
Reachability Analysis for Uncertain SSPs

Olivier Buffet
National ICT Australia & The Australian National University

RSISE - building 115 / The Australian National University / Canberra, ACT 0200 / Australia
firstname.lastname@nicta.com.au

Abstract

Stochastic Shortest Path problems (SSPs) can be effi-
ciently dealt with by the Real-Time Dynamic Programming
algorithm (RTDP). Yet, RTDP requires that a goal state
is always reachable. This paper presents an algorithm
checking for goal reachability, especially in the complex
case of an uncertain SSP where only a possible interval is
known for each transition probability. This gives an analy-
sis method for determining if SSP algorithms such as RTDP
are applicable, even if the exact model is not known. We aim
at a symbolic analysis in order to avoid a complete state-
space enumeration.

1. Introduction

In decision-theoretic planning, Markov Decision Prob-
lems [4] are of major interest when a probabilistic model
of the domain is available. A range of algorithms make
it possible to find plans (policies) optimizing the expected
long-term utility. Yet, optimal policy convergence results
all depend on the assumption that the probabilistic model of
the domain is accurate.

Unfortunately, a large number of MDP models are based
on uncertain probabilities (and rewards). Many rely on
statistical models of systems, may they be toy problems
such as the mountain-car or the inverted-pendulum, or real
problems such as plant control or animal behavior analysis.
These statistical models are based on simulations, observa-
tions of a real system or human expertise.

Using uncertain models requires answering two closely
related questions: 1- how to model this uncertainty, and 2-
how to use the resulting model. Existing work shows that
uncertainty is sometimes represented as a set of possible
models, each assigned a probability [15]. The simplest ex-
ample is sets of possible models all assumed equally prob-
able [1; 16]. Rather than construct a possibly infinite set of
models we represent uncertainty by defining an interval for
each transition probability [13; 14].

Uncertain probabilities have been investigated in re-
source allocation problems [15] — investigating efficient
exploration [17] and state aggregation [13] — and policy
robustness [1; 14; 16]. We focus on the later, considering
a two-player game where the opponent chooses from the
possible models to reduce the long-term utility.

Our principal aim is to develop an efficient planner for a
common sub-class of MDPs for which optimal policies are
guaranteed to eventually terminate in a goal state: Stochas-
tic Shortest Path (SSP) problems. A greedy version of Real-
Time Dynamic Programming algorithm (RTDP) [2] is par-
ticularly suitable for SSPs, as it finds good policies quickly
and does not require complete exploration of the state space.
Yet, if it can be made robust [11], it also requires that a
goal state is reachable from any visited state, which can be
checked through a reachability analysis.1

This paper shows how to make the reachability analy-
sis for SSPs, focusing on uncertain ones. A logical exten-
sion would be to derive a symbolic analysis, what seems es-
sential for the practical use of algorithms such as RTDP. In
Section 2 we present SSPs, RTDP and robustness. We then
explain the algorithm for reachability analysis. Finally, a
practical experiment is presented before a conclusion.2

2. Background

2.1. Stochastic Shortest Path Problems

A Stochastic Shortest Path Markov Decision Problem [4]
is defined here as a tuple 〈S, s0, G,A, T, c〉. It describes a
control problem where S is the finite set of states of the
system considered, s0 ∈ S is a starting state, and G ⊆ S

is a set of goal states. A is the finite set of possible ac-
tions a. Actions control transitions from one state s to
another state s′ according to the system’s probabilistic dy-
namics, described by the transition function T defined as

1In some planning technics [6], the “reachability analysis” has a some-
what different purpose as it looks for states reachable by some plan. Both
meanings have some similarities but should not be mixed up.

2This work is presented in more details in [8].

T (s, a, s′) = Pr(st+1 = s′|st = s, at = a). The aim is to
optimize a performance measure based on the cost function
c : S ×A× S → R

+.3

SSPs assume a goal state is reachable from any state in
S, at least for the optimal policy, so that one cannot get
stuck in a looping subset of states. An algorithm solving
an SSP has to find apolicy that maps states to probability
distributions over actions π : S → Π(A) which optimizes
the chosen performance measure, here the value J defined
as the expected sum of costs to a goal state.

In this paper, we only consider SSPs for planning pur-
poses. In this framework, well-known stochastic dynamic
programming algorithms such as value iteration (VI) make
it possible to find a deterministic policy that corresponds
to the minimal expected long-term cost J . Value iteration
works by computing the value function J∗(s) that gives the
expected reward of the optimal policies. It is the unique
solution of the fixed point equation[3]:

J(s) = min
a∈A

∑

s′∈S

T (s, a, s′) [c(s, a, s′) + J(s′)] . (1)

Updating J with this formula leads to the optimal value
function. For convenience, we also introduce the Q-value:
Q(s, a) =

∑

s′∈S T (s, a, s′)[c(s, a, s′) + J(s′)].
This kind of problem can easily be viewed as a shortest

path problem where choosing a path only probabilistically
leads you to the expected destination. SSPs can represent a
useful subset of MDPs. They are essentially a finite-horizon
MDP with no discount factor.

2.2. RTDP

A first algorithm making use of the structure of SSPs is a
version of the Real-Time Dynamic Programming algorithm
(RTDP) [2]. It uses the fact that the SSP cost function is
positive and the additional assumption that every trial will
reach a goal state with probability 1. Thus, with a zero ini-
tialization of the J , both the J and Q-values monotonically
increase during their iterative computation.

The idea behind RTDP (Algorithm 1) is to follow paths
from the start state s0, always greedily choosing actions of
low value and updating Q(s, a) as states s are encountered.
In other words, the action chosen is the one expected to lead
to the lowest future costs, until the iterative computations
show that another action may do better.

RTDP has the advantage of quickly avoiding plans that
lead to high costs. Thus, the exploration looks mainly at
a promising subset of the state space. Because it follows
paths by simulating the system’s dynamics, common tran-
sitions are favored, so that good policies are obtained early.

3As the model is not sufficiently known, we do not make the usual
assumption c(s, a) = Es′ [c(s, a, s′)].

Algorithm 1 RTDP algorithm for SSPs
RTDP(s:state) // s = s0

repeat
RTDPTRIAL(s)

until // no termination condition
. .

RTDPTRIAL(s:state)
while ¬GOAL(s) do

a =GREEDYACTION(s)
J(s) =QVALUE(s, a)
s =PICKNEXTSTATE(s, a)

. .
GREEDYACTION(s)
return argmina∈A QVALUE(s, a)
. .
QVALUE(s: state, a: action)
return

∑

s′∈S T (s, a, s′).[c(s, a, s′) + J(s′)]

Yet, the bad update frequency of rare transitions slows the
convergence.

2.3. Robust Value Iteration

We now turn to the problem of taking the model’s uncer-
tainty into account when looking for a “best” policy. Here,
uncertainty only consists in inaccurate knowledge of the
transition function T . The (possibly infinite) set of alter-
native models is denotedM.

We follow the approach described in [1], that consists
of finding a policy that behaves well under the worst possi-
ble model. This amounts to a two-player zero-sum game
where a player’s gain is its opponent’s loss. The player
chooses a policy while its “disturber” opponent chooses a
model. A simple process may be used to compute the value
function while looking simultaneously for the worst model.
It requires the hypothesis that state-distributions T (s, a, ·)
are independent from one state-action pair (s, a) to another.
Under this assumption, the worst model can be chosen lo-
cally when Q is updated for a given state-action pair. If
this assumption does not always actually hold, it induces a
larger set of possible models, what results in a worst-case
assumption in the pessimistic approach.

Problem — We are particularly interested in handling
uncertain SSPs (USSP), where only intervals of pos-
sible transition probabilities are known: T (s, a, s′) ∈
[Prmin(s′|s, a), P rmax(s′|s, a)]. Yet, to use (robust) RTDP,
this theorem is of major interest:

Theorem 1. [4] If the goal is reachable with positive prob-
ability from every state, RTDP unlike the greedy policy can-
not be trapped into loops forever and must eventually reach

the goal in every trial. That is, every RTDP trial terminates
in a finite number of steps.

The purpose of this paper is to determine from which
states a goal state is still reachable in uncertain SSPs. This
could be achieved with a policy choosing all actions with
equal probability, and letting the opponent learn how to pre-
vent goal states from being reached. Yet, this problem is no
SSP, what would imply coming back from RTDP to Value
Iteration. Moreover, we prefer performing a graph analy-
sis, as it gives more practical information and would be a
first step toward a symbolic analysis avoiding the enumer-
ation of the complete state-space. To our knowledge, this
particular problem has not been addressed up to now.

3. Algorithms

When applying algorithms such as RTDP on an SSP hav-
ing no proper policy, the main problem is to detect if cur-
rent state s still has a positive probability of reaching the
goal set, in which case s is said to be “reaching”. If s is
non-reaching, RTDP should stop and a specific process
be applied, such as associating this state to an infinite cost.

Non-reaching states constitute looping sub-sets of
states which we will refer to as “dead-ends”. The process
just described results in dead-ends avoidance. Yet some
states may be reaching but also have a positive proba-
bility to lead to a dead-end whatever the policy. If non-
reaching states incur infinite costs, these “dangerous”
states will necessarily have an infinite long-term cost to the
goal. It would thus be of interest to also identify these
dangerous states.

Note that what to do when in a non-reaching state
may depend on the user’s preferences. But in all cases the
first step is to perform a “reachability analysis” through
a graph traversal beginning with goal states. Then, if
required, a “danger analysis” can be performed through
another (simpler) graph traversal beginning with non-
reaching states. This paper mainly focuses on the
“reachability analysis”, as this process is necessary and
somewhat subtle in the case of USSPs.

3.1. Certain SSP

In a certain SSP, if s′ is reaching, any state s such that
T (s, a, s′) > 0 for some action a is also reaching. This re-
sults in a straightforward analysis by making a graph traver-
sal starting with goal states.

Let Parents(s) be the set of states s′ for which there
exists a transition (s′, a) → s: Parents(s) = {s′ ∈
S s.t. ∃a ∈ A Pr(s|s′, a) > 0}. Alg. 2 uses this informa-
tion to perform the reachability analysis. Then states which
have not been marked as reaching are dead-ends, and a

second graph traversal starting with these states will iden-
tify dangerous states (see Alg. 3).4

Algorithm 2 PROPAGATEREACHABILITYSSP (Parents)
PUSHALL(G, st) {st: stack of goal states}
while st 6= ∅ do

POP(s, st)
if ¬reaching(s) then

MARK(s, reaching)
PUSHALL(Parents(s), st)

Algorithm 3 PROPAGATEDANGER(Parents)
for all s ∈ S s.t. ¬reaching(s) do

PUSH(s, st)
while st 6= ∅ do

POP(s, st)
if ¬dangerous(s) and ∀ a ∈ A :
∃ s′ ∈ S s.t. Pr(s′|s, a) > 0 & dangerous(s′) then

MARK(s, dangerous)
PUSHALL(Parents(s), st)

3.2. Uncertain SSP: overview

In an uncertain SSP, the reachability analysis depends on
the opponent being able to forbid a transition (s, a)→ s′ if
Prmin(s′|s, a) = 0. A difficulty is thatPrmin(s′1|s, a) = 0
and Prmin(s′2|s, a) = 0 are not sufficient to tell ifs′1 and s′2
may be forbidden simultaneously in some possible model.
Fig. 1 shows an example where the 3 potentially reachable
states cannot be forbidden simultaneously (there is no pos-
sible model s.t. ∀j ∈ {1, 2, 3} T (so, a0, s

′
j) = 0). With

upper probabilities of 1, any 2 states could be forbidden.

(c=1) (c=1)

[0,.6] [0,.6]

(c=1)[0,.6]

s0 a0

s′1 s′2 s′3

Figure 1. USSP where only 1 of the 3 reach-
able states can be forbidden (goal states in
bold circles).

Let us define the set of all lists of states which cannot be
4Alg. 3 can be implemented efficiently by remembering which state-

action pairs are known to be dangerous.

forbidden simultaneously (from (s, a)):5

L
�
(s,a) =

8

>

>

>

<

>

>

>

:

l ⊆ S s.t.
“

s′ ∈ l ⇒ Prmax
(s′|s,a) > 0

”

, and
2

4

“

∃s′ ∈ l s.t. Prmin
(s′|s,a) > 0

”

or
“

P

s′∈S\l Prmax
(s′|s,a) < 1

”

3

5

9

>

>

>

=

>

>

>

;

.

To know if a given action a can lead to a goal state from
current state s, one has to find at least one such list where
all states are reaching. In this case, the opponent cannot
prevent the planner having some chance of terminating. The
reachability analysis only needs to work with the subset of
minimal lists defined as:

Lmin�
(s,a) =

{

l ∈ L�
(s,a) s.t. ∀l′ ∈ L�

(s,a) :

(l ∩ l′ = l) or
(

(l ∩ l′) 6∈ L�
(s,a)

)

}

.

In other words, removing any state of such a list makes it
possible for the opponent to forbid all states in the list. On
Fig. 1: Lmin�

(so,ao) = {{s′1, s
′
2}, {s

′
1, s

′
3}, {s

′
2, s

′
3}}.

From this basic idea, two problems arise:

• How to perform the reachability analysis ? (Sec. 3.3)

• How to obtain these lists ? (Sec. 3.4)

The remainder of this section gives a brief idea of the
answers to these two questions before going in more details
through Sections 3.3 and 3.4.

Performing the Reachability Analysis – The minimal
lists we have just described are defined with respect to a
given state-action pair (s, a). They are used to obtain a new
set Lmin�

(s) of minimal lists relative to the state s, since the
precise action chosen is of no interest when just checking
whether a state could reach the goal or not.

From there, determining which states can reach a goal
state is again done through a propagation starting from
these goal states. This “back”-propagation takes place in
an AND-OR graph where nodes are states and their mini-
mal lists, as illustrated by Fig. 2. This is an AND-OR graph
because a list is “reaching” if all its children states are
reaching (AND), and a state is reaching if one of its
children lists is reaching (OR).

After this reachability analysis for uncertain SSPs, the
danger analysis from Alg. 3 can be performed with no mod-
ification, using the most probable model for example. In-
deed in this second phase the opponent has no need to pre-
vent some transitions from happening (by assigning them a
zero probability mass). On the contrary, its aim should be
to allow all possible transitions in a view to give more ways
of getting to a dead-end.

5� ∼ “states cannot be forbidden simultaneously”

...

......

s0

s1 s2

s3

l1

l2

Figure 2. Example of AND-OR graph in which
the reachability analysis is done (starting with
goal states as s2 here). If s3 is reaching, then
so is l1 (the opponent cannot forbid s2 and s3),
and therefore s1.

How to Obtain the Lists — Previous section has shown
how to use minimal lists of states which cannot be forbidden
simultaneously so as to perform the reachability analysis.
An essential question that we still have to answer is how
to obtain these lists. This is an indirect process as it con-
sists in 1- looking for maximal lists of states which can be
forbidden simultaneously, then in 2- adding a state to turn
them into minimal lists of states which cannot be forbidden
simultaneously.

As we have defined the notion of “list of states which
cannot be forbidden simultaneously”, we define the oppo-
site notion of “list of states which can be forbidden simul-
taneously”:

L
�
(s,a) =

(

l ⊆ S s.t.
“

P

s′∈S\l
Prmax

(s′|s,a) ≥ 1

”

and

s′ ∈ l ⇒
`

Prmin
(s′|s,a) = 0 and Prmax

(s′|s,a) > 0
´

)

.

But we only need to consider the subset of these lists
which are “maximal”:

Lmax�
(s,a) =

{

l ∈ L�
(s,a) s.t. ∀l′ ∈ L�

(s,a) :

(l ∪ l′ = l) or
(

l ∪ l′ 6∈ L�
(s,a)

)

}

.

Indeed, adding any reachable state to such a list turns it into
a list from L�

(s,a). Obtaining the minimal lists required for
the reachability analysis requires then two algorithms:

• one to create Lmax�
(s,a) (∀(s, a) ∈ S ×A), and

• one to turn any set Lmax�
(s,a) in the corresponding set

Lmin�
(s,a) .

These two algorithms are the one called inside the double
“for” loop of Alg. 4. This general algorithm sums up the
complete process followed to analyse the reachability of a
USSP as discussed up to now. Next two sections give more
details on these various steps.

Algorithm 4
REACHABILITYANALYSIS (〈S, s0, G,A, T, c〉: USSP)
Ensure: Mark states as reaching if they may reach a

goal state, or dangerous if they may lead to a dead-
end.
for all s ∈ S s.t. ¬(s ∈ G) do

for all a ∈ A(s) do
Lmax�

(s,a) ← FORBIDDENFROMSA
(s, a, Children(s, a))

Lmin�
(s,a) ← NOTFORBIDDENFROMSA

(s, a, Children(s, a), Lmax�
(s,a))

Lmin�
(s) ← NOTFORBIDDENFROMS(s, Lmin�

(s,·))

(Lmin�, L
parents

(·))← ALLMINLISTS(Lmin�
(·))

PROPAGATEREACHABILITYUSSP(Lmin�, L
parents

(·))

PROPAGATEDANGER()

3.3. Performing the Reachability Analysis

From (s, a) to s — We know that deciding whether a
state s may reach a goal according to its children does not
require considering all actions separately. Indeed, when sets
Lmin�

(s,a) have been determined for all a, they can be merged

in a single set of minimal lists:
⋃

a∈A(s) Lmin�
(s,a) . From this

new set, lists including other lists have to be removed since:
if l ⊆ l′, then l′ is not minimal in our new set of lists. This
process is detailed in Alg. 5.6

Algorithm 5 NOTFORBIDDENFROMS (s: state, Lmin�
(s,·) :

minimal lists of states which cannot be forbidden simulta-
neously from s and an action)

L← ∅
{a- Put all minimal lists obtained in Lmin�

(s) .}

for all a ∈ A(s), l ∈ Lmin�
(s,a) do

if ∀l′ ∈ L, l′ 6= l then
L← L

⋃

{l}
parents(l)← {s}

{ b- Remove lists subsuming other lists.}
for all l, l′ ∈ L s.t. is not(l, l′) do

if l ⊂ l′ then
L← L\{l′}

return Lmin�
(s) = L

Building a Graph — We have already seen that deter-
mining which states can reach a goal state will be done
through a back-propagation in an AND-OR graph, as illus-
trated by Fig. 2. To help the graph traversal, we benefit from

6As 2 lists may be the same object or may contain the same elements,
we use two notations: is(l, l′) and l = l′.

Alg. 5 to record which are the parent-states of each of these
lists. Yet a list may have several parents, and the traversal
also requires knowing for each state in which minimal lists
it appears (its parent-lists). To that end, Alg. 6 builds a set
of all minimal lists Lmin� =

⋃

s∈S Lmin�
(s) , computing at

the same time the sets of parents of each list: parents(l)
and of each state: L

parents

(s) in the AND-OR graph.

Algorithm 6 ALLMINLISTS (Lmin�
(·) : minimal lists from a

given state)
Lmin� ← ∅
for all s ∈ S, l ∈ Lmin�

(s) do
if ∃l′ ∈ Lmin� s.t. l′ = l then

parents(l′)← parents(l′)
⋃

parents(l)
else

Lmin� ← Lmin�
⋃

{l}
for all s′′ ∈ parents(l) do

L
parents

(s′′) ← L
parents

(s′′)

⋃

{l}

return Lmin�, L
parents

(·)

Graph Traversal — We now have a complete descrip-
tion of the graph in which to propagate the reachability. As
mentionned earlier, this propagation starts from goal states.
Alg. 7 shows an implementation of this process using a
stack of states to visit. In this algorithm, when a state is
recognized as reaching, it is removed from all its parent-
lists. Then, when such a list is empty (i.e. is reaching),
all its parent-states can be marked as reaching.

Algorithm 7 PROPAGATEREACHABILITYUSSP (Lmin�,
L

parents

(·))

PUSHALL(G, st) {st: stack of goal states}
while st 6= ∅ do

POP(s, st)
if ¬reaching(s) then

MARK(s, reaching)
for all l ∈ L

parents

(s) do
l← l\{s}
if l = ∅ then

PUSHALL(parents(l), st)

Alg. 3 can still be used for the danger analysis. Let
us just recall that danger analysis differs from reachability
analysis as:

• it starts from non-reaching states (identified
through the reachability analysis), and

• the graph used is not the same: a state s is
dangerous if, for all action a ∈ A(s), there exists a
dangerous state in children(s, a).

3.4. How to Obtain the Lists

Knowing how to perform the reachability analysis using
the required minimal lists, we will now see more precisely
how to obtain them through the indirect process: 1- looking
for maximal lists of states which can be forbidden simul-
taneously, then 2- adding a state to turn them into minimal
lists of states which cannot be forbidden simultaneously.

To that end, we have defined the notion of “list of states
which can be forbidden simultaneously” L�

(s,a) and the sub-
set of these lists which are “maximal” Lmax�

(s,a) . We now de-

scribe how to obtain Lmax�
(s,a) and then deduce Lmin�

(s,a) .

Maximal Lists — Considering a state-action pair (s, a),
the opponent’s work consists in distributing a total proba-
bility mass of 1 so as to respect the uncertain model and to
forbid as many reachable states as possible. A first action is
then to put as much probability mass as possible on states
which cannot be forbidden and on s itself (if it is reachable),
so that as little probability mass as possible remains for
other reachable states. This operation is accomplished in the
first “for” loop of Alg. 8. The remaining states in S′ are
the states s′ which can be forbidden: Prmin(s′|s, a) = 0.

Then, the recursive function FFSA tries all “minimal
lists of reachable states in which the remaining probabil-
ity mass p can be placed”. 7 When one such list is found, the
remaining states constitute one of the maximal lists we are
looking for. This recursive selection process is illustrated
by Fig. 3. When the total probability mass 1 has been dis-
tributed, FFSA can stop and gather all unused states as a
new maximal list.

“Minimality” is here guaranteed because states are
sorted in decreasing order of Prmax(·|s, a), and added
sequentially to “reachable states” lists following this or-
der. Without this condition, and if the remaining prob-
ability mass p were bounded by the maximal probabili-
ties of the two remaining states to consider (s′1 and s′2):
Prmax(s′1|s, a) < p < Prmax(s′2|s, a), then trying to dis-
tribute p through s′1 first would lead to also assign p −
Prmax(s′1|s, a) > 0 to s′2, what would authorize access to
both states (whereas s′1 could be forbidden).

From Maximal to Minimal Lists — A first set of min-
imal lists from Lmin�

(s,a) consists of singletons whose state
cannot be forbidden (Prmin(s′|s, a) > 0), or s′ = s. They
are built in the firstfor loop of Alg. 9.

Then, all other minimal lists are created by adding a
state (that can be forbidden) to a maximal list obtained
previously. The main difficulty is to ensure that the lists

7These minimal lists should not be confused with the ones from
L

min�
(s,a)

.

Algorithm 8 FORBIDDENFROMSA (s: state, a: action,
S′ = {s′1, . . . , s

′
|S′|}: states reachable from (s, a))

Ensure: Method building the list of maximal sets of states
which can be forbidden simultaneously (for a given state-
action pair).
S′ ← SORTDECREASING(S′, P rmax(·|s, a))
p← 0
for all s′ ∈ S′ s.t. Prmin(s′|s, a) 6= 0 ∨ is(s′, s) do

p← p + Prmax(s′|s, a)
S′ ← S′\{s′}

return FFSA(0, s, a, S′, p)
. .
FFSA(j: integer,s: state, a: action, S′: set of states, p:
probability)
Lmax�

(s,a) ← ∅

if p ≥ 1 then
Lmax�

(s,a) ← {S
′}

else
for i = j to |S| s.t. s′i ∈ S′ do

Lmax�
(s,a) ← Lmax�

(s,a)

⋃

FFSA(i + 1, S′\{s′i}, p +

Prmax(s′i|s, a))
return Lmax�

(s,a)

created are minimal, i.e. do not subsume another gener-
ated list. It helps again that reachable states are sorted
by decreasing Prmax(·|s, a). Indeed, for a maximal list
lf = {s′

f(1), · · · , s
′
f(k)}, corresponding minimal lists have

to be obtained only by adding states s′i such that f(1) <

· · · < f(k) < i, as done in the second part of Alg. 9.
This condition is necessary and sufficient as, if there ex-

ists i such that i < f(k) and lf ∪ {s
′
i} is a minimal list,

then this minimal list will be obtained by adding s′
f(k) to

lf ∪ {s
′
i} \ {s

′
f(k)}, which is one of the maximal lists ob-

tained through Alg. 8.

...

......

s′1

s′2s′2

Prmax(s′1|s, a) ≥
Prmax(s′2|s, a) ≥
Prmax(s′3|s, a) ≥ · · ·
Note: here we start with
state s′1, assuming that all
reachable states can be for-
bidden.
At each node of this tree
is decided whether the fol-
lowing state is kept (s′2) or
not (6 s′2).

Figure 3. Tree view of the process selecting
unforbidden states in function FFSA (Alg. 8).

Algorithm 9 NOTFORBIDDENFROMSA (s: state, a: ac-
tion, S′: states reachable from (s, a), Lmax�: maximal lists
of states which can be forbidden simultaneously)

L← ∅
{a- Remove states which cannot be forbidden all alone,
and put them as singletons in our resulting meta-list.}
S′′ ← S′ {S′ ordered as in previous algorithm.}
for all s′ ∈ S′ s.t. Prmin(s′|s, a) > 0 ∨ is(s′, s) do

if is not(s′, s) then
L← L

⋃

{{s′}}
S′′ ← S′′\{s′}
{b- Loop through the maximal lists of states which can
be forbidden simultaneously.}
for all l ∈ Lmax� do

for all s′ ∈ S′ up to s′ ∈ l do
if Prmin(s′|s, a) = 0 ∧ is not(s, s′) then

L← L
⋃

{l ∪ {s′}}
return L

4. Application

4.1. Test Problems

During its implementation, the different parts of the
complete process have been tested on various test problems.
Fig. 4 shows one of the interesting cases, which are often
rather difficult to represent. Here, actionsa0 and a1 have
common parent states and lead to similar states, but with
different probabilities. Another remark is that s2 is a dead-
end.

[0,.8] [0,1] .1

[0,.6] [0,.5]

[0,.5]
[0,.4] [0,.2]

1

PSfrag replacements

s0

s1 s2 s3 s4

a0 a1

a2

Figure 4. One of the test problems used to
check the algorithms. s3 and s4 are goal
states. Transition costs are not represented.

4.2. Mountain-Car

Problem — We use here the mountain-car problem as de-
fined in[18]: starting from the bottom of a valley, a car has

to get enough momentum to reach the top of a mountain
(see Fig. 5). The same dynamics as described in the moun-
tain car software8 have been employed, with the only dif-
ference that the left boundary has been moved from−1.2 to
−2.0, creating a valley in which the car can be trapped. The
objective is to minimize the number of time steps to reach
goal.

−1.2 0.6position

acceleration
road reaction

gravity

dead−end

−2.0

goal

Figure 5. The mountain-car problem with a
dead-end.

The continuous state-space is discretized (32 × 32 grid)
and the corresponding uncertain model of transitions is ob-
tained by sampling 1000 transitions from each state-action
pair (s, a). For each transition, we computed intervals in
which the true model lies with 95% confidence.

Results — In practice, we use LRTDP [5] as an improved
version of RTDP with a convergence criterion. With no
prior reachability analysis, the algorithm is unable to stop,
being stuck in the new valley. Yet, a first reachability analy-
sis does not show any non-reaching state. The difficulty
comes in fact from a few transition probabilities of very low
value (Prmin(s′|s, a) < 0.01) which make it practically im-
possible to leave the valley. We have therefore decided to
consider that such transitions can also be forbidden.

With this new criterion, a second reachability analysis
finds a subset of non-reaching states, all other states be-
ing here dangerous (so that no policy can avoid danger).
In such a case, there is no way to definitely avoid a dead-
end. We can only turn non-reaching states into new goal
states with a high cost of 10, 000. With this new problem,
LRTDP produces the value function from Fig. 6, where a 0-
valued corner indicates that this part of the state space was
not visited.

5. Conclusion

The goal reachability checked through the algorithm pre-
sented here is an essential tool for the robust version of

8http://www.cs.ualberta.ca/˜sutton/· · ·
MountainCar/MountainCar.html

Long-Term Cost Function
Example Path

-0.07

-0.035

 0

 0.035

 0.07

v

-1.875

-1.25

-0.625

 0

x

 0

 2000

 4000

 6000

 8000

 10000

 12000

V(x,v)

Figure 6. Value function obtained with the
help of the reachability analysis.

RTDP we present in [10]. An open question is how to use
the information obtained through the reachability analysis.
If one does not want to forbid states which are reaching
and dangerous, the cost function is not sufficient for
decision-making and a new (non-classical ?) preference cri-
terion has to be introduced.

A first drawback of our approach is the high computation
cost. Yet, the uncertain analysis can be preceded by very
efficient certain analyses that often decide for most states
if they are reaching or dangerous. This process is
detailed in [9] along with experimental results showing a
dramatic speed-up.

The main remaining issue is then how to avoid enumer-
ating the complete state-space. In a structured domain, as in
temporal planning, it would be of great interest to conduct
a symbolic analysis, as it has been done for other purposes
for Finite State Automata [12] by using BDDs [7]. The ma-
jor problem should be the algorithm producing the minimal
lists in Lmin�

(s,a) , what would enable a symbolic characteriza-
tion of the AND-OR graph.

Finally, it is important to notice that the core of the algo-
rithm presented in this document is not specific to decision-
making, but rather to uncertain Markov chains (with goal
states). It would be simple to rewrite the various procedures
to that end, as Markov chains could be described as SSPs
with no costs and a single available action per state.

Acknowledgments

National ICT Australia is funded by the Australian Gov-
ernment. This work was also supported by the Australian
Defence Science and Technology Organisation.

References

[1] J. Bagnell, A. Y. Ng, and J. Schneider. Solving uncertain
markov decision problems. Technical Report CMU-RI-TR-
01-25, Robotics Institute, Carnegie Mellon U., 2001.

[2] A. Barto, S. Bradtke, and S. Singh. Learning to act using
real-time dynamic programming. Artificial Intelligence, 72,
1995.

[3] R. Bellman. Dynamic Programming. Princeton U. Press,
Princeton, New-Jersey, 1957.

[4] D. Bertsekas and J. Tsitsiklis. Neurodynamic Programming.
Athena Scientific, 1996.

[5] B. Bonet and H. Geffner. Labeled rtdp: Improving the con-
vergence of real time dynamic programming. In Proc. of
the 13th Int. Conf. on Automated Planning and Scheduling
(ICAPS’03), 2003.

[6] C. Boutilier, R. I. Brafman, and C. Geib. Structured reach-
ability analysis for markov decision processes. In Proc. of
the 14th Conf. on Uncertainty in Artificial Intelligence (UAI-
98), 1998.

[7] R. Bryant. Symbolic manipulation of boolean functions us-
ing a graphical representation. In ACM/IEEE Design Au-
tomation, pages 688–694, 1985.

[8] O. Buffet. Robust (l)rtdp: Reachability analysis. Technical
report, National ICT Australia, 2004.

[9] O. Buffet. Fast reachability analysis for uncertain ssps. In
Proc. of the IJCAI 2005 Workshop on Planning and Learn-
ing in A Priori Unknown or Dynamic Domains, 2005.

[10] O. Buffet and D. Aberdeen. Planning with robust (l)rtdp.
Technical report, National ICT Australia, 2004.

[11] O. Buffet and D. Aberdeen. Robust planning with (l)rtdp.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI’05), 2005.

[12] O. Coudert, J.-C. Madre, and C. Berthet. Verifying tempo-
ral properties of sequential machines without building their
state diagrams. In Proc. of the Workshop on Computer-Aided
Verification, 1990.

[13] R. Givan, S. Leach, and T. Dean. Bounded parameter
markov decision processes. Artificial Intelligence, 122(1-
2):71–109, 2000.

[14] M. Hosaka, M. Horiguchi, and M. Kurano. Controlled
markov set-chains under average criteria. Applied Mathe-
matics and Computation, 120(1-3):195–209, 2001.

[15] R. Munos. Efficient resources allocation for markov deci-
sion processes. In Advances in Neural Information Process-
ing Systems 13 (NIPS’01), 2001.

[16] A. Nilim and L. E. Ghaoui. Robustness in markov decision
problems with uncertain transition matrices. In Advances in
Neural Information Processing Systems 16 (NIPS’03), 2004.

[17] A. L. Strehl and M. L. Littman. An empirical evaluation of
interval estimation for markov decision processes. In Proc.
of the 16th Int. Conf. on Tools with Artificial Intelligence
(ICTAI’04), 2004.

[18] R. Sutton and G. Barto. Reinforcement Learning: an intro-
duction. Bradford Book, MIT Press, Cambridge, MA, 1998.

