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Abstract : Abstraction is a common method to compute lower bounds in classical planning, imposing
an equivalence relation on the state space and deriving the lower bound from the quotient system. It
is a trivial and well-known fact that refined abstractions can only improve the lower bound. Thus,
when we embarked on applying the same technique in the probabilistic setting, our firm belief was to
find the same behavior there. We were wrong. Indeed, there are cases where every direct refinement
step (splitting one equivalence class into two) yields strictly worse bounds. We give a comprehensive
account of the issues involved, for two wide-spread methods to define and use abstract MDPs.
Keywords : Abstractions, Markov Decision Processes, Heuristic.

1 Introduction
In classical planning, an abstraction is a mapping α from the set of all states into a smaller set of abstract
states ([s]α denoting the set of states t where α(t) = α(s)). This is used to derive a lower bound hα(s)
on the remaining cost of any state s. Namely, α induces an abstract planning problem over the abstract
state space: (i) an abstract state [s]α is a goal iff it contains at least one original goal state, and (ii) a
transition from [s]α to [s′]α exists iff there exist t ∈ [s]α and t′ ∈ [s′]α so that the original state space
has a transition from t to t′. The abstract planning problem is a relaxed version of the original one –or,
conversely, the original problem is more constrained– so that, given a state s, the cost of an abstract plan
starting from [s]α is at most equal to the cost of a plan starting from s, and can thus be used as a lower
bound hα(s). Prominent examples of this method are pattern databases Edelkamp (2001); Haslum et al.
(2007) and merge-and-shrink abstractions Helmert et al. (2007); Nissim et al. (2011); Katz et al. (2012).

A refinement of α is an abstraction α′ resulting from α by splitting some of the block states, i.e., for all
s we have [s]α′ ⊆ [s]α. It is commonplace that refinements can only improve the heuristic, i.e., hα(s) ≤
hα
′
(s) for all s: If we split block states apart, then the solution paths can only get longer and thus more

costly (assuming non-negative costs as usual). Indeed, this observation is so simple that, to our knowledge,
no-one yet bothered to state it in a paper and its first appearance is in Malte Helmert’s 2010 lecture slides.1

Our initial agenda in this research was to solve MDPs using heuristic search methods like LRTDP Bonet
& Geffner (2003), our focus being to compute heuristic functions by starting with a coarse abstraction and
iteratively refining it. Against the background described above, as a warm-up exercise we embarked on
proving that the essential property of refinements – they can only improve the heuristic – is true in that
setting as well. Which was all fine, except we ended up proving the opposite.

First things first, to conduct this kind of research for MDPs one needs to first define what the “quotient
system” and the corresponding heuristic functions are. This is non-trivial because, in difference to the
classical case where all we are interested in is which states can transition to which other states in principle,
now we need to define transition probabilities for the abstract MDP. To illustrate, if action a maps s into a
state from [s′]α with probability 0.9, but maps t ∈ [s]α into a state from [s′]α with probability 0.1, which
probability should we assign for a to map [s]α into [s′]α?

A simple answer is to assign the average probability over all states in [s]α. In the example, this would
yield the transition probability 0.5. A main issue with this approach is that the resulting heuristic function

1http://www.informatik.uni-freiburg.de/˜ki/teaching/ss10/aip/aip10.pdf
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– the value function of the abstract MDP – is neither a lower bound nor an upper bound on the value
function of the original MDP. Givan et al. Givan et al. (2000) fix this by basically considering intervals of
transition probabilities (in the example, the interval [0.1, 0.9]). They derive a lower bound on the original
value function (expected reward) by selecting the probabilities pessimistically, and derive an upper bound
of the original value function by selecting the probabilities optimistically.

We first proved that, for the average-probability approach, there exist an MDP, a state s, an abstraction α,
and refined α′ so that the error of hα

′
(s) relative to the original value function is larger than that of hα(s).

This may be duly understood as an accident pertaining to the sketchy nature of this approach; indeed, as we
show, the original MDP does not have to be non-deterministic to provoke this kind of behavior. However,
we next proceeded to prove the same property for Givan et al.’s approach. Worse, even: We constructed an
MDP, a state s, and α so that all direct refinements α′ (resulting from α by splitting a single block state)
result in strictly worse bounds. More naturally than for the average-probability approach, non-determinism
is required for this, i.e., if the original MDP is deterministic then every refinement results in better bounds.

In the remainder of the paper, we first give the necessary background definitions. We then explain our
results in the order described above.

2 Markov Decision Processes and Abstractions
Markov Decision Processes (MDPs) are a general framework for modeling decision-making problems in
stochastic environments. We define an MDP as follows

Definition 1. A Markov Decision Process is given by a (finite) state space S, a (finite) action space A, a
reward function R : S × A → R and transition probabilities p(s, a, s′) which determine the probabilities
of transition when performing action a in state s.

A deterministic policy π : S → A assigns an action to each state, and we are looking for the optimal
policy π∗, i.e., one that maximizes for all s ∈ S the return

V π(s) = Eπ

[ ∞∑
t=0

γtRt|s0 = s

]
,

where γ is the discount rate taken in [0, 1).
The related value V ∗ is the unique solution of the equation V ∗ = TV ∗ where T is the Bellman operator

defined as :

∀s, V ∗(s) = TV ∗(s) = max
a

(
R(s, a) + γ

∑
s′∈S

p(s, a, s′)V ∗(s′)

)
.

Determining π∗ may be infeasible in MDPs with large state spaces. In this paper we simplify the problem
by employing state abstractions. Abstractions provide a smaller representation Mα of the original MDP
M . The image of M under an abstraction α is defined on a state space Sα smaller than S. Indeed Sα
is a partition of S consisting of block states [s]α. We assign to each block-state, given an action a ∈ A,
the reward R([s]α, a) and the transition probabilities p([s]α, a, [s1]α) for all [s1]α ∈ Sα . The useful
abstractions are the ones that induce a small error of approximation when considering Mα instead of M .
We would like to identify such abstractions by comparing a given abstraction to its (direct) refinement, in
terms of approximation error.

2.1 Abstractions’ Refinement
Definition 2. Let α and α′ be two abstractions of an MDP M . We say that α′ is finer than α, denoted
α′ � α, iff for any states s, s′ ∈ S, α′(s) = α′(s′) implies α(s) = α(s′). We can also say that α is coarser
than α′, denoted α � α′.

We have α′ a direct refinement of α if there exist states s1, s2 ∈ S such that [s1]α = [s2]α, [s1]α′ 6= [s2]α′ ,
[s1]α = [s1]α′ ∪ [s2]α′ , and α′(s) = α(s) for all s ∈ S \ [s1]α.

We show in what follows that the error induced by α’ may in some cases be higher than the one induced
by α. But before that we have first to specify the parameters (rewards and transition probabilities) related
to the abstract representation Mα of M .



Do Refined Abstractions Yield Better Heuristics?

3 Average MDPs
We consider in this section the abstraction α that connects an MDPM to its average representation. In other
words, α maps an MDP M defined on S to an average MDP Mα, defined on Sα, and admits as parameters,
the averages of rewards and transitions over all states contained in the block state [s]α (Ortner, 2011), i.e.,
we have for all a ∈ A:

R([s]α, a) =
1

|[s]α|
∑

s1∈[s]α

R(s1, a) and

p([s]α, a, [s
′]α) =

1

|[s]α|
∑

s1∈[s]α

∑
s2∈[s′]α

p(s1, a, s2).

We denote here by |[s]α| the cardinal of all states in [s]α.
We choose as approximation error Eα, the average error, estimated by taking the average difference

between the true value V taken in a state s and the value Vα of its corresponding block state [s]α,

Eα =
1

|S|
∑
s∈S
|Vα([s]α)− V ∗(s)|.

This approximation error may increase when we refine the abstraction α. We illustrate in Figure 1 an
example in which the number of states where the (local) error increases-after a refinement-is greater than
the one where the (local) error decreases, causing the increase of the average error.

Proposition 1. There exists a deterministic MDP M , an abstraction α and a refinement α′ of α such that
Eα < Eα′ .

Proof. Consider the MDP M in Figure 1 with a single action {a} and a discount rate γ = 1 (the result
would not change for γ < 1 but close enough to 1). The states in {2, ..., k} (k > 2) are similar: they admit
the same rewards (R = 0) and have the same dynamics : they reach the neighboring state with probability
one. The states in {k + 1, ..., n} are also similar: they all reach the goal G with probability one and they
admit a non-negative reward R2. The state 1 admits a reward R(1) = R1 � R2 and reaches the goal with
probability one.

Taking V (G) = 0, we then have V (1) = R1, and V (i) = R2 forall i in {2, ..., n}.
Based on those similarities one can construct a perfectly suitable abstraction α0 (Eα0 = 0) which aggre-

gates similar states in the same block, i.e., in our case α0 : S → 1, {2, ..., k}, {k + 1, ..., n}, G.
Consider now the abstraction α1 : S → {1, ..., k}, {k+ 1, ..., n}, G, where the states 1 and {2, ..., k} are

in the same block (Figure 1). The similarity will be then broken resulting in a strictly positive error Eα.
The related values are

Vα1
({k + 1, ..., n}) =

(n− k)R2

n− k
= R2 and

Vα1({1, ..., k}) =
R1

k
+
k − 2

k
Vα1({1, ..., k}) +

1

k
Vα1({k + 1, ..., n}) =

R1 +R2

2
6= R2.

And the induced error is

Eα1
=

1

n

k∑
i=1

|V (i)− Vα1
({1, ..., k})| ∼ kR2

2n
for R1 � R2.

Let α2 : S → {1, ..., n}, G be the abstraction which aggregates states 1, 2, ..., n together (Figure 1), the
value Vα2

({1, ..., n}) is equal to

Vα2
({1, ..., n}) =

R1 + (n− k)R2

n
+
k − 1

n
Vα2

({1, ..., n}) ∼ R2 for k � n

and hence

Eα2
∼ 1

n
|V (1)− Vα2

({1, ..., n})| ∼ 1

n
R2.

We can see that the error Eα1
is strictly larger than Eα2

for a number of states k strictly greater than 2.
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Figure 1: From the top to the bottom: The MDP M , the abstraction α1 and the abstraction α2 (α0 is not
shown). The parentheses denote the reward (on the left) and the transition probabilities (on the right).

4 Bounded-parameter MDPs
Rather than approaching V ∗ with fixed values Vα, it is possible to establish bounds on the MDP’s parameters
so as to get bounds on V ∗. So we considered the abstraction α that associates, for each (action) a in A,
each block state [s]α with the intervals’ parameters ((Givan et al., 2000)):

Rl([s]α, a) =[ min
s∈[s]α

R(s, a), max
s∈[s]α

R(s, a)]

pl([s]α, a, [s
′]α) =[ min

s1∈[s]α

∑
s2∈[s′]α

p(s1, a, s2), max
s1∈[s]α

∑
s2∈[s′]α

p(s1, a, s2)].

We get hence what we call a a bounded parameter Markov Decision process (BMDP) more commonly
defined as:

Definition 3. A Bounded parameter Markov Decision Process is given by a (finite) state space Σ, a (finite)
action space A, an interval of rewards Rl(σ, a), ∀σ ∈ Σ, a ∈ A, and an interval of transition probabilities
pl(σ, a, σ′), ∀σ, σ′ ∈ Σ, a ∈ A.

Each state of the BMDP has a range of values depending onR and p. We can assign to each state a closed
interval of value functions [V −(σ), V +(σ)] where V − corresponds to the pessimistic bound and V + to the
optimistic one.

Our abstract representation Mα is then a BMDP where the state space Σ coincides with state space Sα.
We would like to estimate the value bounds V +

α ans V −α related to Mα. Givan et al. have proposed an
algorithm, the interval value iteration IVI, to do so. To make explicit the two Bellman’s operators hidden
behind this algorithm (T+ and T−), we first need to introduce the notion of compatibility with respect to
an abstraction.

Definition 4. An MDP N is compatible with M with respect to the abstraction α if for all s, and for all
a, RN (s, a) ∈ RlM ([s]α, a) and for all s, s′, a,

∑
s1∈[s′]α pN (s, a, s1) ∈ plM ([s]α, a, [s

′]α).
The set of all MDPs compatible with M with respect to α is denoted [M ]α.
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Figure 2 gives an example of an MDP N compatible with an MDP M with respect to the abstraction
α : 1, 2, 3→ {1, 2}, 3.

1

2 3 12

3 1

2 3

(R1 = 1, 0.5)

(0, 0.3)

(0, 0.2)

(0, 0.5)

(R2 = 1, 0.5)

(0, 0.6)

(0.4, R3 = 2)
(1, [0.8, 1])

(0, [0, 0.2]) (0, 0.6)

(2, 0.4) (R1 = 1, 0.9)

(0, 0.1)
(0, 0.2)

(R2 = 1, 0.8)

(0, 0.6)

(R3 = 2, 0.4)

Figure 2: From left to right, the MDP M , the BMDP Mα, α : 1, 2, 3 → {1, 2}, 3 and the MDP N
compatible with M with respect to α.The parenthesis denote the reward (on the left) and the transitions (on
the right)

We claim that the Bellman operators T+ and T− used to estimate V +
α and V −α can be written in this way,

for all s:

T+[V ](s) = max
a∈A

max
N∈[M ]α

RN (s, a) + γ
∑
s′∈S

pN (s, a, s′)V (s′),

T−[V ](s) = max
a∈A

min
N∈[M ]α

RN (s, a) + γ
∑
s′∈S

pN (s, a, s′)V (s′).

By taking iteratively the max (resp the min) on the set of compatible MDPs and by choosing the optimal
policy, we can see that those two operators converge to fixed values. Indeed T+ and T− are γ-contracting
so, by the Banach fixed point Theorem, they admit unique fixed points V +

α and V −α (which are constant
per block), i.e., T+V +

α = V +
α and T−V −α = V −α . There exists an optimistic MDP Mopt (respectively

a pessimistic MDP Mpes) and a corresponding optimal (optimistic) policy πopt (respectively an optimal
(pessimistic) policy πpes) for which the value V +

α (resp V −α ) is reached. The MDPsMopt andMpes belong
to [M ]α.

Before proceeding to the next step –the choice of the abstraction that would ensure better bounds–, we
first show that these values are indeed bounds on V ∗. This is precisely what is stated in this following
theorem.

Theorem 1. (Givan et al., 1997) For any MDP M and abstraction α of the states of M , bounds on the
BMDP Mα apply also to M , i.e., ∀s ∈ S, V ∗(s) ∈ [V −α ([s]α), V +

α ([s]α)].

Proof. 2 The proof is done using Value Iteration. With initial value V 0 = V +
α we have, for all s,

V 1(s) = max
a

RM (s, a) + γ
∑
s′∈S

pM (s, a, s′)V +
α ([s′]α).

Since V +
α is a fixed point of T+ and M ∈ [M ]α, we can see that

V 1(s) ≤ max
a∈A

max
N∈[M ]α

RN (s, a) + γ
∑
s′∈S

pN (s, a, s′)V +
α ([s′]α)

≤ V +
α ([s]α) = V 0(s).

The Bellman operator T is monotone, so that we have TnV 1 ≤ TnV 0 = V 0. By taking the limit, we get
V ∗(s) ≤ V +

α ([s]α). A similar proof may be applied to the pessimistic bound.

2This proof does not appear in (Givan et al., 1997) but it has been established thanks to a correspondence with R. Givan.
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4.1 Value Bounds using finer abstractions
As previously done for the average model, we will compare the two errors Gα and Gα′ induced by the
BMDP Mα and its direct refinement Mα′ , where, for an abstraction α, Gα measures the gap between the
two bounds in each state, for all s:

Gα(s) =
(
V +
α ([s]α)− V −α ([s]α)

)
.

The proposition below states a sufficient condition under which the finer abstraction α′ yields better value
bounds than α and therefore decreases the error Gα. Indeed, if the set of MDPs compatible with M with
respect to the finer abstraction are also compatible with M with respect to the coarser abstraction, then we
get the inclusion of the value function intervals.

Proposition 2. Given an MDP M and two abstractions α and α′ s.t. α′ � α and [M ]α′ ⊆ [M ]α then, for
all s ∈ S,

[V −α′ ([s]α′), V
+
α′ ([s]α′)] ⊆ [V −α ([s]α), V +

α ([s]α)].

Proof. Value Bounds computation can be considered as a case of an alternating two players stochastic game
where one choose the optimal policy while the other choose the optimal MDP. For the upper bound, we can
then invert the two max in the Bellman operators’ expressions ((Givan et al., 2000)). This would not change
the final result, so we have

V +
α ([s]α) = max

N∈[M ]α
V ∗N (s).

For the lower bound, more detailed arguments have been established in Bertsekas & Tsitsiklis (1996) to set
the inversion of the max and the min terms, so we get:

V −α ([s]α) = min
N∈[M ]α

V ∗N (s).

Given that [M ]α′ is included in [M ]α, then by taking the max, (respectively the min) the result follows.

We will study next two cases : the deterministic case, where the sufficient condition is always satisfied,
and the stochastic case, where it is not necessarily satisfied, for which we will give an example.

4.1.1 Deterministic case: probabilities in {0, 1}

Corollary 1. If we consider a deterministic MDP and two abstractions α and α′, where α′ is a direct
refinement of α, then for all s ∈ S,

[V −α′ ([s]α′), V
+
α′ ([s]α′)] ⊆ [V −α ([s]α), V +

α ([s]α)].

Proof. Let us consider an MDP N compatible with M under α′. We will show that the sufficient con-
dition of Proposition 2 is satisfied: N is also compatible with M under α. Note that having N com-
patible with M with respect to an abstraction α, according to Definition 4, is equivalent to having the
inclusion of the parameter intervals i.e., for all s, and for all a, RlN ([s]α, a) ⊆ R

l
M ([s]α, a) and for all

s, s′, a, plN ([s]α, a, [s
′]α) ⊆ p

l
M ([s]α, a, [s

′]α). Let [s1]α be the state block in Sα that we split into two
blocks [s2]α′ and [s3]α′ (i.e., we have [s2]α′ ∪ [s3]α′ = [s1]α). It is easy to check the inclusion of reward
intervals under α as for each action a:

min
s∈[s1]α

RN (s, a) = min( min
s∈[s2]α′

RN (s, a), min
s∈[s3]α′

RN (s, a)).

Also, using the α′ compatibility hypothesis we have

min
s∈[si]α′

RN (s, a) ≥ min
s∈[si]α′

RM (s, a) for i in {2, 3}

then
min
s∈[s1]α

RN (s, a) ≥ min
s∈[s1]α

RM (s, a).
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By reasoning in a similar way for the upper bound, we get the inclusion of the reward intervals. The same
arguments may be employed to state the inclusion of outgoing transition probabilities p([s1]α, a, [s4]α) for
all s4 in S and a in A. So we will mainly focus on ingoing transition probabilities p([s5]α, a, [s1]α) for all
s5 in S and we will show that

min pN ([s5]α, a, [s1]α) ≥ min pM ([s5]α, a, [s1]α). (1)

Since we work in a deterministic environment, probabilities can only take the values 0 or 1. For the case
where min pN ([s5]α, a, [s1]α) = 1, inequality (1) is always verified. Now, min pN ([s5]α, a, [s1]α) = 0 im-
plies that there exist a state s′ in [s5]α and a block state [s6]α distinct from [s1]α such that pN (s′, a, [s6]α) =
1. So we can find a state s′′ in [s5]α such that pM (s′′, a, [s6]α) = 1 as N is compatible with M under α′.
We then have Equation (1) and by Proposition 2 the final result follows.

4.1.2 Stochastic case

We would like to have an equivalent of Proposition 2 for the stochastic case but it turns out that in general the
sufficient condition is no more fulfilled. In fact when we move to stochastic transitions, the sufficient con-
dition in Proposition 2 becomes harder to satisfy. The successful MDP M has to verify specific conditions
that depend on the choice of the abstractions α and α′. In other words, given an MDP M and an abstraction
α there does not always exist a refined abstraction α′ such that the sufficient condition is satisfied. Figure 3
shows a model of MDP in which we can not find the appropriate direct refinement α′.Three states which
admit the same rewards R(1) = R(2) = R(3) = 1 and behave identically in the block {1, 2, 3} (the same
probabilities in regards to the block {1, 2, 3}, p(1, {1, 2, 3}) = p(2, {1, 2, 3}) = p(3, {1, 2, 3}) = 0.7).
States 4 and 5 are goal states (V (4) = V (5) = 0). We can find an MDP N compatible with M with
respect to the abstraction α′ (S → {1, 2}, 3, 4, 5) but not compatible with M with respect to the abstrac-
tion α (S → {1, 2, 3}, 4, 5). It suffices to take an MDP N whose parameter intervals are included in M ’s
parameter intervals under α′ but admits real intervals rather than fixed real values under α.

The condition stated in Proposition 2 is a sufficient condition, we can not a priori conclude about the
existence of a refinement that would make the error of approximation decrease. Nevertheless, we have
identified models of MDPs where every direct refinement strictly increases the error.

Proposition 3. There exists an MDP M and an abstraction α such that, for any direct refinement α′ of α,
we have: (1) for all s in S, Gα′(s) ≥ Gα(s), and (2) there exists s in S where Gα′(s) > Gα(s).

Proof. The MDP shown in Figure 3 is an example of such a model. The value Vα({1, 2, 3}) related to
the block {1, 2, 3} is a perfect heuristic for the states 1, 2 and 3. In fact we can see (for γ = 1), using
Theorem 1, that the optimistic and pessimistic bounds coincide: V −α ({1, 2, 3}) = V +

α ({1, 2, 3}) = V (1) =
V (2) = V (3) = 3.33. If we refine the block {1, 2, 3} by splitting the block {1, 2, 3} into {1, 2} and {3},
then the error of approximation will strictly increase and we will obtain an interval of values rather than a
precise value given by the coarser abstraction (we got those values by using Givan et al.’s algorithm). The
approximation error Gα equals to 0 for all the states while the approximation error Gα′ is:

Gα′(1) = Gα′(2) ' 1 > 0 = Gα(1) = Gα(2) and
Gα′(3) ' 1 > 0 = Gα(3).

Only one of all the possible refinements is detailed here but the same happens for the two other direct
refinements:

• For the abstraction
α′ : 1, 2, 3, 4, 5→ {1, 3}, {2}, {4}, {5}

we have V ±α′ ({1, 3}) = [2.5, 4.78] and V ±α′ ({2}) = [2.75, 4.34].

• For the abstraction
α′ : 1, 2, 3, 4, 5→ {1}, {2, 3}, {4}, {5}

we have V ±α′ ({2, 3}) = [2.25, 5.29] and V ±α′ ({1}) = [2.9, 4.11].
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We can even have a model inspired from the one above where the error strictly increases in each state.
Indeed by taking γ = 0.9 and by changing the transition probabilities in the initial model M to p(4, 4) =
p(5, 5) = 0.9 and p(4, 1) = p(5, 1) = 0.1 (we keep the same rewards R(4) = R(5) = 0), we can see that
the gap Gα′ is strictly higher than Gα = 0 for each direct refinement α′.
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4 5
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0.7
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V̂ ±123 = 3.33
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1 1

Figure 3: From left to right: the MDP M , the abstraction α′, the abstraction α.Edges are annotated with
transition probabilities. The reward is: R(1) = R(2) = R(3) = 1(= R({1, 2}) = R({1, 2, 3})), and
R(4) = R(5) = 0.

5 Related Work

Our work shows the limitations of some abstractions (state abstractions) in which refining an abstraction
may increase the approximation error. This has already been observed in Waugh et al. (2009) in the case of
an i-player poker game (i greater than 2). They looked at the exploitability3 of each player’s strategy with
respect to each abstraction and they showed that it may increase while considering finer card abstractions.
The same phenomenon has been observed when they considered betting abstractions – by restricting the
number of betting options in each sequence of the game. Lately another example about ”action abstractions”
pathologies has been provided in Sandholm & Singh (2012).

It is important to notice here that, contrary to what has been done in those works, this paper deals with
single action and player models. This suggests that, in some abstractions, notably BMDP abstraction,
stochasticity alone can explain this pathological behavior, and that we do not need to consider the more
general case of two-player game: the issues appear even in the case of a one-player game (MDP). Indeed,
our counter-examples do not even contain any actual action choice, thus identifying this kind of pathology
in a very canonical framework.

Interestingly, Kattenbelt et al. Kattenbelt et al. (2010) introduce a variant of abstraction for MDPs that,
according to their results, does not exhibit said pathology: Every abstraction refinement step results in an
improved bound. An interesting open question is how exactly their framework relates to BMDP abstraction.

6 Conclusions

Somewhat surprisingly, refining an abstraction does not guarantee, in the MDP setting, a refined, i.e., better,
approximation of the value function. From a practical perspective, this observation might be reasonably
classified as “odd but not crucial” – the loss of this guarantee is not per se an argument against trying to
apply abstraction techniques for the computation of heuristic functions, as known from classical planning.
The observation might be relevant to the practical effectiveness of such methods, where paying a higher
price for the abstraction may result in less accuracy. But it remains to be seen whether that is of practical
importance.

3The exploitability is a metric connected to the Nash equilibrium strategy. It is equal to 0 in the case of a two-player extensive
game.



Do Refined Abstractions Yield Better Heuristics?

From a theoretical perspective, we believe that our observations could be of importance for a better
understanding of the methods involved. In that regard, our investigation is but a small start into the subject
matter. Does there exist a non-trivial method (not refining all the way to the original MDP) that guarantees,
for any MDP and abstraction thereof, the existence of a refinement step reducing the error? And can that
method be made practical? In particular, our vision was and is to identify sufficient criteria, in the bounded-
parameter MDP setting, for the error to not increase. If such a criterion is efficiently testable, or can at least
be reasonably well approximated, then it could serve as a well-informed guidance during the abstraction
refinement process. For the moment, we don’t know how such a criterion could be designed. An interesting
observation in this context is that our counter-example refines an abstraction that already is a bisimulation.4

Does that tell us something about the general case? Another question is whether increasing the “extent”
of the per-step refinement helps (instead of splitting a single block-state, split 2, 3, . . . block-states). We
believe these are interesting questions for future research, and hope other researchers might join us in
exploring them.
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