
FF+FPG: Guiding a Policy-Gradient Planner

Olivier Buffet
LAAS-CNRS

University of Toulouse
Toulouse, France

firstname.lastname@laas.fr

Douglas Aberdeen
National ICT australia &

The Australian National University
Canberra, Australia

firstname.lastname@anu.edu.au

Abstract

The Factored Policy-Gradient planner (FPG) (Buffet & Ab-
erdeen 2006) was a successful competitor in the probabilistic
track of the 2006 International Planning Competition (IPC).
FPG is innovative because it scales to large planning domains
through the use of Reinforcement Learning. It essentially per-
forms a stochastic local search in policy space. FPG’s weak-
ness is potentially long learning times, as it initially acts ran-
domly and progressively improves its policy each time the
goal is reached. This paper shows how to use an external
teacher to guide FPG’s exploration. While any teacher can be
used, we concentrate on the actions suggested by FF’s heuris-
tic (Hoffmann 2001), as FF-replan has proved efficient for
probabilistic re-planning. To achieve this, FPG must learn
its own policy while following another. We thus extend FPG
to off-policy learning using importance sampling (Glynn &
Iglehart 1989; Peshkin & Shelton 2002). The resulting algo-
rithm is presented and evaluated on IPC benchmarks.

Introduction
The Factored Policy-Gradient planner (FPG) (Buffet & Ab-
erdeen 2006; Aberdeen & Buffet 2007) was an innovative
and successful competitor in the 2006 probabilistic track
of the International Planning Competition (IPC). FPG’s ap-
proach is to learn a parameterized policy –such as a neu-
ral network– by reinforcement learning (RL), reminiscent of
stochastic local search algorithms for SAT problems. Other
probabilistic planners rely either on a search algorithm (Lit-
tle 2006) or on dynamic programming (Sanner & Boutilier
2006; Teichteil-Königsbuch & Fabiani 2006).

Because FPG uses policy-gradient RL (Williams 1992;
Baxter, Bartlett, & Weaver 2001), its space complexity is
not related to the size of the state-space but to the small
number of parameters in its policy. Yet, a problem’s hard-
ness becomes evident in FPG’s learning time (speaking of
sample complexity). The algorithm follows an initially ran-
dom policy and slowly improves its policy each time a goal
is reached. This works well if a random policy eventually
reaches a goal in a short time frame. But, in domains such
as blocksworld, the average time before reaching the goal
“by chance” grows exponentially with the number of blocks
considered.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

An efficient solution for probabilistic planning is to use
a classical planner based on a determinized version of
the problem, and replan when a state that has not been
planned for is encountered. This is how FF-replan works
(Yoon, Fern, & Givan 2004), relying on the Fast For-
ward (FF) planner (Hoffmann & Nebel 2001; Hoffmann
2001). FF-replan can perform poorly on domains where
low-probability events can either be a key or give non-
reliable solutions. FF-replan still proved more efficient than
other probabilistic planners, somewhat because many of
the domains were simple modifications of deterministic do-
mains.

This paper shows how to combine a stochastic local
search RL planners –developed in a machine learning
context– with advanced heuristic search planners developed
by the AI planning community. Namely, we combine FPG
and FF to create a planner that scales well in domains
such as blocksworld, while still reasoning about the do-
main in a probabilistic way. The key to this combination
is the use of importance sampling (Glynn & Iglehart 1989;
Peshkin & Shelton 2002) to create an off-policy RL planner
initially guided by FF.

The paper starts with background knowledge on proba-
bilistic planning, policy-gradient and FF-replan. The fol-
lowing section explains our approach through its two major
aspects: the use of importance sampling on one hand and the
integration of FF’s help on the other hand. Then come exper-
iments on some competition benchmarks and their analysis
before a conclusion.

Background
Probabilistic Planning
A probabilistic planning domain is defined by a finite set
of boolean variables B = {b1, . . . , bn} –a state s ∈ S be-
ing described by an assignment of these variables, and often
represented as a vector s of 0s and 1s– and a finite set of
actions A = {a1, . . . , am}. An action a can be executed if
its precondition pre(a) –a logic formula on B– is satisfied.
If a is executed, a probability distribution P(·|a) is used to
sample one of its K outcomes outk(a). An outcome is a
set of truth value assignments on B which is then applied to
change the current state.

A probabilistic planning problem is defined by a planning

domain, an initial state so and a goal G –a formula on B
that needs to be satisfied. The aim is to find the plan that
maximizes the probability of reaching the goal, and possibly
minimizes the expected number of actions required. This
takes the form of a policy P[a|s] specifying the probability of
picking action a in state s. In the remainder of this section,
we see how FPG solves this with RL, and how FF-replan
uses classical planning.

FPG
FPG addresses probabilistic planning as a Markov Decision
Process (MDP): a reward function r is defined, taking value
1000 in any goal state, and 0 otherwise; a transition matrix
P[s′|s, a] is naturally derived from the actions; the system re-
sets to the initial state each time the goal is reached; and FPG
tries to maximize the expected average reward. But rather
than dynamic programming –which is costly when it comes
to enumerating reachable states–, FPG computes gradients
of a stochastic policy, implemented as a policy P[a|s;θ] de-
pending on a parameter vector θ ∈ Rn. We now present the
learning algorithm, then the policy parameterization.

On-Line POMDP The On-Line POMDP policy-gradient
algorithm (OLPOMDP) (Baxter, Bartlett, & Weaver 2001),
and many similar algorithms (Williams 1992), maximize the
long-term average reward

R(θ) := lim
T→∞

1
T

Eθ

[
T∑

t=1

r(st)

]
, (1)

where the expectation Eθ is over the distribution of state tra-
jectories {s0, s1, . . . } induced by the transition matrix and
the policy. To maximize R(θ), goal states must be reached
as frequently as possible. This has the desired property of si-
multaneously minimizing plan duration and maximizing the
probability of reaching the goal (failure states achieve no re-
ward).

A typical gradient ascent algorithm would repeatedly
compute the gradient∇θR and follow its direction. Because
an exact computation of the gradient is very expensive in our
setting, OLPOMDP relies on Monte-Carlo estimates gener-
ated by simulating the problem. At each time step of the
simulation loop, it computes a one-step gradient gt = rtet

and immediately updates the parameters in the direction of
gt. The eligibility vector et contains the discounted sum of
normalized action probability gradients. At each step, rt in-
dicates whether to move the parameters in the direction of
et to promote recent actions, or away from et to deter recent
actions (Algorithm 1).

OLPOMDP is “on-line” because it updates parameters for
every non-zero reward. It is also “on-policy” in the RL
sense of requiring trajectories to be generated according to
P[·|st;θt]. Convergence to a (possibly poor) locally opti-
mal policy is still guaranteed even if some state information
(e.g., resource levels) is omitted from st for the purposes of
simplifying the policy representation.

Linear-Network Factored Policy The policy used by
FPG is factored because it is made of one linear network

Algorithm 1 OLPOMDP FPG Gradient Estimator
1: Set s0 to initial state, t = 0, et = [0], init θ0 randomly
2: while R not converged do
3: Compute distribution P[at = i|st; θt]
4: Sample action i with probability P[at = i|st; θt]
5: et = βet−1 +∇ log P[at|st; θt]
6: st+1 = next(st, i)
7: θt+1 = θt + αrtet

8: if st+1.isTerminalState then st+1 = s0

9: t← t + 1

Not Eligible
Choice disabled

Current State

Next State

Eligible tasks

Event queue

Time

Predicates

Resources

Predicates

Event queue

Time

Eligible actions

Resources

Action N

Action 2

Action 1

ot

at

∆

ot

next(st, at)

P[at = 1|ot, θ1] = 0.8

P[at = N|ot, θN] = 0.1

Figure 1: Individual action-policies make independent deci-
sions.

per action, each of them taking the same vector s as input
(plus a constant 1 bit to provide bias to the perceptron) and
outputting a real value fi(st;θi). In a given state, a probabil-
ity distribution over eligible actions is computed as a Gibbs1

distribution

P[at = i|st;θ] =
exp(fi(st;θi))∑

j∈A exp(fj(st;θj))
.

The interaction loop connecting the policy and the problem
is represented in Figure 1.

Initially, the parameters are set to 0, giving a uniform ran-
dom policy; encouraging exploration of the action space.
Each gradient step typically moves the parameters closer to
a deterministic policy.

Due to the availability of benchmarks and compatibility
with FF we focus on the non-temporal IPC version of FPG.
The temporal version extension simply gives each action a
separate Gibbs distribution to determine if it will be exe-
cuted, independently of other actions (mutexes are resolved
by the simulator).

1Essentially the same as a Boltzmann or soft-max distribution.

Fast Forward (FF) and FF-replan

Fast Forward A detailed description of the Fast Forward
planner (FF) can be found in Hoffmann & Nebel (2001)
and Hoffmann (2001). FF is a forward chaining heuristic
state space planner for deterministic domains. Its heuristic is
based on solving –with a graphplan algorithm– a relaxation
of the problem where negative effects are removed, which
provides a lower bound on each state’s distance to the goal.
This estimate guides a local search strategy, enforced hill-
climbing (EHC), in which one step of the algorithm looks for
a sequence of actions ending in a strictly better state (better
according to the heuristic). Because there is no backtracking
in this process, it can get trapped in dead-ends. In this case,
a complete best-first search (BFS) is performed.

FF-replan Variants of FF include metric-FF, conformant-
FF and contingent-FF. But FF has also been successfully
used in the probabilistic track of the international planning
competition in a version called FF-replan (Yoon, Fern, &
Givan 2004; 2007). FF-replan works by planning in a deter-
minized version of the domain, executing its plan as long as
no unexpected transition is met. In such a situation, FF is
called for replanning from current state. One choice is how
to turn the original probabilistic domain into a deterministic
one. Two possibilities have been tried:

• in IPC4 (FF-replan-4): for each probabilistic action, keep
its most probable outcome as the deterministic outcome; a
drawback is that the goal may not be reachable anymore;
and

• in IPC5 (FF-replan-5, not officially competing): for each
probabilistic action, create one deterministic action per
possible outcome; a drawback is that the number of ac-
tions grows quickly.

Both approaches are potentially interesting: the former
should give more efficient plans if it is not necessary to rely
on low-probability outcomes of actions (it is necessary in
Zenotravel), but will otherwise get stuck in some situations.

Simple experiments with the blocksworld show that FF-
replan-5 can prefer to execute actions that, with a low
probability, achieve the goal very fast. E.g., the use
of put-on-block ?b1 ?b2 when put-down ?b1
would be equivalent –to put a block ?b1 on the table– and
safer from the point of view of reaching the goal with the
highest probability. This illustrates the drawback of the FF
approach of determinizing the domain. Good translations
somewhat avoid this by removing action B in cases where

• actions A and B have the same effects,

• action A’s preconditions are less or equally restrictive as
action B’s preconditions, and

• action A is more probable than action B.

Note: at the time of this work, no details about FF-replan
were published, which is now fixed (Yoon, Fern, & Givan
2007).

Off-Policy FPG
FPG relies on OLPOMDP, which assumes that the policy be-
ing learned is the one used to draw actions while learning.
As we intend to also take FF’s decisions into account while
learning, OLPOMDP has to be turned into an off-policy al-
gorithm by the use of importance sampling.

Importance Sampling
Importance sampling (IS) is typically presented as a method
for reducing the variance of the estimate of an expectation
by carefully choosing a sampling distribution (Rubinstein
1981). For a random variable X distributed according to
p, Ep[f(X)] is estimated by 1

n

∑
i f(xi) with i.i.d samples

xi ∼ p(x). But a lower variance estimate can be obtained
with a sampling distribution q having higher density where
‖f(x)‖ is larger. Drawing xi ∼ q(x), the new estimate is
1
n

∑
i f(xi)K(xi), where K(xi) = p(xi)

q(xi)
is the importance

coefficient for sample xi.

IS for OLPomdp: Theory
Unlike Shelton (2001), Meuleau, Peshkin, & Kim (2001)
and Peshkin & Shelton (2002), we do not want to estimate
R(θ) but its gradient. Rewriting the gradient estimation
given by Baxter, Bartlett, & Weaver (2001), we get:

∇̂R(θ) =
∑
X

r(X)
∇p(X)
p(X)

p(X)
q(X)

q(X),

where the random variable X is sampled according to dis-
tribution q rather than its real distribution p. In our setting, a
sample X is a sequence of states s0, . . . , st obtained while
drawing a sequence of actions a0, . . . , at from Q[a|s;θ] (the
teacher’s policy). This leads to:

∇̂R(θ) =
T∑

t=0

r(st)
∇p(st)
p(st)

p(st)
q(st)

,

where

p(st) =
t−1∏
t′=0

P[at′ |st′ ;θ] P[st′+1|st′ , at′],

q(st) =
t−1∏
t′=0

Q[at′ |st′ ;θ] P[st′+1|st′ , at′], and

∇p(st)
p(st)

=
t−1∑
t′=0

∇ (P[at′ |st′ ;θ] P[st′+1|st′ , at′])
P[at′ |st′ ;θ] P[st′+1|st′ , at′]

=
t−1∑
t′=0

∇P[at′ |st′ ;θ]
P[at′ |st′ ;θ]

, hence

∇p(st)
p(st)

p(st)
q(st)

=
∏t−1

t′=0 P[at′ |st′ ;θ]∏t−1
t′=0 Q[at′ |st′ ;θ]

t−1∑
t′=0

∇P[at′ |st′ ;θ]
P[at′ |st′ ;θ]

.

The off-policy update of the eligibility trace is then:
et+1 = et + Kt+1∇ log P[at|st;θ], where

Kt+1 =
Qt

t′=0 P[at′ |st′ ;θ]Qt
t′=0 Q[at′ |st′ ;θ]

,

= Kt
P[at|st;θ]
Q[at|st;θ] .

IS for OLPomdp: Practice
It is known that there are possible instabilities if the true dis-
tribution differs a lot from the one used for sampling, which
is the case in our setting. Indeed, Kt is the probability of a
trajectory if generated by P divided by the probability of the
same trajectory if generated by Q. This typically converges
to 0 when the horizon increases. Weighted importance sam-
pling solves this by normalizing each IS sample by the aver-
age importance co-efficient. This is normally performed in
a batch setting, where the gradient is estimated from several
runs before following its direction. With our online policy-
gradient ascent we use an equivalent batch size of 1. The
update becomes:

Kt+1 =
1
t

t∑
t′=1

kt′ , and kt = P[at|st;θ]
Q[at|st;θ] ,

et+1 = et + Kt+1∇ log P[at|st;θ],

θt+1 = θt +
1

Kt+1
ret+1.

Learning from FF
We have turned FF into a library (LIBFF) that makes it pos-
sible to ask for FF’s action in a given state. There are two
versions:

• EHC: use enforced hill climbing only, or

• EHC+BFS: do a breadth first search if EHC fails.

Often, the current state appears in the last plan found, so
that the corresponding action is already in memory. Plus,
to make LIBFF more efficient, we cache frequently encoun-
tered state-action suggestions.

Choice of the Sampling Distribution
Off-policy learning requires that each trajectory possible un-
der the true distribution be possible under the sampling dis-
tribution. Because FF acts deterministically in any state,
the sampling distribution cannot be based on FF’s decisions
alone. Two candidate sampling distributions are:

1. FF(ε)+uni(1 − ε): use FF with probability ε, a uniform
distribution with probability 1− ε; and

2. FF(ε)+FPG(1 − ε): use FF with probability ε, FPG’s dis-
tribution with probability 1− ε.

As long as ε 6= 1, the resulting sampling distribution has the
same support as FPG. The first distribution favors a small
constant degree of uniform exploration. The second distri-
bution mixes the FF suggested action with FPG’s distribu-
tion, and for high ε we expect FPG to learn to mimic FF’s
action choice closely. Apart from the expense of evaluating
the teacher’s suggestion, the additional computational com-
plexity of using importance sampling is negligible. An ob-
vious idea is to reduce ε over time, so that FPG takes over
completely, however the rate of this reduction is highly do-
main dependent, so we chose a fixed ε for the majority of
optimization, reverting to standard FPG towards the end of
optimization.

FF+FPG in Practice
Both FF and FPG accept the language considered in the
competition (with minor exceptions), i.e., PDDL with ex-
tensions for probabilistic effects (Younes et al. 2005). Note
that source code is available for FF2, FPG3 and libPG4 (the
policy-gradient library used by FPG). Excluding parameters
specific to FF or FPG, one has to choose:

1. whether to translate the domain in either an IPC4 or IPC5
type deterministic domain for FF;

2. whether to use EHC or EHC+BFS;

3. ε ∈ (0, 1); and

4. how long to learn with and without a teacher.

Experiments
The aim is to let FF help FPG. Thus the experiments will
focus on problems from the 5th international planning com-
petition for which FF clearly outperformed FPG, in particu-
lar the Blocksworld and Pitchcatch domains. In the other 6
IPC domains FPG was close to, or better, than the version of
FF we implemented. However, we begin by analyzing the
behavior of FF+FPG.

Simulation speed The speed of the simulation+learning
loop in FPG (without FF) essentially depends on the time
taken for simple matrix computation. FF, on the other hand,
enters a complete planning cycle for each new state, slow-
ing down planning dramatically in order to help FPG reach a
goal state. Caching FF’s answers greatly reduced the slow-
down due to FF. Thus, an interesting reference measure is
the number of simulation steps performed in 10 minutes
while not learning –FPG’s default behavior being a random
walk– as it helps evaluating how time-consuming the teacher
is.

Various settings are considered: the teacher can be EHC,
EHC+BFS or none; and the type of deterministic domain
is IPC4 (most probable effects) or IPC5 (all effects). Ta-
ble 1 gives results for the blocksworld5 problems p05 and
p10 (involving respectively 5 and 10 blocks), with different
ε values. Having no teacher is here equivalent to no learning
at all as there are very few successes.

Considering the number of simulation steps, we observe
that EHC is faster than EHC+BFS only for p05, with
ε = 0.5. Indeed, if one run of EHC+BFS is more time-
consuming, it usually caches more future states, which are
only likely to be re-encountered if ε = 1. With p05, the
score of the fastest teacher (4072.103) is close to the score
of FPG alone (4426.103), which reflects the predominance
of matrix computations compared to FF’s reasoning. But
this changes with p10, where the teacher becomes necessary
to get FPG to the goal in a reasonable number of steps. Fi-
nally, we clearly observed that the simulation speeds up as
the cache fills up.

2http://members.deri.at/˜joergh/ff.html
3http://fpg.loria.fr/
4http://sml.nicta.com.au/˜daa/software.htm
5Errors appear in this blocksworld domain, but we use it as a

Table 1: Number of simulation steps (×103), [number of
successes (×103)] and (average reward) in 10 minutes in the
Blocksworld

problem p05, ε = 0.5 p05, ε = 1 p10, ε = 1
domain IPC4 IPC5 IPC4 IPC5 IPC4 IPC5

no 4426 275*5=1375
teacher [0.022] (4.96e-3) [0*5] (0*5)

3525 3171 3547 4072 495 595
EHC [1.9] [7.9] [5.2] [26.5] [0.05] [1.0]

(0.5) (2.4) (1.5) (6.5) (0.1) (1.7)
EHC 2156 1518 3610 2136 514 559

+ [7.6] [10.1] [199.2] [65.5] [10.3] [5.0]
BFS (3.6) (6.7) (55.2) (30.7) (20.0) (9.0)

Note: FPG with no teacher stopped after 2 minutes in p10, because of its
lack of success. (Experiments performed on a P4-2.8GHz.)

Success Frequency Another important aspect of the
choice of a teacher is how efficiently it achieves rewards.
Two interesting measures are: 1) the number of successes
that shows how rewarding these 10 minutes have been; and
2) the average reward per time step (which is what FPG op-
timizes directly).

As can be expected, both measures increase with ε (ε = 0
implies no teacher) and decrease with the size of the prob-
lem. With a larger problem, there is a cumulative effect of
FF’s reasoning being slower and the number of steps to the
goal getting larger. Unsurprisingly, EHC+BFS is more effi-
cient than EHC alone when wall-clock time is not important.
Also, unsurprisingly in blocksworld, IPC4 determinizations
are better than IPC5, due to the fact that blocksworld is made
probabilistic by giving the highest probability (0.75) to the
normal deterministic effect.

Learning Dynamics
We look now at the dynamics of FPG while learning,
focusing on two difficult but still accessible problems:
Blocksworld/p10 and Pitchcatch/p07. EHC+BFS was ap-
plied in both cases. Pitchcatch/p07 required an IPC5-type
domain, while IPC4 was used for blocksworld/p10. Fig-
ures 2 and 3 show the average number of successes per time
step when using FPG alone or FPG+FF. But, as can be ob-
served on Table 1, FPG’s original random walk does not
initially find the goal by chance. To overcome this prob-
lem, the competition version of FPG implemented a simple
progress estimator –counting how many facts from the goal
are gained or lost in a transition– to modify the reward func-
tion, i.e., reward shaping. This leads us to also consider re-
sults with and without the progress estimator (the measured
average reward not taking it into account).

In the experiments –performed on a P4-2.8GHz– the
teacher is always used during the first 60 seconds (for a
total learning time of 900 seconds, as in the competition).
The settings include two learning step sizes: α and αtea (a
specific step size while teaching). If a progress estimator is
used, each goal fact made true (respectively false) brings a
reward of +100 (resp. -100). Note that we used our own

reference from the competition.

simple implementation of FF-replan. Based on published
results, the IPC FF-Replan (Yoon, Fern, & Givan 2004) per-
forms slightly better. The curves appearing on Fig. 2 and
3 are over a single run, in a view to exhibit typical behav-
iors –which have been observed repeatedly–. No accurate
comparison between the various settings should be done.

On Fig. 2, it appears that the progress estimator is not
sufficient for Blocksworld/p10, so that no teacher-free ap-
proach starts learning. With the teacher used for 60 seconds,
a first high-reward phase is observed before a sudden fall
when teaching stops. Yet, this is followed by a progressive
growth up to higher rewards than with just the teacher. Here,
ε is high to ensure that the goal is met frequently. Combining
the teacher and the progress estimator led to quickly saturat-
ing parameters θ, causing numerical problems.

In Pitchcatch/p07, vanilla FPG fails, but the progress es-
timator makes learning possible, as shown on Fig. 3. Using
the teacher or a combination of the progress estimator and
the teacher also works. The three approaches give similar
results. As with blocksworld, a decrease is observed when
teaching ends, but the first phase is much lower than the op-
timum, essentially because ε is set to a relatively low 0.5.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

R

t

FPG
FPG+prog

FF+FPG

Figure 2: Average reward per time step on Blocksworld/p10
ε = 0.95, α = 5.10−4, αtea = 10−5, β = 0.95

Blocksworld Competition Results
We recreated the competition environment for the 6 hardest
blocksworld problems, which the original IPC FPG plan-
ner struggled with despite the use of progress rewards. Op-
timization was limited to 900 seconds. The EHC+BFS
teacher was used throughout the 900 seconds with ε = 0.9
and discount factor β = 1 (the eligibility trace is reset after
reaching the goal). The progress reward was not used. P10
contains 10 blocks, and the remainder contain 15. As in the
competition, evaluation was over 30 trials of the problem.
FF was not used during evaluation.

Table 2 shows the results. The IPC results were taken
from the 2006 competition results. The FF row shows our
implementation of the FF-based replanner without FPG, us-
ing the faster IPC-4 determinization of domains, hence the
discrepancy with the IPC5-FF row. The results demonstrate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900

R

t

FPG
FPG+prog

FF+FPG
FF+FPG+prog

Figure 3: Average reward per time step on Pitchcatch/p07
ε = 0.5, α = 5.10−4, αtea = 10−5, β = 0.85

Table 2: Number of success out of 30 for the hardest proba-
bilistic IPC5 blocksworld problems.

Planner p10 p11 p12 p13 p14 p15
FF+FPG 30 29 0 3 30 30
FF 30 30 2 13 30 11
IPC5-FPG 13 0 0 0 0 0
IPC5-FF 30 30 27 1 0 30

that FPG is at least learning to imitate FF well, and partic-
ularly in the case of Blocksworld-P15 FPG bootstraps from
FF to find a better policy. This is a very positive result con-
sidering how difficult these problems are.

Where FPG Fails: A XOR Problem
We present here some experiments on a toy problem whose
optimal solution cannot be represented with the usual linear
networks. In this “XOR” problem, the state is represented
by two predicates A and B (randomly initialised), and the
only two actions are α and β. Applying α if A 6= B leads
to a success, as well as applying β if ¬(A 6= B). Any other
decision leads to a failure.

Table 3 shows results for various planners, two function
approximators being used within FPG: the usual linear net-
work (noted “2L” because it is a 2-layer perceptron) and a
3-layer perceptron “3L” (with two hidden units). The ob-
served results can be interpreted as follows:

• FPG(2L) finds the best policy it can express: it picks one
action in 3 cases out of 4, and the other in the last case;
there is a misclassification in only a quarter of all situa-
tions;

• FPG(3L) but usually falls in a local optimum achieving
the same result as FPG(2L);

• FF always finds the best policy;

• with FF+FPG(2L), FPG tries –with no success– to learn
the true optimal policy, as exhibited by FF; the result is a

stochastic policy finding the appropriate action only half
of the time;

• with FF+FPG(3L), FPG really learn FF’s behavior, i.e.
the optimal policy.

Table 3: Success probability on the XOR problem

FPG(2L) FPG(3L) FF FF+FPG(2L) FF+FPG(3L)
74% 81% 100% 44% 100%

Discussion
Because classical planners like FF return a plan quickly
compared to probabilistic planners, using them as a heuris-
tic input to probabilistic planners makes sense. Our experi-
ments demonstrate that this is feasible in practice, and makes
it possible for FPG to solve new problems efficiently, such
as 15 block probabilistic blocksworld problems.

Choosing ε well for a large range of problems is difficult.
Showing too much of a teacher’s policy (ε ' 1) will lead to
copying this policy (provided it does reach the goal). This is
close to supervised learning where one tries to map states to
actions exactly as proposed by the teacher, which may be a
local optimum. Avoiding local optima is made possible by
more exploration (ε ' 0), but at the expense of losing the
teacher’s guidance.

Another difficulty is finding an appropriate teacher. As
we use it, FF proposes only one action (no heuristic value for
each action), making it a poor choice for sampling distribu-
tion without mixing it with another. Computation times can
be expensive, however this is more than offset by its ability
to initially guide FPG to the goal in combinatorial domains.
And the choice between IPC-4 and IPC-5 determinization
of domains is not straightforward. There is space to improve
FF which may result in FF being an even more competi-
tive stand-alone planner, as well as assisting stochastic lo-
cal search based planners. In particular, recently published
details on the original implementation of FF-rePlan (Yoon,
Fern, & Givan 2007) should help us develop a better replan-
ner than the version we are using. In many situations, the
best teacher would be a human expert. But importance sam-
pling cannot be used straightforwardly in this situation.

In similar approach to ours, Mausam, Bertoli, & Weld
(2007) use a non-deterministic planner to find potentially
useful actions, whereas our approach exploits a heuristic
borrowed from a classical planner.

Another interesting comparison is with Fern, Yoon, & Gi-
van (2003) and Xu, Fern, & Yoon (2007). Here, the rela-
tionship between heuristics and learning is inverted, as the
heuristics are learned rather than used for learning. Given
a fixed planning domain, this can be an efficient way to
gain knowledge from some planning problems and reuse it
in more difficult situations.

Conclusion
FPG’s benefits are that it learns a compact and factored rep-
resentation of the final plan, represented as a set of parame-

ters; and the per step learning algorithm complexity does not
depend on the complexity of the problem. However FPG
suffers in problems where the goal is difficult to achieve
via initial random exploration. We have shown how to use
a non-optimal planner to help FPG to find the goal, while
still allowing FPG to learn a better policy than the original
teacher, with initial success on IPC planning problems that
FPG could not previously solve.

Acknowledgments
We thank Sungwook Yoon for his help on FF-replan. This
work has been supported in part via the DPOLP project at
NICTA.

References
Aberdeen, D., and Buffet, O. 2007. Temporal probabilistic
planning with policy-gradients. In Proceedings of the Sev-
enteenth International Conference on Automated Planning
and Scheduling (ICAPS’07).
Baxter, J.; Bartlett, P.; and Weaver, L. 2001. Experiments
with infinite-horizon, policy-gradient estimation. Journal
of Artificial Intelligence Research 15:351–381.
Buffet, O., and Aberdeen, D. 2006. The factored policy
gradient planner (ipc’06 version). In Proceedings of the
Fifth International Planning Competition (IPC-5).
Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate
policy iteration with a policy language bias. In Advances
in Neural Information Processing Systems 15 (NIPS’03).
Glynn, P., and Iglehart, D. 1989. Importance sampling for
stochastic simulations. Management Science 35(11):1367–
1392.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI Magazine 22(3):57–62.
Little, I. 2006. Paragraph: A graphplan-based probabilistic
planner. In Proceedings of the Fifth International Planning
Competition (IPC-5).
Mausam; Bertoli, P.; and Weld, D. S. 2007. A hybridized
planner for stochastic domains. In Proceedings of the
Twentieth International Joint Conference on Artificial In-
telligence (IJCAI’07).
Meuleau, N.; Peshkin, L.; and Kim, K. 2001. Exploration
in gradient-based reinforcement learning. Technical Report
AI Memo 2001-003, MIT - AI lab.
Peshkin, L., and Shelton, C. 2002. Learning from scarce
experience. In Proceedings of the Nineteenth International
Conference on Machine Learning (ICML’02).
Rubinstein, R. 1981. Simulation and the Monte Carlo
Method. John Wiley & Sons, Inc. New York, NY, USA.
Sanner, S., and Boutilier, C. 2006. Probabilistic planning
via linear value-approximation of first-order MDPs. In Pro-
ceedings of the Fifth International Planning Competition
(IPC-5).

Shelton, C. 2001. Importance sampling for reinforce-
ment learning with multiple objectives. Technical Report
AI Memo 2001-003, MIT AI Lab.
Teichteil-Königsbuch, F., and Fabiani, P. 2006. Symbolic
stochastic focused dynamic programming with decision di-
agrams. In Proceedings of the Fifth International Planning
Competition (IPC-5).
Williams, R. 1992. Simple statistical gradient-following
algorithms for connectionnist reinforcement learning. Ma-
chine Learning 8(3):229–256.
Xu, Y.; Fern, A.; and Yoon, S. 2007. Discriminative learn-
ing of beam-search heuristics for planning. In Proceedings
of the Twentieth International Joint Conference on Artifi-
cial Intelligence (IJCAI’07).
Yoon, S.; Fern, A.; and Givan, R. 2004. FF-rePlan.
http://www.ecn.purdue.edu/ sy/ffreplan.html.
Yoon, S.; Fern, A.; and Givan, B. 2007. FF-Replan: a
baseline for probabilistic planning. In Proceedings of the
Seventeenth International Conference on Automated Plan-
ning and Scheduling (ICAPS’07).
Younes, H. L. S.; Littman, M. L.; Weissman, D.; and As-
muth, J. 2005. The first probabilistic track of the inter-
national planning competition. Journal of Artificial Intelli-
gence Research 24:851–887.

