 600 700 800 900 1000

B
h

a
tt

a
c
h

a
ry

y
a

 D
is

ta
n

c
e

Steps

exploit(bha)
greedy(bha)

random
exploit(sac)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 100 200 300 400 500 600 700 800 900 1000

B
h

a
tt

a
c
h

a
ry

y
a

 D
is

ta
n

c
e

Steps

exploit(bha)
greedy(bha)

random
exploit(sac)

 5

 10

 15

 20

 25

 30

 35

 100 200 300 400 500 600 700 800 900 1000

B
h

a
tt

a
c
h

a
ry

y
a

 D
is

ta
n

c
e

Steps

exploit(bha)
greedy(bha)

random
exploit(sac)

Fig. 2. Mean performance over 100 trials versus time steps, for the Chain problem
with different models and the three performance criteria. For each plot, the random
strategy (in blue ∗), the greedy strategy (in green ×), and the exploit algorithm with
the derived reward (in red +) and with the state-action count reward (in magenta �)
are shown.

100 trials plotted with their respective 95% confidence interval for the Chain
problem.

Even though Chain is a small problem, it is interesting because an intelligent
exploration behavior is needed to learn the model. This can be seen along the
three criteria, where the greedy policy behaves very poorly because a lookahead
strategy is needed to arrive to some states. Even though the random strategy
behaves fairly well, information-based strategies outperform this simple tech-
nique in all three criteria: for a desired solution quality, several hundred steps
more are needed by random to achieve the same results. Even more, for the
variance criterion, it seems to be very difficult for random to achieve the same
quality in the short-term.

An other important result is that the state-action count reward behaves
similarly well as the respective derived rewards. This means that the derived
rewards can be replaced by this computationally cheap reward with no much
performance loss. Indeed, performing a cross-experiment for the rewards and
criteria shows that all information-based rewards behave similarly well for all
criteria.

11

For the Bandit problem there is not much difference between the algorithms,
and the behavior is the same through the different criteria. This is because
the optimal policy for exploring a fully connected MDP corresponds to fairly
selecting the available actions, which resembles the random policy.

On the Loop problem the results resemble to the ones presented for the
Chain: information-based rewards outperform the two simple algorithms. Yet,
the improvements of our approach compared to random are milder than in the
Chain, because a simple exploration strategy is sufficient for this problem.

5 Conclusion and Future Work

We have presented a sound and original way of modeling the problem of ac-
tively learning a stochastic MDP model with arbitrary dynamics, by casting the
problem as a BRL utility maximization problem with belief-dependent rewards.
To that end, we have employed three performance criteria that are commonly
used to compare probability distributions, namely the variance, the entropy and
the Bhattacharyya distance. For each performance criterion, we have derived a
belief-dependent reward such that, in the first two cases, the accumulated re-
wards correspond exactly to the performance criterion. Also, we have presented
a simple reward function—the state-action count—based on previous work on
normal BRL. Even though the formulation—in theory—allows solving the prob-
lem optimally, the intractability of computing the optimal Bayesian value func-
tion leads to using sub-optimal algorithms such as exploit. Our experiments
show that this simple technique produces better results than selecting actions
randomly, which is the baseline technique for exploring unknown MDP models.
Also, our experiments show that there is no need for selecting complex derived
rewards (at least for exploit) in order to obtain good results; the state-action
count behaves nearly as well as the theoretically derived rewards.

However, this work leaves several open questions about the possibilities of
modeling the active learning of MDP models using BRL. For instance, deepening
the analysis on the relationship between the state-action count criterion and the
other criteria might help defining a more advanced reward shaping technique
to derive computationally inexpensive rewards. Also, exploring other techniques
used for normal BRL could improve the results as they approach the optimal
solution. For example, belief-lookahead techniques can be used for refining the
myopic policies proposed here, or maybe some other myopic technique could
produce better results.

A natural extension is to encode prior knowledge as a structured prior, such
as with DBNs in [9], or with parameter tying in [12]. This would dramatically
speed up the learning process by making a much more efficient use of data, while
not involving major modifications in the solution techniques.

12

References

1. Araya-López, M., Buffet, O., Thomas, V., Charpillet, F.: A POMDP extension with
belief-dependent rewards. In: Advances in Neural Information Processing Systems
23 (NIPS-10) (2010)

2. Asmuth, J., Li, L., Littman, M., Nouri, A., Wingate, D.: A Bayesian sampling
approach to exploration in reinforcement learning. In: Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence (UAI’09) (2009)

3. Bellman, R.: The theory of dynamic programming. Bull. Amer. Math. Soc. 60,
503–516 (1954)

4. Brafman, R., Tennenholtz, M.: R-max - a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research 3, 213–
231 (2003)

5. Şimşek, O., Barto, A.G.: An intrinsic reward mechanism for efficient exploration.
In: Proceedings of the 23rd international conference on Machine learning. pp. 833–
840. ICML’06, ACM, New York, NY, USA (2006)

6. Dimitrakakis, C.: Tree exploration for Bayesian RL exploration. In:
CIMCA/IAWTIC/ISE. pp. 1029–1034 (2008)

7. Duff, M.: Optimal learning: Computational procedures for Bayes-adaptive Markov
decision processes. Ph.D. thesis, University of Massachusetts Amherst (2002)

8. Gittins, J.C.: Bandit processes and dynamic allocation indices. Journal of the Royal
Statistical Society 41(2), 148–177 (1979)

9. Jonsson, A., Barto, A.: Active learning of dynamic Bayesian networks in Markov
decision processes. In: Proceedings of the 7th International Conference on Abstrac-
tion, Reformulation, and Approximation. pp. 273–284. SARA’07, Springer-Verlag,
Berlin, Heidelberg (2007)

10. Kolter, J., Ng, A.: Near-Bayesian exploration in polynomial time. In: Proceedings
of the Twenty-Sixth International Conference on Machine Learning (ICML’09)
(2009)

11. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
Theory and application to reward shaping. In: Proceedings of the Sixteenth Inter-
national Conference on Machine Learning. pp. 278–287. Morgan Kaufmann (1999)

12. Poupart, P., Vlassis, N., Hoey, J., Regan, K.: An analytic solution to discrete
Bayesian reinforcement learning. In: Proceedings of the Twenty-Third Interna-
tional Conference on Machine Learning (ICML’06) (2006)

13. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley-Interscience (April 1994)

14. Rauber, T., Braun, T., Berns, K.: Probabilistic distance measures of the Dirichlet
and Beta distributions. Pattern Recognition 41(2), 637–645 (2008)

15. Roy, N., Thrun, S.: Coastal navigation with mobile robots. In: Advances in Neural
Information Processing Systems 12. pp. 1043–1049 (1999)

16. Sorg, J., Singh, S., Lewis, R.: Variance-based rewards for approximate Bayesian
reinforcement learning. In: Proceedings of the Twenty-Sixth Conference on Uncer-
tainty in Artificial Intelligence (2010)

17. Strens, M.J.A.: A Bayesian framework for reinforcement learning. In: Proceed-
ings of the International Conference on Machine Learning (ICML’00). pp. 943–950
(2000)

18. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
19. Szepesvári, C.: Reinforcement learning algorithms for MDPs – a survey. Tech. Rep.

TR09-13, Department of Computing Science, University of Alberta (2009)

