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Abstract—In this paper, we describe and evaluate an original
Monte Carlo JPDAF for tracking interacting autonomous targets
in a cluttered environment. The originality of the proposed
algorithm consists in reducing the complexity of the prediction
step by selecting and separately updating groups of targets in
interaction. The complexity of the correction step is addressed by
Data Association and a gating procedure as found in literature.
The main assumptions we make in this paper are (i) that the
evolution of the state of each target only depends on the states
of all the targets at the previous time step and (ii) that a generic
simulator or a function modeling the targets’ behaviors and their
mutual interactions is available. We also build an approximate
interaction graph between targets on the fly on the basis of simple
information like their location, as it has been done in previous
work. Experiments show that representing interactions this way
can lead to good tracking efficiency with low computational cost.

I. INTRODUCTION

In the field of state estimation, the problem of target
tracking has been widely studied during the last decades.
Classical methods have been developed in the case of a single
target. The most popular one is the Kalman filter [1] in which it
is assumed that both the dynamical model of the target and the
observation model are linear and Gaussian. Studies have also
been performed for application areas in which it is required
to include non-linear and non-Gaussian elements in order to
accurately model the underlying dynamics of the target. Sev-
eral methods have been proposed to deal with such non-linear
models, such as the Extended Kalman filter [2], the Unscented
Kalman filter [3], and particle filters [4]. While variants of
the Kalman filter aim to approximate the distribution on the
system state as a Gaussian density probability, particle filters
make no assumptions on the form of the probability densities
[4], making particle filters more appropriate, in general, for
non-linear and non-Gaussian problems.

When the number of considered targets is greater than
one, the problem of tracking is referred to as Multiple Target
Tracking (MTT). A naive approach for dealing with the MTT
problem is to apply a single filtering method in which the
considered state is the combination of the states of all the
targets. However, this approach suffers from two main issues
which contribute to making the MTT a challenging topic of
research: (a) the complexity of the prediction step and (b) the
data-association problem in the correction step. The computa-
tional complexity of the prediction step comes directly from
the increase of dimension of the state space with the number
of tracked targets [5]. The data association problem appears
when the global observation function is defined by local target

observation functions and when the local observations do not
contain information about the target they are originated from.
In this case, there is a combinatorial explosion in the space of
possible multiple target trajectories due to the uncertainty in
the association of the received observations with known targets
at each time step. This is particularly significant in presence
of missing reports (detection probability is less than one) and
false reports (from clutter).

Several approaches have been proposed in the literature to
deal with this MTT-related data-association problem. Among
them, the most notable ones are the Multiple Hypothesis
Tracker (MHT) [6] and the Joint Probabilistic Data Association
Filter (JPDAF) [7]. The MHT, at each time step, considers
all valid data-association hypotheses and maintains a branch
for each of them. As more measurements are received, the
likelihood of each branch is computed and branches with low
probability are eliminated. The MHT is able to deal with a
varying number of targets; however its downside resides in
its high memory and processing requirements (which grow
exponentially with the number of tracks). On the other hand,
the JPDAF deals with a fixed number of targets and defines a
way of combining all valid data-association hypotheses such
that, at each time step, only one global update is needed
during the correction step without requiring the memory of
previous associations. Moreover, heuristics have been proposed
to reduce the number of considered associations like the
Gating procedure by considering proximity between target
estimates and individual observations. Therefore, it has a lower
computational complexity with respect to the MHT and is
suitable for online implementation.

In their initial derivations [6] [7], the MHT and JPDAF
approaches assume that the dynamical model of each target as
well as the observation model are linear and Gaussian; thus
the Kalman filter is used for target state estimation. Recently,
solutions have been proposed to extend the JPDAF approach
with particle filtering techniques for the general case of non-
linear and non-Gaussian models [8] [9] [10] referring to the
general term of Monte-Carlo JPDAF (MC-JPDAF).

Regarding the complexity of the prediction step, the above
described approaches (MHT, JPDAF, MC-JPDAF) are meant
to be applied when targets behave independently. In this case,
the state of each target can be estimated by a specific dis-
tribution and the complexity of the prediction step is reduced
by updating independently each distribution with the dynamics
of the considered target. However, in some applications, like
crowd surveillance for instance, the objective consists exactly



in monitoring interacting targets, so that the targets cannot be
considered to behave independently anymore. Instead, their be-
haviors may be influenced by a set of rules characterizing their
world. From a specific target point of view, these rules model
the interactions with other targets present in the environment
and can be of various kinds: for instance, social rules used
to model social contexts but also be physical rules preventing
two targets to be in the same exact location.

To consider interactions among targets, Khan et al. [11]
assume that their interactions have a specific structure included
in the transition model. They represent this application domain
knowledge using potential fields via a Markov Random Field
(MRF) given constraints between the states of the targets at the
same timestep. This way of modeling constraints the authors to
consider target interactions only at the correction step, which
allow to eliminate particles that are not consistent with the
application domain knowledge.

In this paper, we are also concerned with the problem of
tracking a fixed number of interacting targets, but we make
different assumptions about the dynamical model. While Khan
et al. use a specific interaction term which limits the model
they can use, we rather assume having a complex dynamical
model that integrates interactions and where the state of each
target depends only on the states of the other targets at the
previous time. This constraint seems more in adequation with
classical physical models as Craig Reynold’s boids [12]. The
approach proposed in this article consists then in reasoning on
an interaction graph built on the fly to consider which targets
are interacting among each other. This interaction graph is
used to build subsets of interacting targets and to compute
the prediction step by using K nearly independent filters, in
order to approximate the joint targets states. The approach
described in this paper is close to the one suggested by Khan
et al. [11] in the sense that it reasons on interacting targets,
but, in our approach, as the application domain knowledge
is fully included within the dynamical model of the targets,
the collaboration among filters occurs at the “prediction” step
instead of the “correction” step.

II. PROBLEM STATEMENT

Let us consider a closed environment in which several
targets evolve. The number K of targets in the environment
does not change over time. Let x* € R be the state of the k"
target at time 7, where n, represents the dimension of the state
variable. The state of the overall system at time ¢, defined as
x, = {x}}K | is the collection of the states of the entities in the
system. We consider the general case in which the trajectory
followed by the k* target may be influenced by other targets
of the environment at each time step. But we assume that the
evolution of the target state at the next time step depends solely
on all targets states at the previous time step, that is,

H (xF[x;—1) (1)

=

Xt|Xz ]

More precisely, we assume, for each target k, the availability
of a generic function that, given any total number of targets,
is able to compute (/simulate) the evolution of target k while
accounting for the influence of other targets. Let F/‘K : RK

R™, the dedicated discrete-time dynamics of the k" target. Its
evolution may then may be expressed as

k k k
X1 = F g (%) + Wy, @)
where WX is the process noise specific to target k.

The system is equipped with a sensor. It is assumed that
each target can be detected with a probability Pp, and, if
detected, a noisy observation of its state is provided. Further-
more, the sensor may provide false alarms, and the number
of false alarms generated follows a Poisson distribution with
a parameter Ap7V where Apr is the false alarm rate per unit
time, per unit volume; and V is the volume of %, the region
of the environment where the targets may evolve.

Let z, = (z,22,--- ") be the observation received from
the sensor at time ¢, where M; represents the number of
atomic observations. z; includes both noisy measurements
and false alarms. Let z] € R™ be the j-th observation at
time ¢t for j =1,---,M;, where n; is the dimension of each
observation data. It is assumed that each target generates a
unique observation at each time step if it is detected. Also,
an observation is originated from at most one target. Let
H :R™ — R be the observation function for one target. Then,
observations are generated according to:

H(x)+v! if 3k s.t. the j-th observation is
z] = from the k' target, (3)
u; otherwise,

where v/ is a zero-mean Gaussian noise with covariance matrix
Qy;,  ~ Unif(#) is a uniform random process for false

alarms.

The multi-target tracking problem consists in estimating
the target states xf for k=1,--- K, from the sequence of
observations received so far.

III. MONTE CARLO JPDAF

In this section, we present the Monte Carlo JPDAF (MC-
JPDAF) as it is applicable to the general case of non-linear
and non-Gaussian models. As stated before, the MC-JPDAF
uses common particle filter techniques to approximate the pos-
terior density function p(x,|z;,) of the target states given the
observations. However, previous works using JPDAF usually
assume a total independency among targets. This is translated
by modifying Equation 2 as follows:

Xp = F (%) + Wi, Vk=1,- “
where WX is defined as previously.

In this section, we rely on Equation 4 to represent the
dynamics of each target (interactions will be handled in
Section IV). The main idea of the JPDAF algorithm is to
recursively update the marginal filtering distribution for each
target p(xX|z;,) for k = 1,--- K instead of computing the
joint filtering distribution p(x;|z;;). The computation of these
distributions is performed through the Bayesian filtering frame-
work. In the MC-JPDAF paradigm, the particle filter is used
to approximate the Bayesian estimation of the target state.
Moreover, because of the uncertainty in the observation data
regarding the target they are originated from, the computation



of these marginal distributions cannot be performed indepen-
dently. Indeed, before computing each marginal distribution, a
procedure is needed to resolve the data association problem,
i.e., assign each target to its associated observation data. In
the JPDAF framework, this procedure is referred to as Data
Association and is the key feature of the JPDAF algorithm.

Thus the MC-JPDAF algorithm proceeds, at each time
step, by (1) resolving the data association problem in the
correction step, and then (2) using the particle filter techniques
to recursively update the target marginal distribution. In what
follows, we describe these two steps in more detail.

A. Particle Filter

Let us consider the problem of computing the posterior
probability density function (pdf) p(x¥|z;,) for the k' target.
The Bayesian filtering framework [13] provides a recursive
way of computing such a pdf assuming the availability of the
prior belief p(xl(‘)) regarding the target initial state at time step
t = 0. The Bayesian filter mainly proceeds through two steps:

the prediction step : the pdf at previous time step is modified
according to the target’s dynamics p(xf|xk |):

Ptz = [P P ot s ©)

the correction step : the pdf obtained at the prediction step
is corrected using the received observation z;:

p(xtlz1e) o< p(z %) p(xf |21:4-1). (©)

A particle filter (PF) [4] is an approxrmate Bayesian filter.

At time ¢, a PF represents the pdf p(xl |z1:) by a set of Ny

weighted particles ./} = {x, W }l , Where X" and wh' are

respectively the state and the weight of the i/ particle of the

k' target. The particle set 7 k is typically constructed from the
previous set 5”,"_ , and the current observation z, as follows:

1) Prediction: A sample xt‘r !

ple xt'_1 of the set 5” * | using a proposal densny function

(Xfle 17Zf) Usually, (Xt |Xt 17Z1) ( ‘Xz 1) ;

2) Weight Assignment: Each propagated sample xbi

tr—1
computed with

is generated from each sam-

is
assigned an importance weight w,

Wf,izwk,il (Z’|Xt|t 1)1’( z\t 1|X ). o

t_
CI( t|t 1|Xt 1,2 )

Once computed, the importance weights are normalized.

3) Resampling: This step consists in duplicating particles

with high importance weights and suppressing those with

low importance welghts At the end of the step, each

resultrng particle X,” is assigned an importance weight
k7 = 1/N,.

Furthermore, to encourage the state space exploration, the
resampling phase may not be performed at every time step,
but only when the effective size N,z of the filter goes below
a given threshold Ny where

Refr = = ®)
eff = 2 kivn
i (w2

The one-time-step PF algorithm is presented in Algo-
rithm 1.

Algorithm 1: Particle Filter

ki Ny N,
[{X tl i2y] = PF [{Xz 1 r 1 i1 2]

-

2 for z—l N do
3 sample Xt|t , from g(x; |xt 1,zt)
4 compute wf using Equation 7
ki
5 normalize the importance weights: w;” = Nj” =

w,
6 compute Neff according to Equation 8 o
7 if Nerr < Nr then
| wi Y ] = RESAMPLE [{xfwi" 1]
9 else

10 L for i=1,--- N, do assign x' = x"/

tr—1

B. Data Association Problem

According to Equation 7, the particle weight strongly de-
pends on the likelihood p(z, \xt i ,) of the received observation
with respect to the state represented by the particle (We recall
that z, = (z!,22,---,2™").). The question that arises is how to
compute this likellhood function since an association has to
be made between the observation data and the targets. The
JPDAF deals with this issue as described below.

Let By, Vj=0,---,M;, Yk =1,--- K be the probability
of the K™ target belng associated w1th the j" observation
data 7/ at time 7. The observation data z¥ is used to model
the situations in which a given target has not been detected.
Therefore, the likelihood of the observation z, with respect to
the k' target is defined as

p(z|x) =

Zmpmm )

All that remains is to compute the B probabilities.

Let an hypothesis 6 be a set of pairs (j,k) € {0 < My} %
{1,-- } ( k) € 6 means that the k" target is associated
with the J observatlon within hypothesis 0. 0 is a feasible
joint association event if it uniquely determines which observa-
tion is assigned to which target. Let ® be the set of all feasible
joint association events. Let us also consider ©j, the set of
all feasible joint association events in which observation k is
assigned to target j, ®j C @ such that @ = {6 : (j,k) € 0}.

Then we have
Ojlzi)= )

Bir = p( p(0lz1,). (10
0:(jk)eb

Given a feasible joint association event 6, one can easily
compute Npr, the number of observation data that are associ-
ated to a target and therefore Npr = M; — Npr the number of
false alarms. Moreover, it is possible to determine the identity
[; of the target associated to the j observation data. We have
lj=kif (j,k) €0, and [; = 0 otherwise.



As discussed by Vermaak et al. [10], the posterior probabil-
ity p(6|z;) of the joint association event 6 can be expressed
as

p(Oz1) <A (1= Pp) Ko PIPT T p(2 |214-1). (11)

j:lj;éO

with Nrr and Npr depending on 6, j :/; # 0 denoting the pairs
in O where the associated observation is not a false alarm, and
Apr and Pp coming from the observation model.

The term pk(ztj |z1.,—1) represents the predictive likelihood
of the j observation using the information from the k-th
target, and is expressed as

Pl = [pEXpEizg ek (2

In the particle filter paradigm, Equation 12 is approximated
using the propagated samples or particles. That is

k(2 |2141)

Z(Xf pZ, t|t 1> (13)

where the predictive weights a,k ' are given by:
i ; P( 1‘X 1) N i

a,’“«wf;’l—"‘ Yo =1 a4
q( I‘l ]|Xt 17Zl) i=1

Also, we have

e ' if j=0,
p(z{|x;) = N, (# —H(xf)) if not, (15)

where J%;ij(.) is a function computing probability values
from the zero-mean Gaussian pdf with covariance matrix Qy;.

Finally, using Equations 15, 13, 11 and 10, Equation 9 can
be computed and be integrated to the PF algorithm.

C. Reducing the Number of Feasible Association Events

One limitation of the JPDAF algorithm is the necessity
of enumerating all the feasible joint association events or
hypotheses. In order to reduce the number of these hypotheses,
Bar-Shalom et al. [14] introduced a technique named “Gat-
ing” allowing to associate to each target a validation region.
Therefore, only observations falling within the target validation
region are considered as possible candidates. This procedure
allows to decrease the computational cost of the tracking
system by reducing the number of considered association
events. An illustration of the procedure is shown in Fig. 1.
In this figure, the blue circles represent the different targets
while the green squares are the observation data. The dashed
ellipse around each target represents its validation region. As
illustrated, only measurements Z, and Z3 will be considered
for target 77 while no measurement has to be considered for
the target 7.

We are not presenting in this paper the detail of this
procedure. However, readers are encouraged to refer to [15]
for the application of this technique in the case of Monte-Carlo
JPDAF. The one step MC-JPDAF is reported in Algorithm 2.
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Fig. 1. Example of the Gating procedure: the blue circles represent targets
and the green squares represent measurements. The validation region of each
target is represented by the ellipse centered around it and only measurements
falling in this region are considered as feasible for the target.

Algorithm 2: Monte Carlo JPDAF

[{{Xt 7Wt }Nvl}kkl] =MC-
JPDAF[{{XI LW EE 1}k 7]

(5]

for k=1,---
3 for i=1,-

,K do
N do

4 L sample X" from q(xf |Xt 1vzt)

t|t 1

5 compute the measurement association possibilities
| (see section III-C)

6 compute the set ® of feasible joint association events
7 for k=1,---,K do
8 for j=0,---,M; do
9 | compute Bj; using 10
10 for i=1,--- ,N; do
11 L compute wf using Equations 9 and 7
ki
12 normalize the importance weights: Wf' = ):NVVV’ o
i=1 Wi
13 compute the effective size N off using Equation 8
u | if NJ;, <Nr then
kj  k.jyNs Wi Ns
15 L [{x7,wi/}¥ ] = RESAMPLE [{xt‘t Wi
16 else

, . ki _ ki
17 L for i=1,---,N; do assign x, =Xy
18

IV. TRACKING INTERACTING TARGETS

The previous section assumed that all the targets are
independent. In this section, we consider the case where targets
may interact with each other. We first present how Khan et al.
deal with interactions in their work, then our contribution.

A. MRF based Approach

Khan et al. [11] focus on the special case where the next
state of a target does not directly depend on the previous
other targets’ states but on the other targets’ states of the
same time-step. This assumption leads them to propose to
model interactions through a special structure of the transition
function. In this approach, the probabilistic transition model
can be decomposed into two products:

P(Xi| X1 “HP (Xie | X 1) H‘I/ it Xjt)

ijeE



where []; P(Xi|Xi;,—1)) considers that all targets behave in-
dependently and where the second product [T;jce W(Xir, X1
corresponds to interaction potentials to represent the physical
constraint that targets cannot overlap. Those potentials (and
thus interactions) are computed using a Markov Random
Fields(MRF).

An MREF is a graph (V,E) with undirected edges between
nodes where nodes represent targets, and an edge between node
k and node [ symbolizes the fact that there is a local interaction
between targets / and k. Interaction potentials are expressed by
probabilities associated to each edge and modeled with a Gibbs
distribution:

W(Xiquz) o< exp(*g(Xiz,Xjr)%

where g is a penalty function modeling the domain application,
in this case the number of pixels of overlapping targets.

On this basis, it can be proved that the computation of the
interaction can be done in the correction step and the update
can be done as if targets were independent.

B. Interaction Graph based Approach

Through MRFs, Khan et al. assume that targets interact
locally and model interactions as pairwise, reciprocal and
instantaneous. We share the same locality assumption, but pro-
pose using interactions in a more frequently encountered form,
where an agent reacts to its neighbors’ previous states. This
allows to directly use existing models like Craig Reynold’s
steering behaviors and numerous related models.

Our approach implies considering each target with its
neighbors in the interaction graph. Formally, an interaction
graph is a graph (V,E) where nodes represent targets, and an
edge between node k and node / symbolizes a local interaction
between targets k and [ as presented in Fig. 2. In the worst
case, the graph is complete and the evolution of each target
depends on all the other targets, while, in the simplest case,
there is no edge in the graph and the evolution of each target
ignores the presence of other targets.

Let I; be the set of indices of targets in the neighborhood
of target k. Let x* | = {x/_Vier, 0F , = {x* ;,x* |}, and
L=|I;|+ 1. Then, we have the following equality:

Ftl,(l((xtfl) :EI,CL(‘sz—l)- (16)

Equation 16 stipulates that, in order to correctly determine
the future behavior of a given target k, it is necessary to
simulate only targets belonging to ¢t"71 instead of simulating
all the targets. In terms of probability, this translates to

I
p(xXF|xe—1) = p(xF[xE_ 1, x" ). (17)

The algorithm we describe in this paper relies on the
probability formulation of Equation 17.

C. Interaction Graph Building and Particle Updates

Because the targets are moving, the interaction graph
evolves with time and must be built at each time step. A diffi-
culty is that we have only access to distributions over targets’
states and not the real hidden states. Our approach consists of

using a “representative” for each target’s distribution, which
could be the particle with the largest weight, the mean of a
targets’ distribution... The interaction graph is built by adding
edges between targets whose representatives are within a given
distance from each other.

Once the interaction graph has been built, this graph is used
for updating particles. For each target k, its corresponding dis-
tribution is updated by considering that the targets with which
it interacts can be replaced by their associated representatives.
This is a gross, but low-cost, approximation: the evolution of
each particle involves only a single simulation containing this
particle and the |I;| representatives of its neighbors (in the

||

interaction graph) instead of Ny *' simulations.

More formally, assuming that, at time ¢ — 1, the pdf of
the k' target is represented by the set {xf’_’l,wf’_’l M we
compute, for each target k, its representative X;'_,. Then, based
on the obtained representatives {)A(ﬁl }kK:] , we build on the fly
an interaction graph describing whether or not a given target
is likely to locally interact with another target. The next step
consists in making the particle of a given target k evolve.
To update its associated distribution, we consider the set I
of target k’s neighbors, and its prediction through the system
model is done according to the proposal distribution

N/
a(x{%_1,7) = p(x{ X1, &5 ), (18)
N/ N
where £ | = {&/ | }jcy-

In this work, we use the particle mean approach for
computing the target representative. Thus, for the k' " target at
time ¢ — 1, we have ﬁf—l = ):i.\il wf;’le;’l. The use of particle
mean was also used by Khan et al. in [16], but for a different
purpose: to compute the MRF factors. A drawback of Khan et
al.’s method with respect to our approach is the fact that, by
considering the interaction posteriorly (correction step), time
may be wasted on particles that are not viable (at least from
the domain application point of view). We embed this process
within the MC-JPDAF leading to an algorithm whose one step
description is depicted in Algorithm 3.

Fig. 2. An example of an Interaction Graph:
The triangles represent targets being tracked.
Only targets connected by an edge can lo-
b cally interact. The behavior of a target is
then affected by the behavior of other targets
belonging to the same connected component
'\ in the graph. Targets from different connected
components do not influence each other.

V. EXPERIMENTAL RESULTS

We consider, as a basis of the experiments in this paper,
the steering behavior model introduced by Reynolds in [12]
for autonomous characters. The steering behavior model, in its
genericity, describes a set of simple behaviors (represented as
physical forces) that, combined together, allow an autonomous
character to exhibit realistic high-level navigational behav-
iors such as obstacle avoidance, collision prevention, group
formation, and so on, in games or in multi-agent computer
simulations.

For the experiments, we used the 2-D java implementation
proposed in [17] as our baseline simulator. Through this tool,



Algorithm 3: Interacting Targets MC-JPDAF
1 [{{x, Wiy 1K ] = ITMC-JPDAF
ki ki N
REE AERTASY ARSI A
2 compute X |, fork=1,--- K
3 build the Interaction Graph using {&* }X |
4 for k=1,---,K do

5 get the set [; of targets from the Interaction Graph
6 for izl,---,.NSdo
7

ki

t sample x| from g(xkx*

t—17

z;) (Equation 18)

8 compute the measurement association possibilities
(see Section III-C)

9 proceed as in MC-JPDAF (see Alg. 2), lines 617

we modeled target’s dynamical behavior consisting in moving
randomly within a closed arena while avoiding each other and
collisions with obstacles. This is done by combining, within
an agent (target), the following simple behaviors:

containment behavior: it helps an agent choose its path so
as to avoid obstacles in its front as well as in its sides;

separation behavior: it makes agents keep a certain distance
to each other;

wandering behavior: it allows agents to move randomly and
without a specified goal through the scene.

The state of the k" target in the 2-D plane comprises its
location and velocity:

k . .
X, = [xk,t»xk,nyk,n)%,t]-

The targets are physically represented as 1 cm side equi-
lateral triangles. We also consider a polygonal arena inscribed
in a rectangle of width 37.5cm and height 30cm (see Fig. 3).
The system model (target behavior) is fully encoded within
the simulator.

Arena

Targets

Fig. 3. The experimental scene: The considered arena is a pentagon. The
colored triangles represent targets that should be tracked. The colors are just
used for visual distinction and are not taken into account within the algorithm
to facilitate data association.

The observation model function H is defined as:
k k
H(x;) = Bx;,
where B is the observation matrix defined as

100 0
32[0010}

The zero-mean observation Gaussian noise is characterized
by a diagonal covariance matrix with a standard deviation of
0.5 cm for both the x and y coordinates. Futhermore, the false
alarm rate Ap7 is set to 0.8 while the detection probability
Pp = 0.95. Finally, the radius for the gating procedure has
been set to 4 cm. Observations are performed every time-step.

We consider scenarios involving 9 targets. For each sce-
nario, each target is associated with Ny = 500 particles and the
scenario is run for 500 time-steps. At the beginning of each
experiment, each filter is associated to a specific target and
knows its initial position.

Because we do not properly know which metrics the
simulator used to determine how targets interact between
each other, we consider sequentially several rules to build the
interaction graph. Each rule is described by a specific tolerance
in mm and according to this rule, 2 targets are considered to
interact if their distance is lower than this tolerance. Thus,
Rule0 considers that targets are never in interaction and behave
independently. On the contrary, Rule200 considers that targets
almost always interact since this distance (20cm) is close to
the arena size. Intermediary rules have also been considered,
i.e., Rulel0, Rule20 and Rule50 to investigate the efficiency of
the proposed approach.

For each rule, we run each scenario 20 times and we report
the averages obtained. The algorithm was coded in the java
language and the tests were performed on a 2.67 GHz Intel
Core i5 CPU machine running under Windows.

The graphical results are reported in Figure 4. The plotted
measures correspond to the average sum of the distance
between targets and the mean of the particles filters. Two
measures are considered: the one (a) where each distance is
computed between each target and its initially associated filter
and the one (b) where each distance is computed between each
target and its closest filter. The latest measure (b) is a way to
tolerate trackJumps in the efficiency measurement of the joint
filter: since targets share the same behavior, once a target is
lost, it would be not fair to expect the joint filter to re-associate
this target to its originally associated filter.

It must be noted (see Figure 4) that Rule200 and Rule50
give similar results as confirmed by their standard deviation.
The same result can be observed for Rule0 and RulelO,
meaning that considering an interacting distance of 10mm is
too short to predict the correct behavior of interacting targets
in our scenario. The standard deviations presented in Figure
5 show that Rulel0, Rule20 and Rule50 exhibit significant
differences. Rule50 gives the best results in term of accuracy
and corresponds to a rule where targets are almost always
considered as being in interaction. Since Rule0 considers that
targets behave independently, the difference between results of
Rule200 and RuleO can be interpreted as the gain of efficiency
of reasoning on interactions on the joint targets state. The
Rule20 is representative of our approach because targets are not
considered to always interact but the filter has a better accuracy
than filter with the independent targets behaviors assumption.
Few obtained trajectories are presented in Figure 6 to give an
insight of the conducted experiments.

Each run was also evaluated according to the following
criteria:



Fig. 4. Means of the sums of the distances (in mm) (a) between targets and their initially associated filters and (b) between targets and their closest filter. This
sum is done at each time-step and is averaged over the experiments done for each considered rule.
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Fig. 5. Comparison of the sum of distances between each target and its closest filter (a) with RuleO (b) Rule20 and (c) Rule50. Each figure presents the means

of this sum and its standard deviation.

correct tracks : the averaged number of filters that are cor-
rectly representing their initial target. The correctness of a
track is computed with respect to the corresponding target
real data and an arbitrary 4mm drift, linked to the standard
deviation of the observation function, is tolerated;

track jumps : The averaged number of filters referring to
a target which is different to the initial one. The track
jumping phenomenon generally happens when two targets
pass very close to one another, so that the track in question
shifts, in terms of correspondence, from one target to the
other one. A trackJump is detected whenever the target
is close with a 4mm drift to a filter meant to represent
another target;

lost tracks : the averaged number of filters that do not corre-
spond to any target in the scene. A lost track may occur
principally because the detection probability that is lower
than 1 and because the algorithm uses a gating procedure
that considers an observation valid if and only if it falls
within a validation region of at least one target.

run time : the total time to process all the 500 frames.

The numerical results are reported in Table I. We note that
the average of runtime increases with the distance threshold
used to build the interaction graph. When RuleO, RulelO,
Rule20 or Rule30 are considered, the average computational
time is close to 100 sec whereas there is a huge difference
with Rule200 where the computational time rises to almost
350 sec. The benefit of rules with low threshold distance is
the consequence of considering less target representatives to
compute the update step: the number of launched simulations is
the same but simulations with low distance thresholds involve
less targets than simulations with a high threshold. On the
contrary, the number of lost tracks of the filter increases
when this distance decreases. This means the filter is less
and less accurate because it does not consider interactions
between interacting targets. Filters Rule20 and Rule30 seem
to be good compromises since their efficiency is close to the

filter Rule200 which considers that target always interact but
their computational time is equivalent to the computational
time of filter with independent targets assumption.

One shoud expect a direct comparison of our approach with
respect to the MRF based one. Inspite the fact Khan et al [16]
provide numerical results to refer to, they did not use MC-
JPDAF in their work. Moreover, an explicit formulation of the
penalty function g(.,.) is not provided preventing us to encode
the approach into MC-JPDAF. Further, While in our approach
increasing the interaction distance leads to considering more
target representatives in a particle evolution, in the MRF
approach, it will consists in penalizing more and more distant
particles. For these reasons, we do not linger to a quantitative
comparison of both approaches.

VI. CONCLUSIONS

We examined the problem of tracking a fixed number
of interacting autonomous targets in a cluttered environment
under the assumptions that the behavior model of each target as
well as the interaction model between targets is fully available
(usually encoded within a simulator). We described a Monte
Carlo JPDAF algorithm with nearly independent trackers in
which local interactions between targets (as suggested by an
interaction graph built on the fly) are taken into account when
updating the track regarding a given target.

While this method allows to have significant results at
lower cost with respect to a joint tracker approach (which
suffers from exponential complexity), we show that attention
has to be paid when designing criteria used to build the
Interaction Graph. Interaction Graphs underestimating local
interaction potentials (as implemented within the simulator)
will yield poor tracking results, while Interaction Graphs
overestimating these interaction potentials will result in an
algorithm wasting time in simulating unnecessary situations
in the sense that they would not improve the quality of the



time=300 time=500 for 500 frames
Rule Distance (in mm) Correct Tracks Track Jumps Lost Track Correct Tracks Track Jumps Lost Track Time (sec)
0 3.6 (£2.310) 3.8 (£1.749) 1.6 (£0.969) 1.85(+1.824) 4.9 (£1.700) 2.25(£+1.299) 96.2(+5.249)
10 3.45(£1.745) 4.0 (£1.549) 1.55(40.668) 2.0 (£1.224) 4.9 (£1.044) 2.1 (£0.830) 96.9(42.624)
20 4.85(+2.080) 3.05(£1.856) 1.1 (£0.888) 3.3 (£1.615) 4.35(+1.388) 1.35(£0.909) 96.5(4+3.734)
30 5.8 (£2.638) 2.45(£2.155)  0.75(40.829) 5.1 (£2.447) 3.25(£2.299)  0.65(£0.653) 95.4(£3.023)
50 6.7 (£2.260) 1.45(£1.774)  0.85(£0.909) 5.4 (£2.034) 2.8 (£1.777) 0.8 (+0.678) 129.9(£7.258)
200 6.3 (£2.347) 2.1 (£1.997) 0.6 (£0.734) 5.15(£2.286) 3.3 (£1.977) 0.55(£0.804) 348.4(£15.376)

TABLE 1.

STANDARD DEVIATION OVER ALL CONSIDERED EXPERIMENTS.

NUMERICAL RESULTS OF THE IMPLEMENTED ALGORITHM ON DEFINED SCENARIOS. EACH COLUMN CONTAINS MEAN VALUE AND

Position of target

Position of target
Means of particles associated 1o targer - - - -

Means of particles associated to target - - - -

,,J/

Means of particles for each fiter

Targets Position

Fig. 6.

Trajectories of targets and their associated filters for a Rule20 experiment. (a), (b) presents trajectories of two randomly chosen targets, (c) and (d)

present all the trajectories for all targets (c) and all means of filter (d). These two latest shapes illustrate that targets are indeed evolving in a small space and

can frequently interact

tracking process. Nevertheless, this article has shown that,
for this specific problem, it is possible to find a compromise
between the computation time and the efficiency of the filter.
Work should be undertaken to pursue in this direction.

This approach has currently several limitations. First, it is
based on the means of the particles of the filters to build the
interaction graph, but the mean is a very simple information
and may not be always relevant —when the dynamics have
strong non-linearities, i.e., when a target has to choose between
two paths— nor available —when the states of the targets
cannot easily be quantified—. We would like to investigate
in the future how to build better representatives of the dis-
tributions estimating each targets. Based on the shape of the
distributions, the objective would be to represent a distribution
with the help of several representatives in order to be more
accurate but without having to suffer too much from the curse
of dimensionality. The second limitation corresponds to the
way the interaction graph is generated, i.e., based on a simple
heuristic and on elementary information. More work has to
be done on how to build this interaction graph when using
a multi-agent simulation to represent the dynamics of a real
phenomenon like crowd behavior. A lot of work has been
undertaken to represent groups of interacting agents in multi-
agent systems, and one promising perspective would be to
investigate how it is possible to take advantage of a specific
interaction formalism in order to build on the fly an interaction
graph consistent with the considered simulations.
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