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Abstract
The intractability in cooperative, decentralized con-
trol models is mainly due to prohibitive memory
requirements in both optimal policies and value
functions. The complexity analysis has emerged
as the standard method to estimating the memory
needed for solving a given computational problem,
but complexity results may be somewhat limited.
This paper introduces a general methodology—
structural analysis—for the design of optimality-
preserving concise policies and value functions,
which will eventually lead to the development of
efficient theory and algorithms. For the first time,
we show that memory requirements for policies and
value functions may be asymmetric, resulting in co-
operative, decentralized control models with expo-
nential reductions in memory requirements.

1 Introduction
Decentralized partially observable Markov decision pro-
cesses (Dec-POMDPs) have emerged as the standard frame-
work for sequential decentralized decision-making [Radner,
1962; Yoshikawa and Kobayashi, 1978; Bernstein et al.,
2002]. This general model involves multiple agents with
different observations that cooperate to achieve a common
objective, but cannot communicate with one another. Un-
fortunately, its worst-case complexity has limited its appli-
cability. The finite-horizon case is in NEXP [Bernstein et
al., 2002]. The infinite-horizon case is undecidable, and ε-
approximations remain intractable [Rabinovich et al., 2003].
These negative complexity results are mainly due to the ex-
ponential growth in the size of both optimal policy and value
function spaces with time. This results in limited scalabil-
ity and applicability [Hansen et al., 2004; Szer et al., 2005;
Oliehoek et al., 2008; Bernstein et al., 2009].

To allow further scalability and applicability, much atten-
tion has been devoted to cooperative decentralized control
models with restrictive assumptions [Goldman and Zilber-
stein, 2004; Becker et al., 2004; Nair et al., 2005; Melo
and Veloso, 2011]. These assumptions concern restrictions
on both the dynamics and the rewards. In particular, [Gold-
man and Zilberstein, 2004] demonstrated that the complex-
ity goes down from NEXP to NP when agents influence one

another only through rewards, and are otherwise fully inde-
pendent. Unfortunately, not all restrictions result in scala-
bility gains, let alone complexity drops. So far, the asymp-
totic complexity analysis suggests that memory reductions
due to restrictions on rewards are unlikely, if not impossi-
ble [Bernstein et al., 2002; Goldman and Zilberstein, 2004;
Allen and Zilberstein, 2009]. This negative complexity has
limited the attractiveness of models involving reward restric-
tions.

This paper introduces a general methodology referred to
as structural analysis, which helps designing optimality-
preserving concise policies and value functions for the coop-
erative decentralized control problem at hand. For the first
time, we show that memory requirements for policies and
value functions may be asymmetric, resulting in significant
memory reduction on certain models. Another novel and im-
portant result is the proof that under mild conditions on re-
wards, the optimal value function consists of linear functions
from hidden states to reals. To allow a wide applicability, the
structural analysis builds upon a recent theory to solving Dec-
POMDPs by recasting them as a continuous-state determinis-
tic Markov decision process with a piecewise-linear and con-
vex optimal value function [Dibangoye et al., 2013a]. Over-
all, it seems like the asymptotic complexity analysis provides
a useful hierarchy of problems, while the structural analysis is
geared to guide the automatic characterization of optimality-
preserving concise policies and value functions, which will
eventually lead to the development of scalable, applicable and
widely adaptable theory and algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 focuses on Dec-POMDPs and the recent approach
to solving them. Next, we introduce the criteria we rely
on to characterize optimality-preserving concise policies and
value functions. Next, we discuss certain subclasses of Dec-
POMDPs with mild conditions, demonstrating the usefulness
of the structural analysis.

2 Cooperative Decentralized Control Models
We consider a decentralized partially observable Markov de-
cision process (Dec-POMDP) involving n cooperative agents

M ≡ (S , (Ai), (Zi), (Pas), (Ra), ζ0).

Here, S is a finite set of hidden states; Ai is a finite set of
private actions of agent i; and Zi is a finite set of private ob-



servations of agent i. Given any hidden state and joint action,
s and a, the probability of each possible next hidden state and
joint observation, s′ and o, is Pas(s′, z). Similarly, given any
current state and joint action, s and a, the reward is Ra(s).
This model is parametrized by ζ0 the initial state distribution
and T the planning horizon.

The goal of optimal decentralized decision-making is to
find a joint policy π = (πi) maximizing the expected sum
of rewards starting in initial distribution ζ0. A joint policy
π = (πi) is an n-tuple of agent policies πi, one for each agent.
Alternatively, a joint policy π = (πt) is a sequence of T joint
decision rules, one for each time step. Similarly, an agent
policy πi = (πt

i)t∈{0,1,...,T−1} is a sequence of T agent deci-
sion rules. A step-t agent decision rule πt

i is a mapping from
length-t private (observation) history θi = (a0

i , z
1
i , . . . , a

t−1
i , zt

i)
to private actions πt

i(θi) ∈ Ai.
Example 1. To illustrate the main result of this paper, con-
sider a simple cooperative, decentralized control problem in
which three agents must navigate to their terminal locations
(denoted sG) as soon as possible. Agents need to coordinate
since they affect each other through both rewards and dynam-
ics. In this world, possible actions for each agent include
moving north, south, west, east and staying in the same place.
Each time, agents take an action, they receive a reward and
a noisy observation about the current state of the world. The
penalty is 0 if the current state is sG and +1 otherwise.

For simplicity, in the remainder of the paper, we use ma-
juscule bold symbols to denote random variables, and minus-
cule symbols to denote associated realizations — e.g., for any
action-observation histories, we use Θ and θ to denote ran-
dom variable and its realization, respectively.

2.1 Occupancy Markov Decision Process
The reformulation relies on a common assumption in de-
centralized decision-making that planning can be achieved
in a centralized manner while still preserving decentral-
ized execution [Szer et al., 2005; Oliehoek et al., 2008;
2013]. Building on this insight, [Dibangoye et al., 2013a]
introduced the concept of occupancy state, denoted ζ, to rep-
resent a distribution over hidden states and joint histories.

Occupancy states ζ t(St,Θt) def
= Pζ

0,π0:t−1
(St,Θt) are suffi-

cient statistics of data (ζ0, π0:t−1) for the characterization of
optimal joint policy π0:t−1 starting in initial occupancy ζ0. Be-
fore proceeding any further, let us provide a formal definition
of a sufficient statistics by [Fisher, 1922].
Definition 1. A statistic χ(X) is sufficient for parameter Y
precisely if the conditional probability of Y, given the statistic
χ(X), does not depend on data X — i.e.,

P(Y|χ(X), X) = P(Y|χ(X)), (1)

where X, Y and χ(X) are random variables.

Intuitively, a sufficient statistic captures all important in-
formation contained in data about a given parameter to be
estimated, no further information can be obtained from the
data. Notice, however, that sufficient statistics pertain to data
reduction, not merely parameter estimation. As an exam-
ple, in MDPs, the current joint observation is sufficient for

the estimate of the current state. Once the current joint ob-
servation is known, no further information about the current
state can be obtained from the history of an MDP — i.e.,
P(St
|Z1, . . . , Zt) = P(St

|Zt) [Puterman, 1994].
Unfortunately, similarly to the joint policy space, in the

worst case the occupancy-state space (denoted 4) grows ex-
ponentially as time goes on. In particular, the next-step oc-
cupancy states ζ t+1 = Pπt

ζ t is updated at each time-step t to
incorporate the latest joint decision rule πt:

ζ t+1(s′, (θ, a, z)) =
∑

s∈S ζ
t(s, θ) · Pas(s′, z), (2)

Not surprisingly, in the worst case the space of joint deci-
sion rules (denoted Π) grows exponentially with time as well.
From the Bayesian update-rule in (2), occupancy states de-
scribe a process that is Markov.

The immediate reward Rπt
ζ t obtained by taking joint deci-

sion rule πt at any occupancy state ζ t is written:

Rπt
ζ t def

=
∑

s,θ ζ
t(s, θ) · Rπt(θ)(s). (3)

Equations (2) and (3) directly lead to the definition of the
occupancy-state Markov decision process (OMDP):

M̂ ≡ (4,Π, (Rπt
), (Pπt

), ζ0)

of the following meaning: 4 is a continuous-state space; Π

is a multidimensional action space; Rπt
is the immediate re-

ward vector for joint decision rule πt; and Pπt
the determinis-

tic transition-matrix for joint decision rule πt. The goal then
is to find a joint policy π whose value function is the solution
of the [Bellman, 1957] optimality equation: ∀ζ t ∈ 4,

V t
M(ζ t) = maxπt∈Π Rπt

ζ t + V t+1(Pπt
ζ t), (4)

with boundary condition V t
M(·) = 0. Interestingly, [Diban-

goye et al., 2013a] demonstrate the optimal value function
(V t

M)t∈{0,1,...,T−1} solution of (4) is a piecewise-linear and con-
vex function of occupancy states. In other words, there ex-
ists a finite set of high-dimensional vectors (called γ-vectors),
(Γt = {γt})t∈{0,1,...,T−1}, such that the optimal value at any oc-
cupancy state ζ t ∈ 4 is: V t

M(ζ t) = maxγt∈Γt γtζ t.
This property is particularly important as it allows the value

function to generalize over the entire occupancy space. The
step-t set of γ-vectors Γt can be built from the next-step set
Γt+1 using the [Bellman, 1957] backup operator, denoted H.
We shall use notation H(ζ t,Γt+1) = γt

∗ to denote the exact
point-based backup:

γt
∗ = arg max

γt=Rπt
+(Pπt )>γt+1 : πt∈Π,γt+1∈Γt+1

γtζ t. (5)

A repeated application of the point-based backup over reach-
able occupancy states ensures optimality of algorithms.

2.2 Optimally Solving Dec-POMDPs as OMDPs
[Dibangoye et al., 2013a] demonstrate an optimal joint policy
for M̂ is also optimal for M. Hence, we focus on optimally
solving M̂. Since M̂ is essentially a continuous-state MDP
with a piecewise-linear and convex optimal value function,
methods for solving POMDPs can also solve M̂.

In particular, [Dibangoye et al., 2013a] extend the heuristic
search value iteration (HSVI) algorithm for POMDPs [Smith



Algorithm 1: The OHSVI algorithm.
function OHSVI((Lt

M)t, (U t
M)t)

while GAP(ζ0) > 0 do EXPLORE (ζ0).

function GAP(ζ t)
return U t

M(ζ t) − Lt
M(ζ t).

function EXPLORE (ζ t)
if GAP(ζ t) > 0 then

action-selection given U t+1
M and ζ t yields πt

∗.
update upper-bound U t

M at occupancy state ζ t.
EXPLORE(Pπt

∗ζ t).
update lower-bound Lt

M at occupancy state ζ t.

and Simmons, 2004] to solving for OMDPs. The resulting
OHSVI algorithm 1 is a trial-based algorithm, which pro-
ceeds by generating trajectories of occupancy states, starting
at occupancy state ζ0. It maintains both upper and lower
bounds over the optimal value function, we denote (Lt

M)
and (U t

M), respectively. It guides exploration towards occu-
pancy states that are more relevant to the upper bounds by
greedily selecting joint decision rules with respect to the up-
per bounds, which reduces the difference between bounds at
those points. The algorithm terminates when the gap at the
initial occupancy state ζ0 is zero. In such a case, the algo-
rithm has converged.

The OHSVI algorithm has demonstrated impressive re-
sults on medium-sized problems from the literature of Dec-
POMDPs [Dibangoye et al., 2013a], but its scalability re-
mains a serious challenge. There are two reasons for the lim-
ited scalability of methods to solving M̂ due to the dimen-
sionality of joint decision rules πt, occupancy state ζ t and
γ-vectors γt+1. Computing ζ t, Rπt

ζ t and Pπt
ζ t requires time

complexities polynomial in the dimensionality of ζ t, which
itself grows exponentially with time. Even more impor-
tantly, the exponential complexity requirement of H(ζ t,Γt+1)
is the major source of the intractability of M̂. This high-
lights the impetus for automatic and general purpose meth-
ods for designing optimality-preserving concise policies, oc-
cupancy states and γ-vectors. To date, determining structural
results (e.g., sufficient statistics) seems more like an art than
a science [Goldman and Zilberstein, 2004; Dibangoye et al.,
2012; 2013a; Oliehoek, 2013]. We will distinguish between
four categories of sufficient statistics ranging along two di-
mensions: objective and perspective dimensions.

3 Separation of Policy and Value Statistics
Along the objective dimension, this section investigates the
separation of sufficient statistics for the estimation of ex-
pected cumulated rewards and those for the design of optimal
joint policies — namely, policy- and value-sufficient statis-
tics, respectively. Along the perspective dimension, we will
differentiate between data provided from an agent to that of
a centralized planner point of views — namely, agent- and
planner-centric sufficient statistics.

3.1 Separation Principle
The goal of planning in cooperative, decentralized control
models is to find an optimal joint policy — i.e., the one that
maximizes the long-term expected cumulated rewards. Since
the design of optimality-preserving concise policies and the
estimation of expected cumulated rewards are interconnected
objectives, a common assumption is that both share the same
sufficient statistic. But this common assumption is not always
true. Notice that any agent policy depends on agent action-
observation histories (in the worst case):

πi(Θi) = P
ζ0,π j

M (Ai|Θi),

where Ai and Θi denote random variables associated to agent
actions and histories. Instead, the immediate expected reward
depends on agent action-observation histories and actions,

R
ζ0,π j

M (Θi, Ai) = Eζ
0,π j [R|Θi, Ai] ,

where R = Rπ j(Θ j),Ai (S) denotes random variable associated
to immediate reward agents received upon agent i taking ac-
tion Ai in action-observation history Θi. Hence, while being
interdependent, policy- and value-sufficient statistics are pos-
sibly different, as stated in the following.
Lemma 1 (Separation Principle). In cooperative, decentral-
ized control models, the expected value Vπ

M(ζ0) of any arbi-
trary joint policy π starting at initial state ζ0 depends on two
possibly different sufficient statistics:

Vπ
M(ζ0) =

∑
θi,ai

P
ζ0,π j

M (χi(θi)) · P
ζ0,π j

M (ai|χi(θi)) · R
ζ0,π j

M (χ′i(χi(θi), ai)),

where χi(Θi) and χ′i(χi(Θi), Ai) denote policy- and value-
sufficient statistics, respectively.

Lemma 1 provides a useful characterization of agent-
centric policy- and value-sufficient statistics. It further sug-
gests that value-sufficient statistics have a dimensionality
lower than or equal to policy-sufficient statistics. This is a
major discovery as, so far, we assumed both were identi-
cal. The immediate implication of this property is the abil-
ity to improve (1) the scalability of operations Pπt

ζ t, Rπt
ζ t

and even more importantly H(ζ t,Γt+1); and (2) the estimation
accuracy by enhancing the generalization between policy-
sufficient statistics that share the same corresponding (lower-
dimensional) value-sufficient statistics.
Example 2. Clearly, example 1 is a three-agent goal-directed
Dec-POMDP [Amato and Zilberstein, 2009; Goldman and
Zilberstein, 2004]. In practice, [Amato and Zilberstein,
2009] used the complete history of actions and observations
θi for each agent i as policy- and value-sufficient statistics in
such a setting. However, the separation principle suggests
a value-sufficient statistic can be made significantly differ-
ent than a policy-sufficient statistic. Based on the reward
function, one can indeed show that if the probability of be-
ing in sG is psG then the immediate expected reward will be
(1 − psG ) = 0 × psG + (+1) × (1 − psG ). Hence, the condi-
tional probability of being in sG, denoted Pζ

0,π j (sG |θi, ai), is
a sufficient statistic for the estimation of immediate expected
reward Rζ

0,π j (θi, ai) — i.e., Rζ
0,π j (θi, ai) = 1 − Pζ

0,π j (sG |θi, ai).



Once the conditional probability Pζ
0,π j (sG |θi, ai) of being in sG

is known, no further information can be obtained from agent
history and action, θi and ai, respectively.

4 Policy-Sufficient Statistics
The previous section demonstrated that policy- and value-
sufficient statistics are possibly different. This section intro-
duces criteria that provide a convenient characterization of
concise, if not minimal, policy-sufficient statistics required to
solving M (respectively M̂).

4.1 Markov Property
Here, we define the property, that is a necessary condition for
the characterization of policy-sufficient statistics.
Criterion 1. For any arbitrary cooperative, decentralized
control model M, agent i and teammates j, a statistic χi(Θi)
satisfies the Markov property if, and only if, the future statis-
tics depend solely on the current one:

P
ζ0,π j

M (χi(Θ′i)|Θi, Ai, Zi) = P
ζ0,π j

M (χi(Θ′i)|χi(Θi), Ai, Zi),

where Θ′i denotes the next-step random variable of Θi.

Informally, a statistic satisfies the policy criterion if, and
only if, it contains all information about its offsprings, no fur-
ther information can be obtained from the complete history. It
is worth noticing that the Markov property is not sufficient for
the design of an optimal agent policy. But all policy-sufficient
statistics satisfies the policy criterion. So, one can use this cri-
terion to check whether or not a statistic is a good candidate
policy-sufficient statistic, as discussed below.
Example 3. Consider our running example 1. We showed
in example 2 that a concise value-sufficient statistic is the
probability of being in the terminal state. Using policy cri-
terion, one can show that this statistic cannot serve as a
policy-sufficient statistic. This is mainly because the current
probability of being in the terminal state discarded important
information for an accurate estimation of the next-step prob-
ability of being in the terminal state. As a consequence this
statistic does not satisfy the policy criterion, and this can-
not be a policy-sufficient statistic. Examples of statistics that
are Markovian include: the complete action-observation his-
tory χ(θi) = θi; or the current observation χ(θi) = zi, etc.
Markov property trivially holds when using complete action-
observation histories. Similarly, it holds when using the cur-
rent observation, since the next-step observation does not de-
pend on the complete history.

4.2 Value-Preserving Property
Here, we define the value-preserving property, that is a
necessary condition for the characterization of agent-centric
policy- and value-sufficient statistics.
Criterion 2. For any arbitrary cooperative, decentralized
control model M, agent i and teammates j, a statistic χi(Θi)
satisfies the value-preserving property if, and only if, there
exists agent-centric value-sufficient statistic χ′i(χi(Θi), Ai):

R
ζ0,π j

M (Θi, Ai) = R
ζ0,π j

M (χ′i(χi(Θi), Ai)).

Intuitively, this criterion requires statistic χi(Θi) along with
Ai to be an agent-centric value-sufficient statistic themselves.
Similarly to the Markov property, statistics that are value-
preserving need not be policy-sufficient. Yet, all policy-
sufficient statistics need to be value-preserving in order the
preserve ability of being policy-sufficient, as illustrated next.
Example 4. Back to our running example 1, we know from
example 3 that the current observation zi is Markovian and
the probability of being in the terminal state Pζ

0,π j (sG |θi, ai)
describes the minimal value-sufficient statistic. A natural
question then is whether the current observation is value-
preserving. In other words, does the current observation de-
scribes a sufficient statistic for the probability of being in the
terminal state starting given the complete action-observation
history? The answer is negative since the history contains ad-
ditional information than are crucial in estimating this prob-
ability. Hence, the current observation is Markovian but it is
not value-preserving, which precludes zi from being a policy-
sufficient statistic.

4.3 Characterizing Policy-Sufficient Statistics
We are now ready to state and provide a convenient character-
ization of agent- and planner-centric policy-sufficient statis-
tics based on Markov and value-preserving properties.
Theorem 1. For any arbitrary cooperative, decentralized
control model M, agent i and teammates j, a statistic χi(Θi)
is an agent-centric policy-sufficient statistic if it satisfies both
Markov and value-preserving properties.

An immediate implication of this theorem is a useful
characterization of a minimal sufficient statistic for poli-
cies. A minimal sufficient statistic for policies is the lowest-
dimensional statistic that satisfies the transition criterion.
This characterization will eventually lead to the design of ef-
ficient automatic methods for identifying minimal sufficient
statistics for policies of any decentralized control application
at hand, as demonstrated in Section 6. Theorem 1 focuses on
policy-sufficient statistics from each agent’s perspective. An-
other important implication pertains to the design of the min-
imal policy-sufficient statistic from the centralized planner’s
perspective. This is still an open problem, but the follow-
ing provides a convenient way to build good planner-centric
policy-sufficient statistics.
Corollary 1. For any arbitrary cooperative, decentralized
control model M, joint policy π and initial state ζ0, a
statistic χ(ζ0, π) is a planner-centric policy-sufficient statis-
tic if, and only if, it describes a probability distribution
over hidden states and agent-centric policy-sufficient statis-
tics (χ1(Θ1), · · · , χn(Θn)):

χ(ζ0, π) = P
ζ0,π
M (χ1(Θ1), · · · , χn(Θn)),

where χi(Θi) denotes a policy-sufficient statistic of agent i.
The total information available to the centralized planner

is joint policy π and initial state ζ0. Hence, a planner-centric
policy-sufficient statistic summarizes data π and ζ0. The pri-
mary goal of Theorem 1 and Corollary 1 is to provide a con-
venient way to check whether a statistic is actually a policy-
sufficient statistic, as illustrated below.



Example 5. Consider statistics χi(Θi) = P
ζ0,π j

M (S,Θ j|Θi)
describing the conditional probability of hidden states
and other agent histories given history of agent i.
One can show that statistic χi(Θi) is Markovian, since
P
ζ0,π j

M (S′,Θ′j|Θi, Ai, Zi) = P
ζ0,π j

M (S′,Θ′j|χi(Θi), Ai, Zi). More-

over, statistic Pζ
0,π j

M (S,Θ j|Θi) is value-preserving because

P
ζ0,π j

M (sG |Θi, Ai) is obtained by marginalizing out over non-
terminal states and other agent histories. Hence, χi(Θi) is a
policy-sufficient statistic. Similarly, one can demonstrate that
an occupancy state ζ(S,Θ) = P

ζ0,π
M (S,Θ) is a policy-sufficient

statistic from the centralized planner’s perspective if we let
χi(Θi) = Θi and apply Corollary 1.

5 Value-Sufficient Statistics
This section introduces criteria that provide a convenient
characterization of concise, if not minimal, agent- and
planner-centric value-sufficient statistics required to solving
M (respectively M̂). We distinguish between models in which
agents have independent rewards to those in which agents in-
fluence each other through rewards. The following lemma
builds upon the definition of a sufficient statistic to prove that
if agents have independent rewards, then the central planner
requires only an agent-centric value-sufficient statistic.

Lemma 2. For any arbitrary cooperative, decentralized
control model M, agent i and teammates j, a statistic
χ′i(χi(Θi), Ai) is agent-centric value-sufficient if, and only if,
there exists an agent-centric policy-sufficient statistic χi(Θi)
such that: Rζ

0,π j

M (Θi, Ai) = R
ζ0,π j

M (χ′i(χi(Θi), Ai)).

Intuitively, this lemma states that under independent re-
wards, the centralized planner needs to maintain one value
function for each agent, hence only agent-centric value-
sufficient statistics are required. Section 6.3 provides struc-
tural results for an important subclass of models with inde-
pendent rewards. Next, we consider a much broader settings
in which agents have a common reward function.

Lemma 3. For any arbitrary cooperative, decentralized con-
trol model M, joint policy π and initial state ζ0, a statis-
tic χ(ζ0, π) is planner-centric value-sufficient if, and only
if, it is sufficient for agent-centric value-sufficient statistic
χ′i(χi(Θi), Ai) for any agent i.

Intuitively, this lemma states that a statistic that is sufficient
for agent-centric value-sufficient statistic for all agents is a
planner-centric value-sufficient statistic.

6 New Structural Results
This section presents a general automatic method, referred
to as a structural analysis, which eases the design of con-
cise, if not minimal, sufficient statistics for policies and γ-
vectors. We apply the methodology on a selection of de-
centralized control models, on which asymptotic complexity
analysis suggests significant memory gains were unlikely, if
not impossible. Surprisingly, our structural analysis demon-
strates that significant memory gains can be achieved.

6.1 Structural Analysis
Algorithm 2 describes the structural analysis method. It starts
with the selection of a subset of possible statistics Ω̃ from the
unknown set of all possible statistics Ω. Each statistic Õ from
the subset is an observable random variable of the decentral-
ized control application at hand. The methodology proceeds
by testing statistics in the order of increasing dimensional-
ity. The test consists in checking whether the given sufficient
criterion C, depending on the type of sufficient statistic we
target, is satisfied. The methodology terminates when there
are no more statistics to be tested, or one statistic passed the
test; in the latter case, a concise, if not minimal, sufficient
statistic has been found.

Algorithm 2: The Structural Analysis.
function SA(Ω,C)

(1) Select subset Ω̃ ⊂ Ω of statistics Õ.
(2) Extract the lower-dimensional one Õ∗.
(3) If Õ∗ fails on criterion C, go back to (2).
(4) Otherwise return sufficient statistic Õ∗.

The selection of a representative subset of statistics is not a
trivial task as many subsets may end up with no sufficient
statistics. As an example, one can select sufficient statis-
tics in the space of histories as did [Dibangoye et al., 2013a]
with success. Though preliminary, this method enhances au-
tomatic characterization of concise sufficient statistics, poli-
cies and value functions (via γ-vectors). Of course, the
method could also help verifying previously exhibited statis-
tics were indeed sufficient [Goldman and Zilberstein, 2004;
Becker et al., 2004; Nair et al., 2005; Oliehoek, 2013;
Dibangoye et al., 2012; 2013b; 2014].

In demonstrating the practical usefulness of the method-
ology, the following exhibits sufficient statistics for general
decentralized control models under mild restrictions on the
system rewards.

6.2 Action-Independent Rewards
We start with decentralized control models with action-
independent rewards. The system rewards (Ra) are action-
independent iff, there exists a function R, for any arbitrary
joint action a, such that Ra = R. This mild condition ap-
pears in a number of important applications ranging from
robotics (e.g., collective information gathering tasks) to net-
work security (e.g., intrusion detection problems) [Blin et al.,
2006]. In such a setting, the structural analysis reveals that
the empty history is the sufficient statistic of any private his-
tory for optimality-preserving and concise γ-vectors, which
leads to the following lemma.

Lemma 4. Under action-independent rewards, the distribu-
tion over hidden states Pζ

0,π
M (S) is a planner-centric value-

sufficient statistic.

From the above lemma, it directly follows that γ-vectors
are mappings from hidden states to reals, as stated in the fol-
lowing theorem.



Theorem 2. Under action-independent rewards, optimality-
preserving concise γ-vectors are |S |-dimensional real vec-
tors: γ̃π̃

t:T−1
(S) = Eπ̃

t:T−1
[
∑T−1
τ=t R(S)].

In general, γ-vectors γπ
t:T−1

have dimensionality exponen-
tial with time, γπ

t:T−1
(S,Θ) = Eπ

t:T−1
[
∑T−1
τ=t Rπτ(Θ)(S)].

Theorem 2 reveals that the resources needed to accurately
maintain value functions through γ-vectors is exponentially
smaller than that of the general setting. Even more impor-
tantly, under action-independent rewards, the dimensionality
of γ-vectors is bounded by the number of hidden states. No-
tice that this result goes beyond the scope of Dec-POMDPs.
It can apply on all subclasses of Dec-POMDPs with action-
independent rewards — e.g., POMDPs [Kaelbling et al.,
1998] with action-independent rewards. Besides the enor-
mous memory savings, this property can significantly en-
hance generalization and evaluation of the value function, as
previously discussed.

6.3 Additive Rewards

Another important condition pertains to the additivity of
agent rewards. The system rewards R are fully addi-
tive iff there exists n functions R1,R2, . . . ,Rn, such that:
∀s ∈ S , a = (ai) ∈ A, Ra(s) = Ra1

1 (s) + Ra2
2 (s) + . . . + Ran

n (s).
A notable example of this family is the foraging problem,
in which agents collaborate to search for disseminated re-
sources. The reward is often defined as the sum of resources
agents transport back to home [Winfield, 2008].

In such a setting, the structural analysis reveals that a
value-sufficient statistic χi(Θi) of any private history Θi for
optimality-preserving and concise γ-vectors is both a state-
distribution Pζ

0,π j

M (S|Θi, Ai) and independent of histories of
other agents. This leads to the following lemma.

Lemma 5. Under additive rewards, state-distribution
P
ζ0,π j

M (S|Θi, Ai) is an agent-centric value-sufficient statistic.

Another important result pertaining to the characteriza-
tion of optimality-preserving concise value functions follows
from the above lemma.

Theorem 3. Under additive rewards, optimality-preserving
concise value functions consist of tuples of private value func-
tions (Γt

i)i∈{1,2,...,n},t∈{0,1,...,T }, one for each time step and agent.
Even more importantly, each γ-vector γ̃π̃

t:T−1

Θi
∈ Γt

i is an |S |-

dimensional real vector: γ̃π̃
t:T−1

Θi
(S) = Eπ̃

t:T−1
[∑T−1

τ=t Rπτi (Θi)
i (S)

]
.

In general, γ-vectors γπ
t:T−1

Θi
have dimensionality exponen-

tial with time, γπ
t:T−1

Θi
(S,Θ j) = Eπ

t:T−1
[
∑T−1
τ=t Rπτ(Θ)(S)]. This

theorem shows that, in models with additive rewards, each
agent holds its private value function although they jointly
optimize the sum of these functions. Even more importantly,
each optimality-preserving concise private value function is
represented by a set of |S |-dimensional real vectors. Nonethe-
less, agents cannot choose their private actions on their own
as value-sufficient statistics also depend on the choices of the
other agents.

7 Discussion and Conclusion
This paper introduces a general methodology, referred to as
structural analysis, as a means of characterizing a concise if
not minimal, model for the applications at hand — demon-
strating adaptability. Under mild conditions, the structural
analysis of optimality-preserving concise policies and value
functions often results in exponential reductions in memory
and time requirements — demonstrating scalability gains. We
developed the structural analysis as an analysis tool on top of
occupancy-state Markov decision processes, a general model
to represent a large variety of Markov models — demonstrat-
ing the wide applicability.

The structural analysis aims at characterizing concise suf-
ficient statistics for decentralized control models. The idea of
describing minimal sufficient statistics is not new. It can be
traced back to Fisher-Neyman factorization [Fisher, 1922],
since then numerous authors applied this method to derive
sufficient statistics for optimal decision-making: [Smallwood
and Sondik, 1973] demonstrate the belief state (distribu-
tion over hidden states) is a sufficient statistic of the his-
tory of agent for characterizing an optimal policy in gen-
eral POMDPs; similarly, [Dibangoye et al., 2012] show that
the distribution over states is a sufficient statistic of the ini-
tial belief and past joint policy for the design of concise
and optimal policies in transitional and observational Dec-
MDPs; and [Dibangoye et al., 2013a; Oliehoek, 2013] prove
that the distribution over hidden states and joint histories
is a sufficient statistic for initial belief and past policies;
similar results hold for ND-POMDPs [Nair et al., 2005;
Dibangoye et al., 2014]. To date, however, determining suf-
ficient statistics seems more like an art than a science, ex-
plaining the importance of the structural analysis. Overall,
it looks like the asymptotic complexity analysis provides a
useful hierarchy of problems, while the structural analysis is
geared to guide the automatic characterization of optimality-
preserving concise policies and value functions, which will
eventually lead to the development of scalable, applicable and
widely adaptable theory and algorithms.
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