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Motivation Example

Dr. House must perform actions (ex-
ams) to infer the health status of a
patient. His job is not to treat the
patient, but to perform the correct
exams to reduce the uncertainty.

This and other problems such as
surveillance [1], are usually modelled
as Partially Observable Markov Deci-
sion Processes (POMDPs), but this
framework do not support reward
depending on the belief and not
on the state.

Belief-dependent Rewards

Our proposal is to extend POMDPs to a more general framework allowing
arbitrary (convex) belief-dependent rewards (ρPOMDP).

State-dependent rewards are always linear functions in the belief-state space
(a), but more complex functions can be defined directly as belief-dependent
rewards, such as piecewise linear function (b) or non-linear functions (c).

Examples of belief-dependent rewards
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Introducing ρPOMDPs

ρPOMDPs consist in a relaxation of the POMDPs definition of the reward func-
tion. Instead of defining the reward over the state space S, we define the reward
as a function on the belief-state space ∆.

POMDP ρPOMDP
〈S,A,Ω, T, O, r, b0〉 〈S,A,Ω, T, O, func(b), b0〉

↓ ↓
belief MDP belief MDP

〈∆,A, τ, ρ =
∑
s b(s)r(s, a), b0〉 〈∆,A, τ, ρ = func(b), b0〉

Solution techniques for POMDPs rely on the convexity of the value function [2],
based on the linearity of the state-dependent reward r(s, a). Yet, this property
holds for a wider class of ρ-functions.

Theorem (Convexity)
If ρ and V0 are convex functions over ∆, then the value function
Vn of the belief MDP is convex over ∆ at any time step n.

Proof in NIPS supplementary material [3]

Solving ρPOMDPs

If ρ = func(b) is piecewise-linear and convex (PWLC), it can be represented
by a set of hyperplanes.
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func(b) Γ-set argmaxα∈Γ(α · b)

Few modifications to Value Iteration are needed to support ρPOMDPs.

Vn(b) = max
a∈A

{
b ·

[
argmax
α∈Γaρ

(α · b) + γ
∑
o

argmax
α∈Γa,on

(α · b)
]}

,

where Γaρ represents the reward function for a given action a, and Γa,on is the
set of projections for a and o of the last value function.

If ρ is not piecewise-linear (but convex), then we can build an approximation
using PWLC functions and then solve value iteration.

Approximating non-linear ρ-functions

Idea: Use a lower piecewise-linear approxi-
mation of ρ(b) using a set of pivot points
b′ ∈ B ⊂ ∆.
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Is this approximation bounded?

If ρ(b) is Lipschitzian, then the aproximation is bounded. But, some
uncertainty measurements (such as entropy) have undefined gradient
at the simplex boundary. For these cases, a more generic result can be
proven for α-Hölderian functions:

∃α ∈ (0, 1], ∃Kα > 0, s.t. |f(x)− f(y)| ≤ Kα‖x− y‖α1 .

Theorem (ρ-bound)
Let ρ be a continuous and convex function over ∆, differentiable every-
where in ∆o (the interior of ∆), and satisfying the α-Hölder condition
with constant Kα. The error of an approximation ωB can be bounded
by Cδαb , where C is a scalar constant that depends on Kα, and δb is
the density of the set B.

Proof in NIPS supplementary material [3]
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This theorem uses the fact that for each b,
there is always a b′′ ∈ B far enough from
the boundary of the simplex but within a
bounded distance to b.

Value Function Bound

If ρ is α-Hölderian, then it can be proven that:

‖Vt − V ∗t ‖∞ ≤
CδαB
1− γ

meaning that the error of the value function Vt using the ρ-approximation is
bounded for exact solving algorithms [4].

For point-based algorithms [5] a proper bound can also be found.

‖V̂t − Vt‖∞ =
(Rmax −Rmin + CδαB)δB

1− γ
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