
Concurrent Probabilistic Temporal Planning with Policy-Gradients

Douglas Aberdeen
National ICT australia & The Australian National University

Canberra, Australia
firstname.lastname@anu.edu.au

Olivier Buffet
LAAS-CNRS

University of Toulouse, France
firstname.lastname@laas.fr

Abstract

We present an any-time concurrent probabilistic tempo-
ral planner that includes continuous and discrete uncer-
tainties and metric functions. Our approach is a direct
policy search that attempts to optimise a parameterised
policy using gradient ascent. Low memory use, plus
the use of function approximation methods, plus fac-
torisation of the policy, allow us to scale to challenging
domains. This Factored Policy Gradient (FPG) Plan-
ner also attempts to optimise both steps to goal and the
probability of success. We compare the FPG planner
to other planners on CPTP domains, and on simpler but
better studied probabilistic non-temporal domains.

Introduction
To date, only a few planners have attempted to handle gen-
eral concurrent probabilistic temporal planning (CPTP) do-
mains. These tools have only been able to produce good or
optimal policies for relatively small problems. We designed
the Factored Policy Gradient (FPG) planner with the goal of
creating tools that produce good policies in real-world do-
mains. These domains may include metric functions (e.g.,
resources), concurrent durative actions, uncertainty in action
outcomes and uncertainty in action durations. We achieve
this by: 1) using gradient ascent for policy search; 2) factor-
ing the policy into simple approximate policies for starting
each action; 3) basing policies on only important elements of
state (implicitly aggregating similar states); 4) using Monte-
Carlo style algorithms that permit sampling continuous dis-
tributions and that have memory requirements that are inde-
pendent of the state space; and 5) parallelising the planner.

The AI planning community is familiar with the value-
estimation class of reinforcement learning (RL) algorithms,
such as RTDP (Barto, Bradtke, & Singh 1995), and ar-
guably AO*. These algorithms represent probabilistic plan-
ning problems as a state space and estimate the long-term
value, utility, or cost of choosing each action from each
state (Mausam & Weld 2005; Little, Aberdeen, & Thiébaux
2005). The fundamental disadvantage of such algorithms is
the need to estimate the values of a huge number of state-
action pairs. Even algorithms that prune most states still fail

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to scale due to the exponential increase of important states
as the domains grow.

On the other hand, the FPG planner borrows from Policy-
Gradient (PG) reinforcement learning (Williams 1992; Sut-
ton et al. 2000; Baxter, Bartlett, & Weaver 2001). This
class of algorithms does not estimate state-action values,
and thus has memory use that is independent of the size of
the state space. Instead, policy-gradient RL algorithms es-
timate the gradient of the long-term average reward of the
process. In the context of shortest stochastic path problems,
such as probabilistic planning, we can view this as estimat-
ing the gradient of the long-term value of only the initial
state. Gradients are computed with respect to a set of real-
valued parameters governing the choice of actions at each
decision point. These parameters summarise the policy, or
plan, of the system. Stepping the parameters in the direc-
tion given by the gradient increases the long-term average
reward, improving the policy. Also, PG algorithms are still
guaranteed to converge when using approximate policy rep-
resentations, which is necessitated when the state space is
continuous. Our setting has such a state space when action
durations are modelled by continuous distributions.

The policy takes the form of a function that accepts an ob-
servation of the planning state as input, and returns a prob-
ability distribution over currently legal actions. The policy
parameters modify this function. In our temporal planning
setting, an action is defined as a single grounded durative
action (in the PDDL 2.1 sense). A command is defined as a
decision to start 0 or more actions concurrently. The com-
mand set is therefore at most the power set of actions that
could be started at the current decision-point state.

From this definition it is clear that the size of the policy,
even without learning values, can grow exponentially with
the number of actions. We combat this command explosion
by factoring the parameterised policy into a simple policy
for each action. This is essentially the same scheme explored
in the multi-agent policy-gradient RL setting (Peshkin et al.
2000; Tao, Baxter, & Weaver 2001). Each action has an in-
dependent agent/policy that implicitly learns to coordinate
with other action policies via global rewards for achieving
goals. By doing this, the number of policy parameters — and
thus the total memory use — grows only linearly with the
length of the grounded input description. Our first parame-
terised action policy is a simple linear function approxima-

<probabilistic>
<outcome label="HeavyTraffic" probability="0.5">
<effect>

<delay lambda="7.07e-04" type="exponential"/>
<functionEffect type="increase">

<function name="LapsDone"/><number>30</number>
</functionEffect>
<predicate name="Racing" negated="true"/>
<functionEffect type="decrease">

<function name="Fuel"/><number>30</number>
</functionEffect>

</effect>
</outcome>

Figure 1: A snippet in our XML format of a racing car do-
main, showing a probabilistic effect with a discrete proba-
bility outcome and continuous probability delay.

tor that takes the truth value of the predicates at the current
planning state, and outputs a probability distribution over
whether to start the action. A criticism of policy-gradient
RL methods compared to search-based planners — or even
to value-based RL methods — is the difficulty of translat-
ing vectors of parameters into a human understandable plan.
Thus, the second parameterised policy we explore is a deci-
sion tree of high-level planning strategies.

Background
Concurrent Probabilistic Temporal Planning
FPG’s input language is the temporal STRIPS fragment
of PDDL2.1 but extended with probabilistic outcomes and
uncertain durations, as in Younes & Littman (2004) and
Younes (2003). In particular, we support continuous uncer-
tain durations, functions, at-start, at-end, over-all conditions,
and finite probabilistic action outcomes. We additionally al-
low effects (probabilistic or otherwise) to occur at any time
within an action’s duration. FPG’s input syntax is actually
XML. Our PPDDL to XML translator grounds actions and
flattens nested probabilistic statements to a discrete distribu-
tion of action outcomes with delayed effects.

Grounded actions are the basic planning unit. An action is
eligible to begin when its preconditions are satisfied. Action
execution may begin with at start effects. Execution then
proceeds to the next probabilistic event, an outcome is sam-
pled, and the outcome effects are queued for the appropriate
times. We use a sampling process rather than enumerating
outcomes because we only need to simulate executions of
the plan to estimate gradients. A benefit of this approach is
that we can trivially sample from both continuous and dis-
crete distributions, whereas enumerating continuous distri-
butions is impossible.

With N eligible actions there are up to 2N possible com-
mands. Current planners explore this action space systemat-
ically, attempting to prune actions via search or heuristically.
When combined with probabilistic outcomes the state space
explosion cripples existing planners with just a few tens of
actions. We deal with this explosion by factorising the over-
all policy into independent policies for each action. Each
policy learns whether to start its associated action given the
current predicate values, independent of the decisions made
by the other action policies. This idea alone does not sim-
plify the problem. Indeed, if the action policies were suffi-
ciently rich, and all receive the same state observation, they

could learn to predict the decision of the other actions and
still act optimally. The significant reduction in complexity
arises from using approximate policies; which implicitly as-
sumes similar state will have similar policies.

Previous Work
Previous probabilistic temporal planners include DUR
(Mausam & Weld 2006), Prottle (Little, Aberdeen, &
Thiébaux 2005), and a Military Operations (MO) planner
(Aberdeen, Thiébaux, & Zhang 2004). All these algorithms
use some optimised form of dynamic programming (either
RTDP (Barto, Bradtke, & Singh 1995) or AO*) to asso-
ciate values with each state/action pair. However, this re-
quires that values be stored for each encountered state. Even
though these algorithms prune off most of the state space,
their ability to scale is still limited by memory size. Tem-
pastic (Younes & Simmons 2004) uses the generate, debug,
and repair planning paradigm. It overcomes the state space
problem by generating decision tree policies from sample
trajectories that follow good deterministic policies, and re-
pairing the tree to cope with uncertainty. This method may
suffer in highly non-deterministic domains, but is a rare ex-
ample of an approach that also permits modelling continu-
ous distributions for durations. CPTP, Prottle, and Tempastic
minimise either plan duration or failures. The FPG planner
trades-off these metrics via a natural objective function.

The 2004 and 2006 probabilistic tracks of the Interna-
tional Planning Competition (IPC) represent a cross section
of recent approaches to non-temporal probabilistic planning.
Along with the FPG planner, other successful entrants in-
cluded FOALP and Paragraph. FOALP (Sanner & Boutilier
2006) solves a first order logic representation of the un-
derlying domain MDP, prior to producing plans for spe-
cific problems drawn from that domain. Paragraph (Little &
Thiébaux 2006) is based on Graphplan extended to a prob-
abilistic framework. A surprisingly successful approach to
the competition domains was FF-rePlan (Yoon, Fern, & Gi-
van 2007), winning the 2004 competition and a subsequent
version could have achieved 1st place at the 2006 competi-
tion. FF-rePlan uses the FF heuristic (Hoffmann & Nebel
2001) to quickly find a potential short path to the goal. It
does so by creating a deterministic version of the domain,
thus does not directly attempt to optimise the probability of
reaching the goal.

Policy gradient RL for multiple-agents MDPs is described
by Peshkin et al. (2000), providing a precedent for factor-
ing policy-gradient RL policies into “agents” for each ac-
tion. This paper also builds on earlier work presented by
Aberdeen (2006).

POMDP Formulation of Planning
A finite partially observable Markov decision process con-
sists of: a (possibly infinite) set of states s ∈ S; a finite set
of actions (that correspond to our command concept) c ∈ C;
probabilities P[s′|s, c] of making state transition s → s′ un-
der command c; a reward for each state r(s) : S → R; and a
finite set of observation basis vectors o ∈ O used by action
policies in lieu of complete state descriptions. Observation
vectors are constructed from the current state by producing

a binary element for each predicate value, i.e., 1 for true
and 0 for false. A constant 1 bias element is also provided.
Goal states occur when the predicates and functions match
a PPDDL goal state specification. From failure states it is
impossible to reach a goal state, usually because time or re-
sources have run out, but it may also be due to an at-end or
over-all condition being invalid. These two classes of state
form the set of terminal states, ending plan simulation.

Policies are stochastic, mapping the observation vector o
to a probability distribution over commands. Let N be the
number of grounded actions available to the planner. For
FPG a command c is a binary vector of length N . An entry
of 1 at index n means ‘Yes’ begin action n, and a 0 entry
means ‘No’ do not start action n. The probability of a com-
mand is P[c|o;θ], where conditioning on θ reflects the fact
that the policy is tuned by a set of real valued parameters
θ ∈ Rp. We assume that all stochastic policies (i.e., any
values for θ) reach terminal states in finite time when exe-
cuted from s0. This is enforced by limiting the maximum
makespan of a plan. FPG planning maximises the long-term
average reward

R(θ) := lim
T→∞

1
T

Eθ

[
T∑

t=1

r(st)

]
, (1)

where the expectation Eθ is over the distribution of state tra-
jectories {s0, s1, . . . } induced by the current joint policy. In
the context of planning, the instantaneous reward provides
the action policies with a measure of progress toward the
goal. A simple reward scheme is to set r(s) = 1000 for
all states s that represent the goal state, and 0 for all other
states. To maximise R(θ), goal states must be reached as
frequently as possible. This has the desired property of si-
multaneously minimising steps to goal and maximising the
probability of reaching the goal (failure states achieve no re-
ward). We also provide intermediate rewards for progress
toward the goal. This additional shaping reward provides an
immediate reward of 1 for achieving a goal predicate, and
-1 for every goal predicate that becomes unset. Shaping re-
wards are provably “admissible” in the sense that they do not
change the optimal policy. The shaping assists convergence
for domains where long chains of actions are necessary to
reach the goal and proved important in achieving good re-
sults in IPC domains.

Planning State Space
The state includes absolute time, a queue of past and future
events, the truth value of each predicate, and function val-
ues. In a particular state, only the eligible actions have sat-
isfied all at-start preconditions for execution. A command
is the decision to start a set of non-mutex eligible actions.
While actions might be individually eligible, starting them
concurrently may require too many resources, or cause a
precondition of an eligible action to be invalidated by an-
other, which is when we consider them mutex. We do not
deal with any other type of conflict when determining mu-
texes for the purpose of deciding to start actions, particularly
because probabilistic planning means such mutexes may, or
may not occur. If they do occur the plan execution enters a
failure state, moving the optimisation away from this policy.

The planner handles the execution of actions using a time-
ordered event queue. When starting an action, at-start ef-
fects are processed, adding effect events to the queue
if there are any delayed at-start effects. Additionally, a
sample-outcome event is scheduled for the end of the
action (the duration of the action possibly being sampled
from a continuous distribution). The sample-outcome
event indicates the point when chance decides which partic-
ular discrete outcome is triggered for a given action. This
results in adding the corresponding effect events for this
outcome, and any other at-end effects, to the event queue
(again possibly with an additional sampled delay).

To estimate policy gradients we need a plan execution
simulator to generate a trajectory through the planning state
space. It takes actions from the factored policy, checks for
mutex constraints, implements at-start effects, and queues
sample-outcome events. The state update then proceeds
to process sample-outcome and effect events from
the queue until a new decision point is met. Decision points
equate to happenings, which occur when: (1) time has in-
creased since the last decision point; and (2) there are no
more events for this time step. Under these conditions a new
action can be chosen, possibly a no-op if the best action is
to simply process the next event. When processing events,
the algorithm also ensures no running actions have violated
over all conditions. If this happens, the plan execution ends
in a failure state. Note that making decisions at happenings
results in FPG being incomplete in domains with some com-
binations of effects and at-end conditions (Mausam & Weld
2006). One fix makes every time step a decision point at
the cost of introducing infeasibly many feasible plans. Fi-
nally, only the current parameters, initial and current state,
and current observation are kept in memory.

Policy Gradients
The idea is to perform gradient ascent on the long-term re-
ward by repeatedly computing gradients ∂

∂θi
R(θ) and step-

ping the parameters in that direction. Because an exact
computation of the gradient is very expensive (but possi-
ble) we use Monte-Carlo gradient estimates (Williams 1992;
Sutton et al. 2000; Baxter, Bartlett, & Weaver 2001) gener-
ated from repeated simulated plan executions

∂R(θ)
∂θi

= lim
T →∞
β → 1

1
T

T∑
t=1

∇θ P[ct|ot;θt]
P[ct|ot;θt]

T∑
τ=t+1

βτ−t−1rτ .

(2)
However, (2) requires looking forward in time to observe
rewards. In practice we reverse the summations, using an
eligibility trace to store previous gradient terms:

et = βet−1 +
∇θ P(ct|ot;θt)

P(ct|ot;θt)
. (3)

Thus, the eligibility trace et contains the discounted sum of
normalised policy gradients for recent commands. Stepping
the parameters in the direction of the eligibility trace will in-
crease the probability of choosing recent commands under
similar observations, with recency weighting determined by
β. But it is the relative value of rewards that indicate if we

should increase or decrease the probability of recent com-
mand sequences. So the instant gradient at each time step is
gt = r(st)et. The discount factor β ∈ [0, 1) decays the ef-
fect of old commands on the eligibility trace, effectively giv-
ing exponentially more credit for rewards to recent actions.
Additionally, β may be 1.0 for finite-horizon problems such
as planning (Williams 1992). Baxter, Bartlett, & Weaver
(2001) gives two optimisation methods using the instanta-
neous gradients gt. OLPOMDP is the simple online gradient
ascent just described, setting θt+1 = θt + αgt with scalar
gain α. Alternatively, CONJPOMDP averages gt = rtet over
T steps to compute the batch gradient (2), followed by a
line search for the best step size α in the search direction.
OLPOMDP can be considerably faster than CONJPOMDP be-
cause it is tolerant of noisy gradients and adjusts the policy at
every step. We use OLPOMDP for most of our experiments.
However, the CONJPOMDP batch approach is used for par-
allelising FPG as follows. Each processor runs independent
simulations of the current policy with the same fixed param-
eters. Instant gradients are averaged over many simulations
to obtain a per processor estimate of (2). A master process
averages the gradients from each processor and broadcasts
the resulting search direction. All processors then take part
in evaluating points along the search direction to establish
the best α. Once found, the master process then broadcasts
the final step size. The process is repeated until the gradient
drops below some threshold.

Policy Gradient Optimisation for Planning
The command ct = {at1, at2, ..., atN} at time t is a combi-
nation of independent ‘Yes’ or ‘No’ choices made by each
eligible action policy. Each policy has its own set of param-
eters that make up θ ∈ Rp: θ1,θ2, . . . ,θN . With indepen-
dent parameters the command policy factors into

P[ct|ot,θ] = P[at1, . . . , atN |ot;θ1, . . . ,θN] (4)
= P[at1|ot;θ1]× · · · × P[atN |ot;θN] .

The computation of the policy gradients also factorises triv-
ially. It is not necessary that all action policies receive the
same observation, and it may be advantageous to have dif-
ferent observations for different actions, leading to a de-
centralised planning algorithm. Similar approaches are
adopted by Peshkin et al. (2000) and Tao, Baxter, & Weaver
(2001). The main requirement for each action policy is that
log P[atn|ot,θn] be differentiable with respect to the param-
eters for each choice of action start atn =‘Yes’ or ‘No’. We
describe two such parameterised classes of action policy.

Linear Approximator Policies One representation of ac-
tion policies is a linear network mapped to probabilities us-
ing a logistic regression function

P[atn = Y es|ot,θn] =
1

exp(o>t θn) + 1
(5)

P[atn = No|ot,θn] = 1− P[atn = Y es|ot,θn] .

Recall that the observation vector is a vector representing
the current predicate truth values plus a constant bias. If the
dimension of the observation vector is |o| then each set of

Not Eligible

Task N

Task 1

Task 2

Choice disabled

Current State

Next State

Time
Predicates
Resources
Event queue

Predicates
Time

Resources
Event queue

ot

P[No|ot, θN] = 0.5

P[No|ot, θ2] = 1.0

P[Y es|ot, θN] = 0.5

P[Y es|ot, θ1] = 0.1

P[No|ot, θ1] = 0.9

∆

ot

ct
findSuccessor(st, ct)

Figure 2: Action policies make independent decisions.

parameters θn can be thought of as an |o| vector that repre-
sents the approximator weights for action n. The required
normalised gradients over each parameter θ ∈ θn is

∇θn P[atn = Y es|ot,θn]
P[atn = Y es|ot,θn]

= (6)

−ot exp(o>t θn) P[atn = Y es|ot,θn]
∇θn P[atn = No|ot,θn]

P[atn = No|ot,θn]
= ot P[atn = Y es|ot,θn] .

These normalised policy derivatives are added to the eligi-
bility trace (3) based on the yes/no decisions for each ac-
tion. Looping this calculation over all eligible actions com-
putes the normalised gradient of the probability of the joint
command (4). Fig. 2 illustrates this scheme. Initially, the
parameters are set to 0 giving a uniformly random policy,
encouraging exploration of the action space. Over time, the
parameters typically, but not necessarily, move closer to a
deterministic policy.

Decision Tree Policies Rather than start with a uniform
policy we may be given a selection of heuristic policies that
work well across a range of domains. For example, in a
probabilistic setting we may have access to a replanner, an
optimal non-concurrent planner, and a naive planner that at-
tempts to run all eligible commands. Indeed, the best plan-
ner to invoke may depend on the current state as well as the
overall domain. The decision tree policies described here
are a simple mechanism to allow FPG to switch between
such high level policies. We assume a user declares an ini-
tial tree of available policies. The leaves represent a policy
to follow, and the branch nodes represent decision rules for
which policy to follow. We show how to learn these rules.
In the factored setting, each action has its own decision tree.
We assume all actions start with the same template tree but
adapt them independently. Whether to start an action is de-
cided by starting at the root node and following a path down
the tree, visiting a set of decision nodes D. At each node we
either apply a human-coded branch selection rule, or sample
a stochastic branch rule from the current stochastic policy
for that node. Assuming the conditional independence of

Figure 3: Decision tree action policy.

decisions at each node, the probability of reaching an action
leaf l equals the product of branch probabilities at each node

P[a = l|o,θ] =
∏
d∈D

P[d′|o,θd], (7)

where d represents the current decision node, and d′ repre-
sents the next node visited in the tree. The probability of a
branch followed as a result of a hard-coded rule is 1. The in-
dividual P[d′|o,θd] functions can be any differentiable func-
tion of the parameters, such as the linear approximator. Pa-
rameter adjustments have the simple effect of pruning parts
of the tree that represent poor policies for that action and in
that region of state space.

For example, nodes A, D, F, H (Fig. 3) represent hard-
coded rules that switch with probability one between the Yes
and No branches based on the truth of the statement in the
node, for the current state. Nodes B, C, E, G are parame-
terised so that they select branches stochastically. For this
paper the probability of choosing the left or right branches
is a single parameter logistic function that is independent
of the observations. E.g, for action n, and decision node C
“action duration matters?”, we have

P[Y es|o, θn,C] = P[Y es|θn,C] =
1

exp(θn,C) + 1
.

In general the policy pruning could be a function of the cur-
rent state. In Fig. 3 the high level strategy switched by the
parameter is written in the node label. For example for ac-
tion policy n, and decision node C “action duration mat-
ters?”, we have

P[Y es|o, θn,C] = P[Y es|θn,C] =
1

exp(θn,C) + 1
.

The log derivatives of the ‘Yes’ and ‘No’ decisions are given
by (6), noting that in this case o is a scalar 1. The normalised
action probability gradient for each node is added to the eli-
gibility trace independently.

If the parameters converge in such a way that prunes Fig. 3
to just the dashed branches we would have the policy: if the
action IS eligible, and probability of this action success does
NOT matter, and the duration of this action DOES matter,
and this action IS fast, then start, otherwise do not start.
Thus we can encode highly expressive policies with only
a few parameters. This approach allows extensive use of
control knowledge, using FPG to fill in the gaps.

The FPG Algorithm
Alg. 1 completes our description of FPG by showing how
to implement (3) for planning with independent action poli-
cies. The algorithm works by repeatedly simulating plan
executions: 1) the initial state represents time 0 in the plan
(not be confused with the step number t in the algorithm);
2) the policies all receive the observation ot of the current
state st; 3) each policy representing an eligible action emits
a probability of starting; 4) each action policy samples ‘Yes’
or ‘No’ and these are issued as a joint plan command; 5)
the plan state transition is sampled (see the Planning State
Space section); 6) the planner receives the global reward for
the new state and calculates gt = rtet; 7) for OLPOMDP
all parameters are immediately updated by αgt, or for par-
allelised planning gt is batched over T steps.

Algorithm 1 OLPOMDP FPG Gradient Estimator
1: Set s0 to initial state, t = 0, et = [0], init θ0 randomly
2: while R not converged do
3: et+1 = βet

4: Generate observation ot of st

5: for each eligible action an do
6: Evaluate action policy n P[atn = {Yes, No}|o, θtn]
7: Sample atn =Yes or atn =No
8: et+1 = et+1 + ∇θ P[atn|o,θtn]

P[atn|o,θtn]

9: end for
10: while (st+1 = findSuccessor(st, ct)) == MUTEX do
11: arbitrarily disable action in ct due to mutex
12: end while
13: θt+1 = θt + αrtet+1

14: if st+1.isTerminalState then st+1 = s0

15: t← t + 1
16: end while

Note the link to the planning simulator on line 10. If the
simulator indicates that the action is impossible due to a mu-
tex constraint, the planner successively disables one action
in the command (according to an arbitrary ordering) until the
command is eligible. Line 8 computes the normalised gradi-
ent of the sampled action probability and adds the gradient
for the n’th action’s parameters into the eligibility trace (3).
Because planning is inherently episodic we could alterna-
tively set β = 1 and reset et every time a terminal state
is encountered. However, empirically, setting β = 0.95
performed better than resetting et. The gradient for pa-
rameters not relating to action n is 0. We do not compute
P[atn|ot,θn] or gradients for actions with unsatisfied pre-
conditions. If no actions are chosen to begin, we issue a
no-op action and increment time to the next decision point.

Experiments
All the domains and source code for the following experi-
ments are available from http://fpg.loria.fr/.

Non-Temporal Probabilistic Domains
Due to the lack of CPTP benchmark problems, we ran FPG
on a range of non-temporal domains, including competing
in the probabilistic track of the 2006 IPC. To do this, we re-
moved the temporal features of FPG by: 1) changing the lo-

Table 1: Summary of non-temporal domain results. Val-
ues are % of plan simulations that reach the goal (mini-
mum 30 runs). Blank results indicate the planner was not
run on that domain. A dash indicates the planner was run,
but failed to produce results, typically due to memory con-
straints. A starred result indicates a theoretical upper limit
for FF-replan that in practice it failed to reach.

Domain Para. sfDP FPG FOALP FF-r. Prot.
Zeno – 7 27 7 100
Elevator 100 – 76 – 93
Schedule – – 54 1 51
Tire 82 – 75 91 82
Random – – 65 5 100
BW 100 29 63 – 86
Ex. BW 24 31 43 31 52
Drive – – 63 9 71
Pitchcatch – – 23 – 54
Climber 100 100 62 100
Bus fare 100 22 1 10
Tri-tire 1 100 100 50 –
Tri-tire 2 100 92 13∗ –
Tri-tire 3 100 91 3∗ –
Tri-tire 4 3 68 0.8∗ –

gistic regression for each eligible action (5) to be a soft-max
probability distribution over which single action to choose;
2) removing the event queue and simply processing the cur-
rent action to completion. We used the linear approximation
scheme rather than the decision tree. Many of the approxi-
mations made in FPG were designed to cope with a combi-
natorial action space, thus there was little reason to believe
FPG would be competitive in non-temporal domains. Ta-
ble 1 shows the overall summary of results, by domain and
planner. The IPC Results were based on 9 PPDDL specified
domains, averaged over 15 instances from each domain, and
tested on 30 simulations of plans for each instance. Many
of these domains, such as Blocksworld (BW), are classical
deterministic domains with noise added to the effects. We
defer to Bonet & Givan (2006) for details.

The second set of domains (one instance each) demon-
strates results on domains introduced by Little & Thiébaux
() that are more challenging for replanners. The optimal
Paragraph planner does very well until the problem size be-
comes too large. Triangle-tire-4 in particular shows a thresh-
old for problems where an approximate probabilistic plan-
ning approach is required in order to find a good policy. To
summarise, in non-temporal domains FPG appears to be a
good compromise between the scalability of replanning ap-
proaches, and the capacity of optimal probabilistic planner
to perform reasoning about uncertainty.

Temporal Probabilistic Domains
These experiments compare FPG to two earlier probabilis-
tic temporal planners: Prottle (Little, Aberdeen, & Thiébaux
2005), and a Military Operations (MO) planner (Aberdeen,
Thiébaux, & Zhang 2004). The MO planner uses LRTDP,
and Prottle uses a hybrid of AO* and LRTDP. They both re-
quire storage of state values but attempt to prune off large

branches of the state space. The Prottle planner has the ad-
vantage of using good heuristics to prune the state space.
The modified MO planner did not use heuristics.

We present results along three criteria: the probability
of reaching a goal state, the average makespan (including
executions that end in failure), and the long-term average
reward (FPG only). We note, however, that each plan-
ner uses subtly different optimisation criteria: FPG– max-
imises the average reward per step R = 1000 (1−Pr(fail))

steps ,
where steps is the average number of decision points in
a plan execution, which is related to the makespan; Prot-
tle– minimises the probability of failure; MO– minimises
the cost-per-trial, here based on a weighted combination of
P(failure), makespan, and resource consumption.

The first three domains are Probabilistic Machine Shop
(MS) (Mausam & Weld 2005), Maze (MZ), and Teleport
(TP) (Little, Aberdeen, & Thiébaux 2005). In all cases we
use the versions defined in Little, Aberdeen, & Thiébaux
(2005), and defer descriptions to that paper. Additionally
we introduce two new domains.

PitStop: A proof-of-concept continuous duration uncer-
tainty domain representing alternative pit stop strategies in a
car race, a 2-stop strategy versus a 3-stop. For each strategy
a pit-stop and a racing action are defined. The 3-stop strat-
egy has shorter racing and pitting time, but the pit stop only
injects 20 laps worth of fuel. The 2-stop has longer times,
but injects 30 laps worth. The goal is to complete 80 laps.
The pit-stop actions are modelled with Gaussian durations.
The racing actions take a fixed minimum time but there are
two discrete outcomes (with probability 0.5 each): a clear
track adds an exponentially distributed delay, or encounter-
ing backmarkers adds a normally distributed delay. Thus this
domain includes continuous durations, discrete outcomes,
and metric functions (fuel counter and lap counters).

500: To provide a demonstration of scalability and par-
allelisation we generated a 500 grounded task, 250 predi-
cate domain as follows: the goal state required 18 predicates
to be made true. Each task has two outcomes, with up to
6 effects and a 10% chance of each effect being negative.
Two independent sequences of tasks are generated that po-
tentially lead to the goal state with makespan of less than
1000. There are 40 types of resource, with 200 units each.
Each task requires a maximum of 10 units from 5 types, po-
tentially consuming half of the occupied resources perma-
nently. Resources limit how many tasks can start.

Our experiments used a combination of: (1) FPG with
the linear network (FPG-L) action policies; (2) FPG with
the tree (FPG-T) action policy shown in Fig. 3; (3) the MO
planner; (4) Prottle; (5) a random policy that starts eligible
actions with a coin toss; (6) a naı̈ve policy that attempts to
run all eligible actions. All experiments we performed were
limited to 600 seconds. Other parameters are described in
Table 4. In particular, the single gradient step size α was
selected as the highest value that ensured reliable conver-
gence over 100 runs over all domains. Experiments in this
section were conducted on a dedicated 2.4GHz Pentium IV
processor with 1GB of ram. The results are summarised in
Table 2. Reported Fail% and makespan was estimated from

Table 2: Results on 3 benchmark domains. The experiments
for MO and FPG were repeated 100 times. The Opt. column
is the optimisation engine used. Fail%=percent of failed ex-
ecutions, MS=makespan, R is the final long-term average re-
ward, and Time is the optimisation time in seconds.

Prob. Opt. Fail% MS R Time

MS FPG-L 1.33 6.6 118 532
MS FPG-L 0.02 5.5 166 600
MS FPG-T 70.0 13 20.9 439
MS FPG-T 65.0 13 21.4 600
MS Prottle 2.9 272
MS MO Out of memory
MS random 99.3 18 0.1
MS naı̈ve 100 20 0.0
MZ FPG-L 19.1 5.5 134 371
MZ FPG-L 14.7 6.9 130 440
MZ FPG-T 19.7 5.5 136 29
MZ FPG-T 15.3 5.7 115 17
MZ Prottle 17.8 10
MZ MO 7.92 8.0 71
MZ MO 7.15 8.2 72
MZ random 76.5 13 16.4
MZ naı̈ve 90.8 16 8.6
TP FPG-L 34.4 18 298 340
TP FPG-L 33.3 18 305 600
TP FPG-T 34.4 18 302 258
TP FPG-T 33.3 18 301 181
TP Prottle 79.8 442
TP MO Out of memory
TP random 99.6 15 1.0
TP naı̈ve 100 19 0.0
PitStop FPG-L 0.0 20180 142 41
PitStop random 29.0 12649 41.0
PitStop naı̈ve 100 66776 0.0
500 FPG-T 2.5 158 1.56 3345
500 random 76.6 765 0.231
500 naı̈ve 69.5 736 0.100

10,000 simulated executions of the optimised plan, except
for Prottle. Prottle results were taken directly from Little,
Aberdeen, & Thiébaux (2005), quoting the smallest proba-
bility of failure result. FPG and MO experiments were re-
peated 100 times due to the stochastic nature of the optimi-
sation. FPG tepeat experiments are important to measure
the effect of local minima. The FPG and MO results show
the mean result over 100 runs, and the unbarred results show
the single best run out of the 100, measured by probability
of failure. The small differences between the mean and best
results indicate that local minima were not severe.

The random and naı̈ve experiments are designed to
demonstrate that optimisation is necessary to get good re-
sults. In general, Table 2 shows that FPG is at least com-
petitive with Prottle and the MO planner, while winning
in the hardest of the existing benchmarks: Machine Shop.
The poor performance of Prottle in the Teleport domain —
79.8% failure compared to FPG’s 34.4% — is due to Prot-
tle’s short maximum permitted makespan of 20 time units.
At least 25 units are required to achieve a higher success

MOVE (P1 START L3): Return No;

MOVE (P1 L1 START): if (eligible)

if (fast action) return Yes;

else return 54% Yes, 46% No;

else return No;

MOVE (P1 L3 START): if (eligible) return Yes;

else return No;

Figure 4: Three decision-tree action policies extracted the
final Maze policy. Returning ’Yes’ means start the action.

probability. We also observe that FPG’s linear action pol-
icy generally performs slightly better than the tree, but takes
longer to optimise. This is expected given that the linear
action-policy can represent a much richer class of policies
at the expense of many more parameters. In fact, it is sur-
prising that the decision tree does so well on all domains
except Machine Shop, where it only reduces the failure rate
to 70% compared to the 1% the linear policy achieves. We
explored the types of policy that the decision tree structure
in Fig. 3 produces. The pruned decision tree policy for three
grounded Maze actions is shown in Fig. 4.

Table 2 shows that Prottle achieves good results faster
on Maze and Machine Shop. The apparently faster Prottle
optimisation is due to the asymptotic convergence of FPG
using the criterion optimise until the long-term average re-
ward fails to increase for 5 estimations over 10,000 steps.
In reality, good policies are achieved long before conver-
gence to this criterion. To demonstrate this we plotted the
progression of a single optimisation run of FPG-L on the
Machine Shop domain in Fig. 5. The failure probability and
makespan settle near their final values at a reward of approx-
imately R = 85, however, the mean long-term average re-
ward obtainable for this domain is R = 118. In other words,
the tail end of FPG optimisation is removing unnecessary
no-ops. To further demonstrate this, and the any-time nature
of FPG, optimisation was arbitrarily stopped at 75% of the
average reward obtained with the stopping criterion used for
Table 2. The new results in Table 3 show a reduction in opti-
misation times by orders of magnitude, with very little drop
in the performance of the final policies.

The experimental results for the continuous time PitStop
domain show FPGs ability to optimise under mixtures of
discrete and continuous uncertainties. We have yet to try
scaling to larger domains with these characteristics. Results
for the 500 domain are shown for running the parallel ver-
sion of FPG algorithm with 16 processors. As expected, we
observed that optimisation times dropped inversely propor-
tional to the number of CPUs for up to 16 processors. How-
ever, on a single processor the parallel version requires dou-
ble the time of OLPOMDP. No other CPTP planner we know
of is capable of running domains of this scale.

Discussion and Conclusion
FPG diverges from traditional planning approaches in two
key ways: we search for plans directly, using a local opti-
misation procedure; and we approximate the policy repre-
sentation by factoring into a policy for each action. Apart
from reducing the representation complexity, this approach

Figure 5: Relative convergence of long-term average reward
R, failure probability, and makespan over a single linear net-
work FPG optimisation of Machine Shop. The y-axis has a
common scale for all three units.

Table 3: FPG’s results when optimisation is terminated at
75% of the mean R achieved in Table 2.

Prob. Opt. Fail% MS R Time
MS FPG-L 4.68 7.1 89 37
MS FPG-L 0.11 6.5 89 32
MS FPG-T 70.4 13 16 10
MS FPG-T 65.9 14 16 14
MZ FPG-L 19.3 5.5 100 13
MZ FPG-L 14.7 5.6 100 22
MZ FPG-T 19.7 5.5 102 2
MZ FPG-T 15.8 7.0 102 2
TP FPG-L 34.6 18 224 3.5
TP FPG-L 33.0 19 224 4
TP FPG-T 34.7 18 226 2.3
TP FPG-T 33.1 18 226 1

allows policies to generalise to states not encountered dur-
ing training; an important feature of FPG’s “learning” ap-
proach. We conducted many experiments that space pre-
cludes us from reporting. These include: multi-layer per-
ceptrons (improvements in pathologically constructed XOR-
based domains only); observations that encode more than
just predicate values (insignificant improvements); and us-
ing the FF heuristic to bias the initial action sampling of FPG
(which can sometimes assist FPG to initially find the goal)
(Buffet & Aberdeen 2007). To conclude, FPG’s contribu-
tion is a demonstration that Monte-Carlo machine learning
methods can contribute to the state of the art in planning,

Table 4: Parameter settings not discussed in the text.

Param Val. Opt. Notes
θ 0 All FPG Initial θ

α 1× 10−5 FPG-L
α 5× 10−5 FPG-T
β 0.95 FPG Both L&T
ε 1 MO LRTDP Param
ε 0.0 to 0.6 Prottle Prottle Param
T 6× 106 Parallel FPG-T For search dir.
T 1× 106 Parallel FPG-T For line search

particularly to deal with large or infinite state spaces.

Acknowledgments
Thank you to Iain Little for his assistance with domains and
comparisons. National ICT Australia is funded by the Aus-
tralian Government’s Backing Australia’s Ability program.

References
Aberdeen, D.; Thiébaux, S.; and Zhang, L. 2004. Decision-
theoretic military operations planning. In Proc. ICAPS.
Aberdeen, D. 2006. Policy-gradient methods for planning. In
Proc. NIPS’05.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming. Artificial Intelligence 72.
Baxter, J.; Bartlett, P.; and Weaver, L. 2001. Experiments with
infinite-horizon, policy-gradient estimation. JAIR 15.
Bonet, B., and Givan, R. 2006. Proc. of the 5th int. planning com-
petition (IPC-5). See http://www.ldc.usb.ve/∼bonet/
ipc5 for all results and proceedings.
Buffet, O., and Aberdeen, D. 2007. FF+FPG: Guiding a policy-
gradient planner. In Proc. ICAPS.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Little, I., and Thiébaux, S. Probabilistic planning vs replanning.
Submitted for Publication.
Little, I., and Thiébaux, S. 2006. Concurrent probabilistic plan-
ning in the graphplan framework. In Proc. ICAPS.
Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle: A prob-
abilistic temporal planner. In Proc. AAAI.
Mausam, and Weld, D. S. 2005. Concurrent probabilistic tempo-
ral planning. In Proc. ICAPS.
Mausam, and Weld, D. S. 2006. Probabilistic temporal planning
with uncertains durations. In Proc. AAAI’06.
Peshkin, L.; Kim, K.-E.; Meuleau, N.; and Kaelbling, L. P. 2000.
Learning to cooperate via policy search. In Proc. UAI.
Sanner, S., and Boutilier, C. 2006. Practical linear value-
approximation techniques for first-order MDPs. In Proc. UAI.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y. 2000.
Policy gradient methods for reinforcement learning with function
approximation. Proc. NIPS.
Tao, N.; Baxter, J.; and Weaver, L. 2001. A multi-agent, policy-
gradient approach to network routing. In Proc. ICML.
Williams, R. J. 1992. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine Learn-
ing 8:229–256.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-replan, a baseline for
probabilistic planning. In Proc. ICAPS’07.
Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: An exten-
sion to PDDL for expressing planning domains with probabilistic
effects. Technical Report CMU-CS-04-167.
Younes, H. L. S., and Simmons, R. G. 2004. Policy generation for
continuous-time stochastic domains with concurrency. In Proc.
ICAPS.
Younes, H. L. S. 2003. Extending PDDL to model stochastic
decision processes. In Proc. ICAPS Workshop on PDDL.

