
A POMDP Extension with Belief-dependent Rewards

Mauricio Araya-López Olivier Buffet

Vincent Thomas François Charpillet

Nancy Université / INRIA
LORIA – Campus Scientifique – BP 239

54506 Vandoeuvre-lès-Nancy Cedex – France
firstname.lastname@loria.fr

Abstract

Partially Observable Markov Decision Processes (POMDPs) model sequential
decision-making problems under uncertainty and partial observability. Unfortu-
nately, some problems cannot be modeled with state-dependent reward functions,
e.g., problems whose objective explicitly implies reducing the uncertainty on the
state. To that end, we introduce ρPOMDPs, an extension of POMDPs where the
reward function ρ depends on the belief state. We show that, under the com-
mon assumption that ρ is convex, the value function is also convex, what makes
it possible to (1) approximate ρ arbitrarily well with a piecewise linear and con-
vex (PWLC) function, and (2) use state-of-the-art exact or approximate solving
algorithms with limited changes.

1 Introduction

Sequential decision-making problems under uncertainty and partial observability are typically mod-
eled using Partially Observable Markov Decision Processes (POMDPs) [1], where the objective is
to decide how to act so that the sequence of visited states optimizes some performance criterion.
However, this formalism is not expressive enough to model problems with any kind of objective
functions.

Let us consider active sensing problems, where the objective is to act so as to acquire knowledge
about certain state variables. Medical diagnosis for example is about asking the good questions and
performing the appropriate exams so as to diagnose a patient at a low cost and with high certainty.
This can be formalized as a POMDP by rewarding—if successful—a final action consisting in ex-
pressing the diagnoser’s “best guess”. Actually, a large body of work formalizes active sensing with
POMDPs [2, 3, 4].

An issue is that, in some problems, the objective needs to be directly expressed in terms of the
uncertainty/information on the state, e.g., to minimize the entropy over a given state variable. In such
cases, POMDPs are not appropriate because the reward function depends on the state and the action,
not on the knowledge of the agent. Instead, we need a model where the instant reward depends on
the current belief state. The belief MDP formalism provides the needed expressiveness for these
problems. Yet, there is not much research on specific algorithms to solve them, so they are usually
forced to fit in the POMDP framework, which means changing the original problem definition. One
can argue that acquiring information is always a means, not an end, and thus, a “well-defined”
sequential-decision making problem with partial observability must always be modeled as a normal
POMDP. However, in a number of cases the problem designer has decided to separate the task of
looking for information from that of exploiting information. Let us mention two examples: (i) the

1

surveillance [5] and (ii) the exploration [2] of a given area, in both cases when one does not know
what to expect from these tasks—and thus how to react to the discoveries.

After reviewing some background knowledge on POMDPs in Section 2, Section 3 introduces
ρPOMDPs—an extension of POMDPs where the reward is a (typically convex) function of the
belief state—and proves that the convexity of the value function is preserved. Then we show how
classical solving algorithms can be adapted depending whether the reward function is piecewise
linear (Sec. 3.3) or not (Sec. 4).

2 Partially Observable MDPs

The general problem that POMDPs address is for the agent to find a decision policy π choosing,
at each time step, the best action based on its past observations and actions in order to maximize
its future gain (which can be measured for example through the total accumulated reward or the
average reward per time step). Compared to classical deterministic planning, the agent has to face
the difficulty to account for a system not only with uncertain dynamics but also whose current state
is imperfectly known.

2.1 POMDP Description

Formally, POMDPs are defined by a tuple 〈S,A,Ω, T,O, r, b0〉 where, at any time step, the system
being in some state s ∈ S (the state space), the agent performs an action a ∈ A (the action
space) that results in (1) a transition to a state s′ according to the transition function T (s, a, s′) =
Pr(s′|s, a), (2) an observation o ∈ Ω (the observation space) according to the observation function
O(s′, a, o) = Pr(o|s′, a), and (3) a scalar reward r(s, a). b0 is the initial probability distribution
over states. Unless stated otherwise, the state, action and observation sets are finite [6].

The agent can typically reason about the state of the system by computing a belief state b ∈ ∆ =
Π(S) (the set of probability distributions over S),1 using the following update formula (based on the
Bayes rule) when performing action a and observing o:

ba,o(s′) =
O(s′, a, o)
Pr(o|a, b)

∑
s∈S

T (s, a, s′)b(s),

where Pr(o|a, b) =
∑
s,s′′∈S O(s′′, a, o)T (s, a, s′′)b(s). Using belief states, a POMDP can be

rewritten as an MDP over the belief space, or belief MDP, 〈∆,A, τ, ρ〉, where the new transition
τ and reward functions ρ are defined respectively over ∆ × A × ∆ and ∆ × A. With this refor-
mulation, a number of theoretical results about MDPs can be extended, such as the existence of a
deterministic policy that is optimal. An issue is that, even if a POMDP has a finite number of states,
the corresponding belief MDP is defined over a continuous—and thus infinite—belief space.

In this continuous MDP, the objective is to maximize the cumulative reward by looking for a policy
taking the current belief state as input. More formally, we are searching for a policy verifying
π∗ = argmaxπ∈A∆ Jπ(b0) where Jπ(b0) = E [

∑∞
t=0 γρt|b0, π], ρt being the expected immediate

reward obtained at time step t, and γ a discount factor. Bellman’s principle of optimality [7] lets us
compute the function Jπ

∗
recursively through the value function

Vn(b) = max
a∈A

ρ(b, a) + γ

∫
b′∈∆

τ(b, a, b′)Vn−1(b′)db′

= max

a∈A

[
ρ(b, a) + γ

∑
o

Pr(o|a, b)Vn−1(ba,o)

]
, (1)

where, for all b ∈ ∆, V0(b) = 0, and Jπ
∗
(b) = Vn=H(b) (where H is the—possibly infinite—

horizon of the problem).

The POMDP framework presents a reward function r(s, a) based on the state and action. On the
other hand, the belief MDP presents a reward function ρ(b, a) based on beliefs. This belief-based

1Π(S) forms a simplex because ‖b‖1 = 1, that is why we use ∆ as the set of all possible b.

2

reward function is derived as the expectation of the POMDP rewards:

ρ(b, a) =
∑
s

b(s)r(s, a). (2)

An important consequence of Equation 2 is that the recursive computation described in Eq. 1 has
the property to generate piecewise-linear and convex (PWLC) value functions for each horizon [1],
i.e., each function is determined by a set of hyperplanes (each represented by a vector), the value
at a given belief point being that of the highest hyperplane. For example, if Γn is the set of vectors
representing the value function for horizon n, then Vn(b) = maxα∈Γn

∑
s b(s)α(s).

2.2 Solving POMDPs with Exact Updates

Using the PWLC property, one can perform the Bellman update using the following factorization of
Eq. 1:

Vn(b) = max
a∈A

∑
o

∑
s

b(s)

[
r(s, a)

|Ω|
+
∑
s′

T (s, a, s′)O(s′, a, o)χn−1(ba,o, s′)

]
, (3)

with2 χn(b) = argmax
α∈Γn

b · α. If we consider the term in brackets in Eq. 3, this generates |Ω| × |A|

Γ-sets, each one of size |Γn−1|. These sets are defined as

Γn
a,o

=

{
ra

|Ω|
+ P a,o · αn−1

∣∣∣∣αn−1 ∈ Γn−1

}
, (4)

where P a,o(s, s′) = T (s, a, s′)O(s′, a, o) and ra(s) = r(s, a). Therefore, for obtaining an exact
representation of the value function, one can compute (

⊕
being the cross-sum between two sets):

Γn =
⋃
a

⊕
o

Γn
a,o
.

Yet, these Γn
a,o

sets—and also the final Γn—are non-parsimonious: some α-vectors may be use-
less because the corresponding hyperplanes are below the value function. Pruning phases are then
required to remove dominated vectors. There are several algorithms based on pruning techniques
like Batch Enumeration [8] or more efficient algorithms such as Witness or Incremental Pruning [6].

2.3 Solving POMDPs with Approximate Updates

The value function updating processes presented above are exact and provide value functions that
can be used whatever the initial belief state b0. A number of approximate POMDP solutions have
been proposed to reduce the complexity of these computations, using for example heuristic estimates
of the value function, or applying the value update only on selected belief points [9]. We focus here
on the latter point-based (PB) approximations, which have largely contributed to the recent progress
in solving POMDPs, and whose relevant literature goes from Lovejoy’s early work [10] via Pineau
et al.’s PBVI [11], Spaan and Vlassis’ Perseus [12], Smith and Simmons’ HSVI2 [13], through to
Kurniawati et al.’s SARSOP [14].

At each iteration n until convergence, a typical PB algorithm:

1. selects a new set of belief points Bn based on Bn−1 and the current approximation Vn−1;
2. performs a Bellman backup at each belief point b ∈ Bn, resulting in one α-vector per point;
3. prunes points whose associated hyperplanes are dominated or considered negligible.

The various PB algorithms differ mainly in how belief points are selected, and in how the update
is performed. Existing belief point selection methods have exploited ideas like using a regular
discretization or a random sampling of the belief simplex, picking reachable points (by simulating
action sequences starting from b0), adding points that reduce the approximation error, or looking in
particular at regions relevant to the optimal policy [15].

2The χ function returns a vector, so χn(b, s) = (χn(b))(s).

3

3 POMDP extension for Active Sensing

3.1 Introducing ρPOMDPs

All problems with partial observability confront the issue of getting more information to achieve
some goal. This problem is usually implicitly addressed in the resolution process, where acquiring
information is only a means for optimizing an expected reward based on the system state. Some
active sensing problems can be modeled this way (e.g. active classification), but not all of them. A
special kind of problem is when the performance criterion incorporates an explicit measure of the
agent’s knowledge about the system, which is based on the beliefs rather than states. Surveillance
for example is a never-ending task that does not seem to allow for a modeling with state-dependent
rewards. Indeed, if we consider the simple problem of knowing the position of a hidden object, it
is possible to solve this without even having seen the object (for instance if all the locations but one
have been visited). However, the reward of a POMDP cannot model this since it is only based on
the current state and action. One solution would be to include the whole history in the state, leading
to a combinatorial explosion. We prefer to consider a new way of defining rewards based on the
acquired knowledge represented by belief states. The rest of the paper explores the fact that belief
MDPs can be used outside the specific definition of ρ(b, a) in Eq. 2, and therefore discusses how to
solve this special type of active sensing problems.

As Eq. 2 is no longer valid, the direct link with POMDPs is broken. We can however still use
all the other components of POMDPs such as states, observations, etc. A way of fixing this is
to generalize the POMDP framework to a ρ-based POMDP (ρPOMDP), where the reward is not
defined as a function r(s, a), but directly as a function ρ(b, a). The nature of the ρ(b, a) function
depends on the problem, but is usually related to some uncertainty or error measure [3, 2, 4]. Most
common methods are those based on Shannon’s information theory, in particular Shannon’s entropy
or the Kullback-Leibler distance [16]. In order to present these functions as rewards, they have to
measure information rather than uncertainty, so the negative entropy function ρent(b) = log2(|S|)+∑
s∈S b(s) log2(b(s))—which is maximal in the corners of the simplex and minimal in the center—

is used rather than Shannon’s original entropy. Also, other simpler functions based on the same idea
can be used, such as the distance from the simplex center (DSC), ρdsc(b) = ‖b− c‖p, where c is the
center of the simplex and ‖ · ‖p is the p-norm. Please note that ρ(b, a) is not restricted to be only
an uncertainty measurement, but can be a combination of the expected state-action rewards—as in
Eq. 2—and an uncertainty or error measurement. For example, Mihaylova et al.’s work [3] defines
the active sensing problem as optimizing a weighted sum of uncertainty measurements and costs,
where the former depends on the belief and the latter on the system state.

In the remainder of this paper, we show how to apply classical POMDP algorithms to ρPOMDPs. To
that end, we discuss the convexity of the value function, which permits extending these algorithms
using PWLC approximations.

3.2 Convexity Property

An important property used to solve normal POMDPs is the result that a belief-based value function
is convex, because r(s, a) is linear with respect to the belief, and the expectation, sum and max
operators preserve this property [1]. For ρPOMDPs, this property also holds if the reward function
ρ(b, a) is convex, as shown in Theorem 3.1.

Theorem 3.1. If ρ and V0 are convex functions over ∆, then the value function Vn of the belief MDP
is convex over ∆ at any time step n. [Proof in [17, Appendix]]

This last theorem is based on ρ(b, a) being a convex function over b, which is a natural property for
uncertainty (or information) measures, because the objective is to avoid belief distributions that do
not give much information on which state the system is in, and to assign higher rewards to those
beliefs that give higher probabilities of being in a specific state. Thus, a reward function meant to
reduce the uncertainty must provide high payloads near the corners of the simplex, and low payloads
near its center. For that reason, we will focus only on reward functions that comply with convexity
in the rest of the paper.

The initial value function V0 might be any convex function for infinite-horizon problems, but by
definition V0 = 0 for finite-horizon problems. We will use the latter case for the rest of the paper,

4

to provide fairly general results for both kinds of problems. Plus, starting with V0 = 0, it is also
easy to prove by induction that, if ρ is continuous (respectively differentiable), then Vn is continuous
(respectively piecewise differentiable).

3.3 Piecewise Linear Reward Functions

This section focuses on the case where ρ is a PWLC function and shows that only a small adaptation
of the exact and approximate updates in the POMDP case is necessary to compute the optimal value
function. The complex case where ρ is not PWLC is left for Sec. 4.

3.3.1 Exact Updates

From now on, ρ(b, a), being a PWLC function, can be represented as several Γ-sets, one Γaρ for each
a. The reward is computed as:

ρ(b, a) = max
α∈Γaρ

[∑
s

b(s)α(s)

]
.

Using this definition leads to the following changes in Eq. 3

Vn(b) = max
a∈A

∑
s

b(s)

[
χaρ(b, s) +

∑
o

∑
s′

T (s, a, s′)O(s′, a, o)χn−1(ba,o, s′)

]
,

where χaρ(b, s) = argmax
α∈Γaρ

(b · α). This uses the Γ-set Γaρ and generates |Ω| × |A| Γ-sets:

Γn
a,o

= {P a,o · αn−1|αn−1 ∈ Γn−1},

where P a,o(s, s′) = T (s, a, s′)O(s′, a, o).

Exact algorithms like Value Iteration or Incremental Pruning can then be applied to this POMDP
extension in a similar way as for POMDPs. The difference is that the cross-sum includes not only
one αa,o for each observation Γ-set Γn

a,o
, but also one αρ from the Γ-set Γaρ corresponding to the

reward:

Γn =
⋃
a

[⊕
o

Γn
a,o ⊕ Γaρ

]
.

Thus, the cross-sum generates |R| times more vectors than with a classic POMDP, |R| being the
number of α-vectors specifying the ρ(b, a) function3.

3.3.2 Approximate Updates

Point-based approximations can be applied in the same way as PBVI or SARSOP do to the original
POMDP update. The only difference is again the reward function representation as an envelope of
hyperplanes. PB algorithms select the hyperplane that maximizes the value function at each belief
point, so the same simplification can be applied to the set Γaρ.

4 Generalizing to Other Reward Functions

Uncertainty measurements such as the negative entropy or the DSC (with m > 1 and m 6= ∞) are
not piecewise linear functions. In theory, each step of value iteration can be analytically computed
using these functions, but the expressions are not closed as in the linear case, growing in complexity
and making them unmanageable after a few steps. Moreover, pruning techniques cannot be applied
directly to the resulting hypersurfaces, and even second order measures do not exhibit standard
quadratic forms to apply quadratic programming. However, convex functions can be efficiently
approximated by piecewise linear functions, making it possible to apply the techniques described in
Section 3.3 with a bounded error, as long as the approximation of ρ is bounded.

3More precisely, the number |R| depends on the considered action.

5

4.1 Approximating ρ

Consider a continuous, convex and piecewise differentiable reward function ρ(b),4 and an arbitrary
(and finite) set of points B ⊂ ∆ where the gradient is well defined. A lower PWLC approximation
of ρ(b) can be obtained by using each element b′ ∈ B as a base point for constructing a tangent
hyperplane which is always a lower bound of ρ(b). Concretely, ωb′(b) = ρ(b′) + (b − b′) · ∇ρ(b′)
is the linear function that represents the tangent hyperplane. Then, the approximation of ρ(b) using
a set B is defined as ωB(b) = maxb′(ωb′(b)).

At any point b ∈ ∆ the error of the approximation can be written as

εB(b) = |ρ(b)− ωB(b)|, (5)

and if we specifically pick b as the point where εB(b) is maximal (worst error), then we can try to
bound this error depending on the nature of ρ.

It is well known that a piecewise linear approximation of a Lipschitz function is bounded because
the gradient ∇ρ(b′) that is used to construct the hyperplane ωb′(b) has bounded norm [18]. Unfor-
tunately, the negative entropy is not Lipschitz (f(x) = x log2(x) has an infinite slope when x→ 0),
so this result is not generic enough to cover a wide range of active sensing problems. Yet, under
certain mild assumptions a proper error bound can still be found.

The aim of the rest of this section is to find an error bound in three steps. First, we will introduce
some basic results over the simplex and the convexity of ρ. Informally, Lemma 4.1 will show that,
for each b, it is possible to find a belief point in B far enough from the boundary of the simplex but
within a bounded distance to b. Then, in a second step, we will assume the function ρ(b) verifies
the α-Hölder condition to be able to bound the norm of the gradient in Lemma 4.2. In the end,
Theorem 4.3 will use both lemmas to bound the error of ρ’s approximation under these assumptions.

∆

∆ε

b

b′

b” ε ε′

Figure 1: Simplices ∆ and ∆ε, and the points b, b′ and b′′.

For each point b ∈ ∆, it is possible to associate a point b∗ = argmaxx∈B ωx(b) corresponding to
the point in B whose tangent hyperplane gives the best approximation of ρ at b. Consider the point
b ∈ ∆ where εB(b) is maximum: this error can be easily computed using the gradient ∇ρ(b∗).
Unfortunately, some partial derivatives of ρ may diverge to infinity on the boundary of the simplex
in the non-Lipschitz case, making the error hard to analyze. Therefore, to ensure that this error can
be bounded, instead of b∗, we will take a safe b′′ ∈ B (far enough from the boundary) by using an
intermediate point b′ in an inner simplex ∆ε, where ∆ε = {b ∈ [ε, 1]N |

∑
i bi = 1} with N = |S|.

Thus, for a given b ∈ ∆ and ε ∈ (0, 1
N], we define the point b′ = argminx∈∆ε

‖x − b‖1 as the
closest point to b in ∆ε and b′′ = argminx∈B ‖x− b′‖1 as the closest point to b′ in B (see Figure 1).
These two points will be used to find an upper bound for the distance ‖b− b′′‖1 based on the density
of B, defined as δB = min

b∈∆
max
b′∈B
‖b− b′‖1.

Lemma 4.1. The distance (1-norm) between the maximum error point b ∈ ∆ and the selected
b′′ ∈ B is bounded by ‖b− b′′‖1 ≤ 2(N − 1)ε+ δB . [Proof in [17, Appendix]]

If we pick ε > δB , then we are sure that b′′ is not on the boundary of the simplex ∆, with a
minimum distance from the boundary of η = ε− δB . This will allow finding bounds for the PWLC

4For convenience—and without loss of generality—we only consider the case where ρ(b, a) = ρ(b).

6

approximation of convex α-Hölder functions, which is a broader family of functions including the
negative entropy, convex Lipschitz functions and others. The α-Hölder condition is a generalization
of the Lipschitz condition. In our setting it means, for a function f : D 7→ R with D ⊂ Rn, that it
complies with

∃α ∈ (0, 1], ∃Kα > 0, s.t. |f(x)− f(y)| ≤ Kα‖x− y‖α1 .

The limit case, where a convex α-Hölder function has infinite-valued norm for the gradient, is always
on the boundary of the simplex ∆ (due to the convexity), and therefore the point b′′ will be free of
this predicament because of η. More precisely, an α-Hölder function in ∆ with constant Kα in
1-norm complies with the Lipschitz condition on ∆η with a constant Kαη

α (see [17, Appendix]).
Moreover, the norm of the gradient ‖∇f(b′′)‖1 is also bounded as stated by Lemma 4.2.

Lemma 4.2. Let η > 0 and f be an α-Hölder (with constant Kα), bounded and convex function
from ∆ to R, f being differentiable everywhere in ∆o (the interior of ∆). Then, for all b ∈ ∆η ,
‖∇f(b)‖1 ≤ Kαη

α−1. [Proof in [17, Appendix]]

Under these conditions, we can show that the PWLC approximation is bounded.

Theorem 4.3. Let ρ be a continuous and convex function over ∆, differentiable everywhere in
∆o (the interior of ∆), and satisfying the α-Hölder condition with constant Kα. The error of an
approximation ωB can be bounded by Cδαb , where C is a scalar constant. [Proof in [17, Appendix]]

4.2 Exact Updates

Knowing that the approximation of ρ is bounded for a wide family of functions, the techniques
described in Sec. 3.3.1 can be directly applied using ωB(b) as the PWLC reward function. These
algorithms can be safely used because the propagation of the error due to exact updates is bounded.
This can be proven using a similar methodology as in [11, 10]. Let Vt be the value function using the
PWLC approximation described above and V ∗t the optimal value function both at time t, H being
the exact update operator and Ĥ the same operator with the PWLC approximation. Then, the error
from the real value function is

‖Vt − V ∗t ‖∞ = ‖ĤVt−1 −HV ∗t−1‖∞ (By definition)

≤ ‖ĤVt−1 −HVt−1‖∞ + ‖HVt−1 −HV ∗t−1‖∞ (By triangular inequality)
≤ |ωb∗ + αb∗ · b− ρ(b)− αb∗ · b|+ ‖HVt−1 −HV ∗t−1‖∞ (Maximum error at b)
≤ CδαB + ‖HVt−1 −HV ∗t−1‖∞ (By Theorem 4.3)
≤ CδαB + γ‖Vt−1 − V ∗t−1‖ (By contraction)

≤ CδαB
1− γ

(By sum of a geometric series)

For these algorithms, the selection of the set B remains open, raising similar issues as the selection
of belief points in PB algorithms.

4.3 Approximate Updates

In the case of PB algorithms, the extension is also straightforward, and the algorithms described in
Sec. 3.3.2 can be used with a bounded error. The selection of B, the set of points for the PWLC
approximation, and the set of points for the algorithm, can be shared5. This simplifies the study of
the bound when using both approximation techniques at the same time. Let V̂t be the value function
at time t calculated using the PWLC approximation and a PB algorithm. Then the error between V̂t
and V ∗t is ‖V̂t − V ∗t ‖∞ ≤ ‖V̂t − Vt‖∞ + ‖Vt − V ∗t ‖∞. The second term is the same as in Sec. 4.2,
so it is bounded by CδαB

1−γ . The first term can be bounded by the same reasoning as in [11], where

‖V̂t − Vt‖∞ ≤ (Rmax−Rmin+CδαB)δB
1−γ , with Rmin and Rmax the minimum and maximum values for

5Points from ∆’s boundary have to be removed where the gradient is not defined, as the proofs only rely on
interior points.

7

ρ(b) respectively. This is because the worst case for an α vector is Rmin−ε
1−γ , meanwhile the best case

is only Rmax
1−γ because the approximation is always a lower bound.

5 Conclusions

We have introduced ρPOMDPs, an extension of POMDPs that allows for expressing sequential
decision-making problems where reducing the uncertainty on some state variables is an explicit
objective. In this model, the reward ρ is typically a convex function of the belief state.

Using the convexity of ρ, a first important result that we prove is that a Bellman backup Vn =
HVn−1 preserves convexity. In particular, if ρ is PWLC and the value function V0 is equal to 0, then
Vn is also PWLC and it is straightforward to adapt many state-of-the-art POMDP algorithms. Yet, if
ρ is not PWLC, performing exact updates is much more complex. We therefore propose employing
PWLC approximations of the convex reward function at hand to come back to a simple case, and
show that the resulting algorithms converge to the optimal value function in the limit.

Previous work has already introduced belief-dependent rewards, such as Spaan’s discussion about
POMDPs and Active Perception [19], or Hero et al.’s work in sensor management using POMDPs
[5]. Yet, the first one only presents the problem of non-PWLC value functions without giving a
specific solution, meanwhile the second solves the problem using Monte-Carlo techniques that do
not rely on the PWLC property. In the robotics field, uncertainty measurements within POMDPs
have been widely used as heuristics [2], with very good results but no convergence guarantees.
These techniques use only state-dependent rewards, but uncertainty measurements are employed to
speed up the solving process, at the cost of losing some basic properties (e.g. Markovian property).
Our work paves the way for solving problems with belief-dependent rewards, using new algorithms
approximating the value function (e.g. point-based ones) in a theoretically sound manner.

An important point is that the time complexity of the new algorithms only changes due to the size
of the approximation of ρ. Future work includes conducting experiments to measure the increase in
complexity. A more complex task is to evaluate the quality of the resulting approximations due to
the lack of other algorithms for ρPOMDPs. An option is to look at online Monte-Carlo algorithms
[20] as they should require little changes.

Acknowledgements

This research was supported by the CONICYT-Embassade de France doctoral grant and the CO-
MAC project. We would also like to thank Bruno Scherrer for the insightful discussions and the
anonymous reviewers for their helpful comments and suggestions.

References

[1] R. Smallwood and E. Sondik. The optimal control of partially observable Markov decision
processes over a finite horizon. Operation Research, 21:1071–1088, 1973.

[2] S. Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4):93–109, 2000.

[3] L. Mihaylova, T. Lefebvre, H. Bruyninckx, K. Gadeyne, and J. De Schutter. Active sensing for
robotics - a survey. In Proc. 5th Intl. Conf. On Numerical Methods and Applications, 2002.

[4] S. Ji and L. Carin. Cost-sensitive feature acquisition and classification. Pattern Recogn.,
40(5):1474–1485, 2007.

[5] A. Hero, D. Castan, D. Cochran, and K. Kastella. Foundations and Applications of Sensor
Management. Springer Publishing Company, Incorporated, 2007.

[6] A. Cassandra. Exact and approximate algorithms for partially observable Markov decision
processes. PhD thesis, Brown University, Providence, RI, USA, 1998.

[7] R. Bellman. The theory of dynamic programming. Bull. Amer. Math. Soc., 60:503–516, 1954.

[8] G. Monahan. A survey of partially observable Markov decision processes. Management Sci-
ence, 28:1–16, 1982.

8

[9] M. Hauskrecht. Value-function approximations for partially observable Markov decision pro-
cesses. Journal of Artificial Intelligence Research, 13:33–94, 2000.

[10] W. Lovejoy. Computationally feasible bounds for partially observed Markov decision pro-
cesses. Operations Research, 39(1):162–175, 1991.

[11] J. Pineau, G. Gordon, and S. Thrun. Anytime point-based approximations for large POMDPs.
Journal of Artificial Intelligence Research (JAIR), 27:335–380, 2006.

[12] M. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs.
Journal of Artificial Intelligence Research, 24:195–220, 2005.

[13] T. Smith and R. Simmons. Point-based POMDP algorithms: Improved analysis and imple-
mentation. In Proc. of the Int. Conf. on Uncertainty in Artificial Intelligence (UAI), 2005.

[14] H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In Robotics: Science and Systems IV, 2008.

[15] R. Kaplow. Point-based POMDP solvers: Survey and comparative analysis. Master’s thesis,
McGill University, Montreal, Quebec, Canada, 2010.

[16] T. Cover and J. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.
[17] M. Araya-López, O. Buffet, V. Thomas, and F. Charpillet. A POMDP extension with belief-

dependent rewards – extended version. Technical Report RR-7433, INRIA, Oct 2010. (See
also NIPS supplementary material).

[18] R. Saigal. On piecewise linear approximations to smooth mappings. Mathematics of Opera-
tions Research, 4(2):153–161, 1979.

[19] M. Spaan. Cooperative active perception using POMDPs. In AAAI 2008 Workshop on Ad-
vancements in POMDP Solvers, July 2008.

[20] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms for POMDPs.
Journal of Artificial Intelligence Research (JAIR), 32:663–704, 2008.

9

