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Abstract

Markov Decision Processes (MDPs) are employed to model
sequential decision-making problems under uncertainty. Tra-
ditionally, algorithms to solve MDPs have focused on solv-
ing large state or action spaces. With increasing applications
of MDPs to human-operated domains such as conservation
of biodiversity and health, developing easy-to-interpret so-
lutions is of paramount importance to increase uptake of
MDP policies. Here, we define the problem of solving K-
MDPs, i.e., given an original MDP and a constraint on the
number of states (K), generate a reduced state space MDP
that minimizes the difference between the original optimal
MDP value function and the reduced optimal K-MDP value
function. Building on existing non-transitive and transitive
approximate state abstraction functions, we propose a fam-
ily of three algorithms based on binary search with sub-
optimality bounded polynomially in a precision parameter:
φQ∗

ε
K-MDP-ILP, φQ∗

d
K-MDP and φa∗

d
K-MDP. We com-

pare these algorithms to a greedy algorithm (φQ∗
ε

Greedy
K-MDP) and clustering approach (k-means++ K-MDP).
On randomly generated MDPs and two computational sus-
tainability MDPs, φa∗

d
K-MDP outperformed all algorithms

when it could find a feasible solution. While numerous state
abstraction problems have been proposed in the literature, this
is the first time that the general problem of solving K-MDPs
is suggested. We hope that our work will generate future re-
search aiming at increasing the interpretability of MDP poli-
cies in human-operated domains.

Introduction

Markov decision processes (MDPs) are a convenient mathe-
matical model for tackling sequential decision-making prob-
lems under uncertainty (Puterman 2014). MDPs have been
applied to help recover populations of threatened species un-
der limited resources, to control invasive species, to man-
age fisheries, to perform adaptive management of natural re-
sources, and to test behavioral ecology theories (Marescot
et al. 2013). These domains are human-operated systems,
where MDP policies provide recommendations to humans
rather than applied in an autonomous context such as in
robotics. Policies computed for MDPs with thousands of
states are in practice difficult to understand by humans. In
human-operated systems, it is crucial that policies can be
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interpreted and explained to guide decision-making (Petrik
and Luss 2016).

Explainable artificial intelligence (XAI), also know as
the interpretability problem, can be divided into a) Explain-
ability problems: generating decisions in which one of the
criteria is how well a human could understand these de-
cisions (our approach); b) Explanation problems: explic-
itly explaining decisions to humans. Emerging research on
XAI has mostly focused on machine learning models rather
than decision problems (Vellido, Martı́n-Guerrero, and Lis-
boa 2012; Guidotti et al. 2019). Work on interpretabil-
ity for decision-making remains seldom (Dujardin, Diet-
terich, and Chadès 2015; 2017; Lakkaraju and Rudin 2017;
Petrik and Luss 2016; Bertram and Wei 2018). We note re-
cent interest in planning (XAIP) to generate explanations
for planner solutions (Chakraborti et al. 2019; Krarup et al.
2019).

Modelling problems as Factored MDPs can help inter-
preting the solutions up to a point (Vianna, Sanner, and
De Barros 2013). We found that when the number of state
variables becomes too large (> 10), factored policies be-
come too complex for experts in our application domains
(e.g. http://iadine-chades.org/iacrc/network2/#). Here, we
remained general and did not take advantage of factored
properties.

Motivated by our interactions with computational sus-
tainability experts puzzled with MDP policies, we add to
these emerging XAI efforts and propose to increase the in-
terpretability of MDPs. Inspired by work on solving N -
POMDPs (Dujardin, Dietterich, and Chadès 2017; 2015),
where N defines the maximum size of any admissible pol-
icy represented by a set of α-vectors, we propose to solve
K-MDPs, i.e., to find the best MDP with at most K states,
while taking advantage of leveraging on the state abstraction
literature to develop new algorithms (Li, Walsh, and Littman
2006; Abel, Hershkowitz, and Littman 2016; Abel et al.
2018). State abstraction approaches aim to reduce the size of
large state spaces by aggregating those states which are sim-
ilar or equivalent given an abstraction function or a metric.
In other words, a state abstraction function maps states into
clusters of states such that solvers can compute a policy over
those clusters. Finding good state abstraction functions has
been the focus of many papers (Dearden and Boutilier 1997;
Singh, Jaakkola, and Jordan 1995; Andre and Russell 2002;
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Pineau, Gordon, and Thrun 2002; Dietterich 2000; Jong
and Stone 2005). Of particular interest are state abstrac-
tion functions that minimize the loss of performance. Ex-
act state abstraction functions aggregate states that are ex-
actly equal given a metric (Li, Walsh, and Littman 2006;
Dean and Givan 1997), but this very strong requirement
limits our ability to aggregate states. More recently, ap-
proximate state abstraction functions have been proposed.
These functions aggregate states that are closely similar
given a measure (Abel, Hershkowitz, and Littman 2016;
Abel et al. 2018). Interestingly, state abstraction approaches
have mostly focused on finding the smallest state space
given a loss of performance e.g. (Abel, Hershkowitz, and
Littman 2016; Abel et al. 2017)—which does not solve the
K-MDP problem as we seek to minimize the loss of perfor-
mance given a maximum number of abstract states.

We first define the problem of providing easy-to-interpret
MDP solutions as K-MDP problems. We build on approxi-
mate non-transitive and transitive state abstraction functions
to develop new algorithms for finding the best K-MDP.

We present a set of experiments on randomly-generated
MDPs and on two computational sustainability case
studies—one involving the conservation of endangered
species (Chades, Curtis, and Martin 2012) and one seeking
to control an invasive mosquito species (Péron et al. 2017).
Finally, we discuss future research directions.

MDPs

Markov Decision Processes (MDPs) provide a convenient
model for representing sequential decision-making opti-
mization problems when the decision maker has complete
information about the current state of the system and dy-
namics are non-deterministic (Puterman 2014).

Formally, a finite MDP is specified as a tuple
〈S,A, T, r, γ〉, where:
• S is the set of perfectly observed states;
• A is the set of actions (or decisions) from which the man-

ager needs to choose an action a at each time step;
• T is a probabilistic transition function describing the

stochastic dynamics of the system; an element T (s, a, s′),
for s, s′ ∈ S and a ∈ A, represents the probability of
being in state s′ at time t+ 1 given (s, a) at time t;

• r : S ×A→ [0, Rmax] is the reward function identifying
the benefits or costs. For sake of simplicity, we assume
that rewards are positive and bounded by Rmax ;
• γ ∈ [0, 1] is a discount factor.

The solution to an MDP is a function π : S → A, called
a policy, that specifies what action to take in each state. We
can evaluate and rank policies based on their expected values
given a criterion. The value V π(s) is the expected gain of
implementing policy π starting in state s and continuing to a
given time horizon. In the case of a discounted infinite hori-
zon criterion, we have: ∀s ∈ S, V π(s) = Eπ(

∑
t γ

trt|s0 =
s). We denote V ∗ the optimal value function that maximizes
this expected sum in any state and π∗ an optimal policy.

Most algorithms designed to solve MDPs, including the
famous Value Iteration and Policy Iteration algorithms, rely

on Bellman’s dynamic programming equations (1958):

V (s) = max
a∈A(s)

[r(s, a) + γ
∑
s′∈S

T (s, a, s′)V (s′)].

where A(s) are the applicable actions in s. Solving an MDP
is polynomial in time (Papadimitriou and Tsitsiklis 1987).

Our challenge is unusual. MDP solutions are rarely ap-
plied in our computational sustainability domains. We seek
to increase interpretation of existing MDP solutions by gen-
erating compact MDPs rather than solving new MDPs.

K-MDPs

To increase the interpretability of MDP solutions, we pro-
pose to start with an initial MDP and find a simpler MDP
called a K-MDP. We first introduce the problem of solving
K-MDPs with minimum performance loss. We then define
K-MDPs in the context of state abstraction.

General problem statement

Given an MDP M = 〈S,A, T, r, γ〉, a K-MDP MK =
〈SK , A, TK , rK , γ, φ〉 is an MDP where SK is a reduced
state set of size at most K, A is the original set of actions,
TK : SK × A × SK → [0, 1] is the probability transition
function, rK : SK × A → [0, Rmax], γ is the discount fac-
tor and φ is a mapping function from the original MDP state
space S to the K-MDP state space SK .

An optimal solution for a K-MDP is a policy π∗
K : SK →

A that maximizes the expected sum of discounted rewards
and can be calculated using exact MDP solvers. This policy
can be applied to the original MDP by using the mapping
function φ, with the associated value function V

π∗
K

φ where:

V
π∗
K

φ (s) = E

(
t=H∑
t=0

γtr(st, π
∗
K(φ(st)))|s0 = s

)
.

Essentially, V π∗
K

φ represents the performance of policy π∗
K

when applied to the original MDP problem.
We formulate the problem of finding the best reduced

state space (|SK | ≤ K) as a gap minimization problem be-
tween the optimal MDP policy and the optimal K-MDP pol-
icy:

gap∗ = min
SK∈P (S), |SK |≤K

max
s∈S

[V π∗
(s)− V

π∗
K

φ (s)], (1)

where P (S) is a power set of S.
In the remainder of the paper, we propose algorithms that

minimize this gap. As a first step, we explore using state
abstraction to reduce the state space. We acknowledge that
alternative approaches could be used to generate K-MDPs.

K-MDPs using state abstraction

The goal of state abstraction approaches is to reduce the size
of the MDP state space by aggregating and grouping those
states which are similar given an abstraction function or met-
ric (Dean and Givan 1997; Li, Walsh, and Littman 2006).
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Given an MDP and a predicate p(s1, s2) (a binary relation
between states), a state abstraction function φ(s) satisfies:

(φ(s1) = φ(s2)) =⇒ p(s1, s2).

State abstraction functions can be exact or approximate.
They can also have desirable properties such as transitivity:

p(s1, s2) ∧ p(s2, s3) =⇒ p(s1, s3).

We now provide a formal definition of a K-MDP in the
specific context where state abstraction is used to solve the
K-MDP problem.

Definition 1. Given an MDP M = 〈S,A, T, r, γ〉, Let us
define a K-MDP as a tuple MK = 〈SK , A, TK , rK , γ, φ〉:
• SK = {φ(s)|s ∈ S} the abstract state space with |SK | ≤
K and φ a function that maps a state s in the original
MDP to a state sK in the abstract K-MDP. The inverse of
function φ−1(sK) maps an abstract state sK ∈ SK to its
constituent states in the original MDP.

• A is the same set of actions as in the original MDP model.

• TK : SK × A × SK → [0, 1] is the abstract K-MDP
probability transition function providing the probability
of being in state s′K at time t + 1 given action a was
implemented in state sK at time t, TK(sK , a, s′K) =∑

s∈φ−1(sK)

∑
s′∈φ−1(s′K) T (s, a, s

′)ω(s), where the
weights ω(s) represent a probability distribution over the
original states that aggregate to an abstract state sK :

∀sK ∈ SK ,

( ∑
s∈φ−1(sK)

ω(s)

)
= 1

and ω(s) ∈ [0, 1] (Abel, Hershkowitz, and Littman 2016).

• rK : SK × A → [0, Rmax] the abstract reward func-
tion defined as a weighted sum over the original states
rK(sK , a) =

∑
s∈φ−1(sK) r(s, a)ω(s).

Unlike in (Abel, Hershkowitz, and Littman 2016), our
definition adds a constraint on the number of states.

Proposed algorithms to solve K-MDPs

Building on the state abstraction function literature, we now
propose a family of algorithms to solve K-MDPs.

All of our proposed algorithms need to build a K-MDP
once the state space is reduced. We call this procedure
BUILD-K-MDP (Alg. 1). Given an MDP M , an abstract
state space SK produced by one of our algorithms and φ,
line 3 computes the weights of all states s ∈ φ−1(sK) (see
Experimental Results). Lines 4 to 8 compute the correspond-
ing reward function rK and transition function TK .

The φQ∗
ε
K-MDP-ILP algorithm

Our first algorithm is based on a non-transitive approxi-
mate state abstraction function φQ∗

ε
proposed by Abel, Her-

shkowitz, and Littman (2016).

Algorithm 1 BUILD-K-MDP

Require: M = 〈S,A, T, r,H, γ〉, SK , φ
1: for sK ∈ SK do
2: for s ∈ φ−1(sK) do
3: ω(s)← computeWeights(φ, sK)
4: rK(sK , a)←∑

s∈φ−1(sK) r(s, a)ω(s)

5: for s′K ∈ SK do
6: for a ∈ A do
7: TK(sK , a, s′K)←
8:

∑
s∈φ−1(sK)

∑
s′∈φ−1(s′K) T (s, a, s

′)ω(s)
9: MK = 〈SK , A, TK , rK , H, γ〉

10: return MK

Approximate non-transitive φQ∗
ε

abstraction function
For any original states i, j, an approximate state abstraction
function φQ∗

ε
satisfies:

φQ∗
ε
(i) = φQ∗

ε
(j) =⇒ ∀a |Q∗(i, a)−Q∗(j, a)| ≤ ε.

That we reformulate as:,

φQ∗
ε
(i) = φQ∗

ε
(j) =⇒ max

a
|Q∗(i, a)−Q∗(j, a)| ≤ ε.

Abel, Hershkowitz, and Littman (2016) show that an op-
timal policy derived with φQ∗

ε
applied to an original MDP

has sub-optimality bounded polynomially in ε:

∀s ∈ S, V π∗
(s)− V

π∗
K

φQ∗
ε

(s) ≤ 2εRmax

(1− γ)2
. (2)

Because we seek to find a K-MDP that minimizes the gap
(Eq. (1)), we can easily reformulate Eq. (2) as:

max
s∈S

V π∗
(s)− V

π∗
K

φQ∗
ε

(s) ≤ 2εRmax

(1− γ)2
. (3)

Eq. (3) now provides a way of bounding the value loss
in our K-MDP problem. Our proposed algorithm φQ∗

ε
K-

MDP-ILP exploits this theoretical result.

The φQ∗
ε
K-MDP-ILP algorithm explained All states

aggregated using φQ∗
ε

have values of Q∗ within ε of each
other. We define δ as a non-negative function such that
δ(i, j) = maxa |Q∗(i, a) − Q∗(j, a)|, i, j ∈ S and a ∈ A.
Then, for each pair of states i, j ∈ S, if δ(i, j) ≤ ε, then
states i, j can be aggregated. We define the predicate ci,j re-
turning true iff δ(i, j) ≤ ε holds.

Given all possible pairs C = {ci,j |i, j ∈ S} and ε, we
want to find a state abstraction, if it exists, with at most K
states. This is equivalent to partitioning the nodes of an undi-
rected graph GC = 〈S,C〉 into K cliques (Brigham and
Dutton 1983), with the set of vertices defined as the states of
the original MDP and the edges defined through C.

We propose a pure integer linear program ILPKMDP

with |S|K +K 0-1 decision variables to address this prob-
lem as a node clique cover decision problem, which has been
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proven NP-Complete (Karp 1972).

f : min
∑
k∈K

zk

s.t. ∀i ∈ S,
∑
k∈K

xik = 1

∀i ∈ S, k ∈ K, xik ≤ zk

∀k ∈ K, i ∈ S, i < j ≤ |S|, xik + xjk − 1 ≤ cij

∀i ∈ S, k ∈ K, xik ∈ {0, 1}
∀k ∈ K, zk ∈ {0, 1}

(ILPKMDP )

We define K as the finite set {1, . . . ,K}. Given an undi-
rected graph GC = 〈S,C〉, ILPKMDP encodes a state ab-
straction through at most K clusters:
1. Decision variable xik takes value 1 if state i belongs to

clique k ∈ K and 0 otherwise;
2. Decision variable representing clique zk takes value 1 if

it contains at least one state and 0 otherwise;
3. A state i ∈ S can only belong to one clique k ∈ K;
4. Two states i, j ∈ S that do not share an edge (cij = 0)

cannot belong to the same clique k;
5. There are at most K cliques.
Remark. Linear Program ILPKMDP does not need an ob-
jective function since only the feasibility is checked. An ob-
jective function has been added to obtain a formal linear
program.
ILPKMDP requires a graph GC = 〈S,C〉 computed

from an ε value. Algorithm φQ∗
ε
K-MDP performs a bi-

nary search to the decision version of the K-MDP problem
using the φQ∗

ε
abstraction function and the linear program

ILPKMDP . Alg. 2 searches for the smallest ε value that al-
lows a valid K-MDP state abstraction, with ε defined as in
Eq. (3) and SK a solution returned by ILPKMDP .
Proposition 1. Alg. 2 solves the K-MDP problem within
precision ptarget in a finite number of iterations. The optimal
value function derived from the solution MK , V π∗

K

φQ∗
ε

, has sub-
optimality bounded polynomially in ε.

Proof. The sub-optimality bounded polynomially in ε is
a direct consequence of Eq. 3 and the use of δ(i, j)
(line 6). The binary search algorithm applied to a con-
tinuous variable using an arbitrary precision ptarget re-
quires log(maxi,j∈Sδ(i,j)

ptarget
) iterations and ILPKMDP can be

solved using Branch and Bound for a 0-1 integer linear
program. There are |S|K + K variables and 1

2K|S|2 +
1
2 |S|K + |S| constraints. Therefore, the complexity of
ILPKMDP is O(2K|S|). Alg. 2 has time complexity in
O(log

maxi,j∈Sδ(i,j)
ptarget

2K|S|) due to binary search and branch
and bound for solving ILPKMPD.

While this approach is mathematically elegant, it is lim-
ited by its computational complexity. We now propose faster
algorithms.

Algorithm 2 φQ∗
ε
K-MDP-ILP

Require: M,K ≥ 1, ptarget
1: ε− = 0, ε+ = maxi,j∈Sδ(i, j)
2: repeat
3: p = ε+ − ε−

4: ε = ε− + ε+−ε−
2

5: for i, j ∈ S do
6: if δ(i, j) ≤ ε then
7: ci,j = 1
8: else
9: ci,j = 0

10: C = {ci,j |i, j ∈ S}
11: SK ← ILPKMDP (GC = 〈C, S〉,K)
12: if ILPKMDP (GC ,K) has a solution then
13: ε+ = ε
14: else
15: ε− = ε
16: until p < ptarget
17: MK ← BUILD-K-MDP(M,SK , φ)
18: return MK

The φQ∗
d
K-MDP algorithm

Our second algorithm is based on a transitive approximate
abstraction function φQ∗

d
, introduced by Abel et al. (2018).

Approximate transitive φQ∗
d

function abstraction For
any original states i, j, an approximate transitive state ab-
straction function satisfies:

φQ∗
d
(i) = φQ∗

d
(j) =⇒ ∀a

⌈
Q∗(i, a)

d

⌉
=

⌈
Q∗(j, a)

d

⌉
(4)

for 0 < d ≤ VMAX, where VMAX represents the maxi-
mum optimal value. A transitive state abstraction function
φQ∗

d
, as reported by Abel et al. (2018), has a value loss that

scales in accordance with d:

∀s ∈ S, V π∗
(s)− V

π∗
K

φQ∗
d

(s) ≤ 2dRmax

(1− γ)2
.

That we reformulate as,

max
s∈S

V π∗
(s)− V

π∗
K

φQ∗
d

(s) ≤ 2dRmax

(1− γ)2
. (5)

Unlike state abstraction function φQ∗
ε
, transitive predi-

cates offer a unique minimal state abstraction for which all
state pairs that satisfy the predicate belong to the same clus-
ter. In the case of φQ∗

d
, a set of states belong to the same

cluster if they belong to the same bin as defined by Eq. 4.

The φQ∗
d
K-MDP algorithm explained We now propose

the φQ∗
d
K-MDP algorithm (Alg. 3) to minimize the value

of d given a ptarget parameter and the abstraction function
φQ∗

d
. Alg. 3 takes as argument an MDP model M , a param-

eter K ≥ 1 denoting a maximum number of states for the
K-MDP, and a precision value ptarget. Alg. 3 performs a
binary search on d by setting the first upper bound d+ to
VMAX and lower bound d− to 0. For all states s ∈ S and
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Algorithm 3 φQ∗
d
K-MDP

Require: M,K ≥ 1, ptarget, Q
∗

1: d+ = VMAX, d− = 0
2: repeat
3: p = d+ − d−

4: d = d− + d+−d−
2

5: for s ∈ S do
6: for a ∈ A do
7: bindings← �Q∗(s, a)/d

8: SK ← unique(bindings)
9: if |SK | ≤ K then

10: d+ = d
11: else
12: d− = d
13: until p < ptarget
14: MK ← BUILD-K-MDP(M,SK , φ)
15: return MK

actions a ∈ A, we compute the ceil values given param-
eter d (Eq. (4), line 7). bindings contains the ceil values
for all states and actions. Function unique returns an ab-
stracted state space SK by grouping states that belong to
the same bin (line 8). Finally, the upper bound d+ or lower
bound d− are updated. The algorithm continues until the
precision criterion is reached. Alg. 3 has time complexity
O(|S| log( VMAX

ptarget
)) due to the binary search and the unique

procedure, which is linear in |S|.
Proposition 2. Alg. 3 solves the K-MDP problem within
precision ptarget in a finite number of iterations. The optimal
value function derived from the solution MK , V π∗

K

φQ∗
d

, has sub-

optimality bounded polynomially in d.

Proof. This follows from the binary search and Eq. (5).

The φa∗d K-MDP algorithm

Abel et al. (2018) were motivated by a reinforcement learn-
ing problem and did not focus on state approximation func-
tion based on optimal value functions. However, they men-
tioned the opportunity to apply the ceiling discretization ap-
proach to transform the exact transitive function φ∗

a into an
approximate transitive function. This is what we did, denot-
ing this state abstraction function φa∗

d
.

Approximate transitive φa∗
d

function abstraction We
first introduce the exact state abstraction function φa∗ . For
any original states i, j, the exact state abstraction function
φa∗ satisfies:

φa∗(i) = φa∗(j) =⇒ a∗i = a∗j ∧ V ∗(i) = V ∗(j).

φa∗ preserves the optimal actions and their values (Li,
Walsh, and Littman 2006). Now applying the ceiling func-
tion, the approximate transitive state abstraction function
φa∗

d
satisfies:

φa∗
d
(i) = φa∗

d
(j) =⇒ a∗i = a∗j ∧

⌈
V ∗(i)
d

⌉
=

⌈
V ∗(j)
d

⌉
(6)

for 0 < d ≤ VMAX and a∗i , a
∗
j ∈ A, where a∗i and a∗j

are the optimal actions to implement in states i and j re-
spectively. In other words, two given states i and j can be
aggregated if they belong to the same bin and their optimal
actions are the same. One can show that the value loss result
in Eq. 5 from φQ∗

d
extends to φa∗

d
.

Intuitively, using φa∗
d

as state abstraction function is more
likely to minimize the gap of Eq. (1) than φQ∗

d
because it pre-

serves the optimal actions. However, this advantage comes
at a cost of not finding a feasible state abstraction when the
number of unique optimal actions in the original optimal
MDP policy π∗ is greater than K.

One can show that the value loss result from φQ∗
d

extends
to φa∗

d
. A transitive state abstraction function φa∗

d
has a value

loss that scales in accordance with d:

∀s ∈ S, V π∗
(s)− V

π∗
K

φa∗
d

(s) ≤ 2dRmax

(1− γ)2
.

Alternatively,

max
s∈S

V π∗
(s)− V

π∗
K

φa∗
d

(s) ≤ 2dRmax

(1− γ)2
. (7)

The φa∗
d
K-MDP algorithm explained We can naturally

propose the φa∗
d
K-MDP algorithm (Alg. 4) to find the min-

imum value of d that returns a set of abstracted states SK ,
where |SK | ≤ K, given a precision ptarget parameter and
the abstraction function φa∗

d
. Alg. 4 is similar to Alg. 3 ex-

cept that lines 5:7 are replaced by lines 1:3.

Algorithm 4 φa∗
d
K-MDP

M
1: for s ∈ S do
2: a∗s ← π∗(s)
3: bindings← [�V ∗(s)

d 
, a∗s]

In this case, bindings is a data structure that stores the
ceil value of V ∗(s)

d and the optimal action a∗s . Alg. 4 has time
complexity O(|S| log( VMAX

ptarget
)) due to the binary search and

the unique procedure.

Proposition 3. Alg. 4 solves the K-MDP problem within
precision ptarget in a finite number of iterations if K is
greater than or equal to the number of unique actions of the
original optimal MDP policy π∗. The optimal value func-
tion derived from the solution MK , V π∗

K

φa∗
d

, has sub-optimality

bounded polynomially in d.

Proof. This proposition is a direct consequence of the bi-
nary search algorithm, Predicate 6 and Eq. 7.
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k-means++ K-MDP algorithm

The k-means algorithm seeks to minimize the average
squared distance between points in the same cluster. Given
an integer k and a set of n data points X ∈ �d, the k-means
problem seeks to choose k centers C so as to minimize:∑

x∈X

min
c∈C
||x− c||2.

Solving the k-means problem is NP-hard. Although ef-
ficient in practice, k-means offers no accuracy guarantees.
k-means++ augments k-means with a randomized seeding
technique. We propose to use k-means++ with the optimal
Q function and norm L1 to define the state space SK :∑

s∈S

min
sK∈SK

||Q∗(s, ·)−Q∗(sK , ·)||2.

By using k-means++ clustering, we hope for a good clus-
tering that will yield to a small error since we have lost the
performance guarantee discussed previously.

Algorithm 5 k-means++ K-MDP

Require: M,Q,K ≥ 1
1: SK , φ← k-means++(Q,K)
2: MK ← BUILD-K-MDP(M,SK , φ)
3: return MK

Given an MDP, its Q-values and a target number of re-
duced states K, Alg. 5 performs a k-means++ clustering
where Q-values are the data points and the results are the
cluster indices for each one of the original states. k-means++
is O(log k)-competitive with the optimal clustering (Arthur
and Vassilvitskii 2007). k-means is based on Lloyd’s al-
gorithm (Lloyd 1982) and has time complexity O(nkdi),
where k is the number of clusters, n is the number of data
points, d the number of dimensions and i the number of it-
erations required to converge (Hartigan and Wong 1979).

φQ∗
ε

Greedy K-MDP algorithm

Our last computational approach is a straight forward algo-
rithm that performs a binary search on ε and greedily aggre-
gates states following a φQ∗

ε
state abstraction function. The

order in which states are considered is randomized.

Experimental Results

We ran our experiments on an Intel Core i7-8650U with
a 1.90 GHz clock and a memory of 16 GB for all algo-
rithms. All experiments were conducted using the MDP-
Toolbox (Chadès et al. 2014), MATLAB (R2019b) and
CPLEX (12.5). We aimed to cover a range of problems,
so our applications have reasonable branching factors while
random generated MDPs have large branching factors. For
simplicity, we also assumed that, for any given abstract state
sK , if the number of original states aggregated to sK is
|φ−1(sK)|, then the weight of each s ∈ φ−1(sK) is uni-
formly distributed: ω(s) = 1/|φ−1(sK)|. The resulting ab-
stract K-MDP is not Markovian. When aggregating states,

we lose full observability and the problem could be mod-
elled as a POMDP: a transition probability from s to s′
(abstract) given action a depends on the history of abstract
states and actions, and on the initial probability distribution
over original states. Given i) an original MDP, ii) an obser-
vation function φ mapping states to abstract states and iii) an
initial probability distribution over states, we can solve the
induced abstract MDP as a POMDP - where abstract states
are observations. Here, we are ignoring this and heuristically
approximating the problem as an MDP. We then evaluate
those abstract policies on the original MDP to assess perfor-
mance of our algorithms. In the future, we plan to explore
how to obtain more accurate transition probabilities.

Randomly Generated MDPs

We generated 100 instances of random MDPs for |S| =
1000 and |A| ∈ {4, 50}, |S| ∈ {2500, 5000} and |A| = 4,
and a branching factor of |S| (|S| states could be reached
for each pair s, a). Tab. 1 shows the average per-instance
gap (%) and standard deviation for each algorithm. For φQ∗

d
,

φa∗
d

and φQ∗
ε

Greedy K-MDP algorithms, we set up a pre-
cision target of 0.0001 (ptarget). φa∗

d
K-MDP outperformed

all other algorithms with no value loss. The other algorithms
had larger errors with k-means++ K-MDP being second
best. φQ∗

ε
Greedy K-MDP algorithm performed worse.

φQ∗
ε

K-MDP-ILP evaluation It was not possible to
run experiments using φQ∗

ε
K-MDP-ILP for problems with

|S| > 500 due to memory requirements. We report sepa-
rately the performance of φQ∗

ε
K-MDP-ILP for a precision

target of 0.02 on randomly generated problems with up to
500 states and 10 actions on 10 instances, and compare
the loss of performance against other algorithms (Tab. 2).
φQ∗

ε
K-MDP-ILP under-performed for |S|/2 and performed

similarly to φQ∗
ε
K-MDP-ILP, φQ∗

d
K-MDP and φQ∗

ε
Greedy

K-MDP for other K values. Algorithm φa∗
d
K-MDP system-

atically minimized the performance loss for these instances.

Computational Sustainability Case Studies

Recovering two endangered species The sea otter (Enhy-
dra lutris kenyoni) and its preferred prey, northern abalone
(Haliotis kamtschatkana) are both listed as endangered in
British Columbia, Canada. This classic conservation prob-
lem was described by Chades, Curtis, and Martin (2012).
The objective is to maximize the abundance of both species
over time. The original MDP has 819 states representing the
population of sea otters and the density of northern abalone.
Managers can choose between 4 actions: Introducing sea ot-
ters (I), antipoaching measures (AP), control sea otters (C)
and one half antipoaching and one half control sea otters (H).
Antipoaching reduces the illegal harvesting of abalone by
50%, control sea otters remove the number of otters above
60% of their carrying capacity. Half antipoaching and half
control sea otters takes both actions simultaneously but at
half the level of effectiveness. Fig. 1 shows the performance
of k-means++ K-MDP, φQ∗

d
K-MDP, φa∗

d
K-MDP and

φQ∗
ε

Greedy K-MDP. All algorithms except φQ∗
ε

Greedy K-
MDP performed well with φa∗

d
K-MDP providing the small-
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k-means++ K-MDP φQ∗
d
K-MDP φa∗

d
K-MDP φQ∗

ε
Greedy K-MDP

Instance |S|/2 |S|/8 |S|/15 |S|/30 |S|/100 |S|/2 |S|/8 |S|/15 |S|/30 |S|/100 |S|/2 |S|/8 |S|/15 |S|/30 |S|/100 |S|/2 |S|/8 |S|/15 |S|/30 |S|/100
|S| = 1000
|A| = 4

0.0
±0.0

0.1
±0.0

0.2
±0.0

0.3
±0.0

0.6
±0.0

0.1
±0.0

0.4
±0.0

0.6
±0.1

1.3
±0.1

1.7
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.8
±0.0

1.7
±0.0

1.9
±0.0

2.1
±0.0

2.2
±0.0

|S| = 1000
|A| = 50

1.3
±0.0

2.4
±0.0

2.8
±0.0

3.0
±0.0

2.8
±0.0

0.9
±0.0

2.8
±0.0

3.6
±0.0

4.3
±0.0

4.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

1.6
±0.0

3.2
±0.0

3.6
±0.0

4.0
±0.0

3.8
±.0

|S| = 2500
|A| = 4

0.0
±0.0

0.0
±0.0

0.1
±0.0

0.2
±0.0

0.2
±0.0

0.0
±0.0

0.2
±0.0

0.3
±0.0

0.4
±0.0

0.7
±0.1

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.5
±0.0

1.0
±0.0

1.2
±0.0

1.3
±0.0

1.4
±0.0

|S| = 5000
|A| = 4

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.2
±0.0

0.0
±0.0

0.0
±0.0

0.1
±0.0

0.2
±0.0

0.5
±0.1

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.0
±0.0

0.4
±0.0

0.8
±0.0

0.9
±0.0

0.9
±0.0

1.0
±0.0

Table 1: Mean gap (%) and standard deviation of our K-MDP algorithms using randomly generated MDPs.

φQ∗
ε

K$-MDP-ILP k-means++ K-MDP φQ∗
d
K-MDP φa∗

d
K-MDP φQ∗

ε
Greedy K-MDP

Instance |S|/2 |S|/6 |S|/10 |S|/2 |S|/6 |S|/10 |S|/2 |S|/6 |S|/10 |S|/2 |S|/6 |S|/10 |S|/2 |S|/6 |S|/10
|S|=100,|A|=10 6.5±0.3 7.9±0.2 8.5±0.1 1.4±0.1 3.3±0.5 4.1±0.5 4.0±0.1 7.7±0.3 8.0±0.5 0.0±0.0 0.0±0.0 0.0±0.0 3.2±0.3 6.3±0.3 7.4±0.3
|S|=200,|A|=10 6.4±0.2 4.6±0.2 5.6±0.8 0.9±0.0 2.0±0.0 2.5±0.1 2.0±0.1 5.9±0.1 6.3±0.3 0.0±0.0 0.0±0.0 0.0±0.0 2.3±0.1 4.5±0.1 5.1±0.3
|S|=300,|A|=10 6.3±0.2 3.9±0.07 4.6±0.2 0.7±0.0 1.5±0.2 1.8±0.1 3.0±0.1 3.7±0.1 4.4±0.1 0.0±0.0 0.0±0.0 0.0±0.0 1.9±0.0 3.7±0.1 4.2±0.0
|S|=400,|A|=10 5.5±0.0 3.4±0.1 3.9±0.1 0.6±0.0 1.3±0.1 1.5±0.1 2.9±0.1 3.6±0.1 3.6±0.1 0.0±0.0 0.0±0.0 0.0±0.0 1.8±0.1 3.6±0.1 3.8±0.2
|S|=500,|A|=10 4.5±0.0 3.0±0.0 3.4±0.1 0.5±0.0 1.0±0.0 1.4±0.0 2.6±0.1 3.3±0.1 3.3±0.1 0.0±0.0 0.0±0.0 0.0±0.0 1.6±0.1 3.0±0.1 3.3±0.1

Table 2: Mean gap (%) and standard deviation percentages of our K-MDP, including φQ∗
ε
K-MDP-ILP and using randomly

generated MDPs

Figure 1: Performance of K-MDP algorithms on the sea ot-
ter and northern abalone conservation problem.

est gap consistently. We investigated the interpretability of
both the model and the optimal K-MDP policy generated
by φa∗

d
K-MDP (Fig. 2). The reported gap for K=10 was

less than 2.8%. The K-MDP policy graph was consistent
with the original optimal policy. However, the original opti-
mal policy would have required 819 nodes with at most 2819
edges, instead of 10 nodes with at most 210 edges. Reduc-
ing the state space to a small K clearly results in a more
interpretable policy.

Managing an ecological network of invasive species
Aedes albopictus is an invasive mosquito species that per-
sists in the Torres Strait Islands (North of Australia). In this
problem introduced by Péron et al. (2017), decision mak-
ers require guidance to best delay the time of infestation of
mainland Australia. The problem is modeled as a dynamic
Susceptible-Infected-Susceptible (SIS) network with yearly
probability of re-infestation. Every year, managers can im-
plement simultaneous actions of different intensity and du-
ration (light and strong) at two locations at most. Locations
(islands in this case) can be either infested or susceptible to

be infested. Péron et al. (2017) modeled the problem with
up to 17 islands—however the problem is intractable for a
standard computer with more than 13 islands. For the pur-
pose of our study, we generated a simplified problem with 3
islands (6097 states and 17 management actions) and evalu-
ated our K-MDP algorithms for values of K ranging from
4878 to 10 (Tab. 3). For K > 10, results provided by all
algorithms were attractive with a maximum gap of 3.8% for
k-means++ K-MDP and a maximum gap of 0.7% for φa∗

d
K-

MDP. However, for K = 10, φa∗
d
K-MDP was not able to

find a feasible state abstraction while the other algorithms
underperformed with a gap > 97.8%.

Conclusion

Modelling MDP problems remain an art. Our approach
“solving K-MDPs” aims at increasing trust and uptake of
MDPs in human operated systems by providing easier to in-
terpret models and solutions.

Our algorithms have sub-optimality bounded polynomi-
ally in a discretization parameter (ε or d). Using a non-
transitive approximate state abstraction function led us to
develop a pure integer linear program ILPKMDP to solve a
node clique cover decision problem. While mathematically
elegant, ILPKMDP was untractable for all but small prob-
lems. We have then employed transitive approximate state
abstraction functions to solve K-MDPs in time complex-
ity O(n logm). We have also proposed to use a clustering
technique k-means++ and a binary search greedy approach.
Experimental results showed that, while all algorithms per-
formed reasonably well, φa∗

d
K-MDP was clearly the best

performer when it found a solution.
Immediate future work will focus on testing the inter-

pretability of proposed K-MDPs solutions with domain ex-
perts and behavioural scientists. Our current algorithms re-
quire solving the original MDPs in the first place. This is
because we focused on providing interpretable policies of
existing MDPs, rather than solving large state space MDPs.
Future research could exploit the structure of large MDPs
and reduce their size to tractable MDPs before using our ap-
proaches.
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(a) Sea Otter and Northern Abalone K-MDP model. (b) Sea Otter and Northern Abalone K-MDP policy graph.

Figure 2: K-MDP model (a) and policy graph (b) for K = 10 for the Sea Otter and Northern Abalone problem generated by
φa∗

d
K-MDP. In the K-MDP model, red nodes represent the abstracted states and blue edges are transitions TK . In the policy

graph, red edges represent the most likely transition resulting of applying the optimal policy. Edges are labeled by the action
name and its probability to transition from one state sK to another state s′K . The starting state is SK1 : low abalone density and
absence of sea otters. Note that because SK4

and SK10
are unreachable from SK1

, the policy graph could be further simplified.

k-means++ K-MDP φQ∗
d
K-MDP φa∗

d
K-MDP φQ∗

ε
Greedy K-MDP

|SK | G(%) B(sec.) T(s.) G(%) B(sec.) T(sec.) G(%) B(sec.) T(sec.) G(%) B(sec.) T(sec.)

4878 0.0 148.42 1909.17 0.0 137.44 1923.72 0.0 142.21 1952.59 0.00 828.32 1888.10
2032 0.0 39.49 242.79 0.0 37.02 244.5 0.0 38.42 244.19 2.6 796.42 259.17
1219 0.1 21.7 124.65 0.1 20.6 126.62 0.0 21.65 127.51 3.6 752.14 127.69
610 0.2 12.82 82.39 0.4 12.61 83.88 0.0 13.4 85.22 2.6 748.59 81.71
102 3.8 7.55 82.797 2.4 7.60 83.92 0.7 7.478 83.56 3.1 932.12 73.41
10 97.8 7.64 43.155 97.8 8.16 9.89 - - - - >1000 -
MDP Solving MDP(sec.)

6097 2925.34

Table 3: Performance results on the Aedes Albopictus problem. Columns report the gap (G), the time required to build (B) the
K-MDP with K states and the time to solve (T) the K-MDP using value iteration. Last row shows |S| and the time to compute
the original optimal policy using value iteration.
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