A POMDP Extension with Belief-dependent Rewards Mauricio Araya¹ Olivier Buffet² Vincent Thomas¹ François Charpillet² Nancy Université¹ – INRIA² Nancy-Université INRIA LORIA – Campus Scientifique – BP 239 – 54506 Vandoeuvre-lès-Nancy Cedex – France # **Motivation Example** Dr. House must perform actions (exams) to infer the health status of a patient. His job is not to treat the patient, but to perform the correct exams to reduce the uncertainty. This and other problems such as surveillance [1], are usually modelled as Partially Observable Markov Decision Processes (POMDPs), but this framework do not support reward depending on the belief and not on the state. # Belief-dependent Rewards Our proposal is to extend POMDPs to a more general framework allowing arbitrary (convex) belief-dependent rewards (ρ POMDP). State-dependent rewards are always linear functions in the belief-state space (a), but more complex functions can be defined directly as belief-dependent rewards, such as piecewise linear function (b) or non-linear functions (c). #### **Examples of belief-dependent rewards** ### Introducing ρ POMDPs ρ POMDPs consist in a relaxation of the POMDPs definition of the reward function. Instead of defining the reward over the state space \mathcal{S} , we define the reward as a function on the belief-state space Δ . $$\begin{array}{c|c} \mathsf{POMDP} & \rho \mathsf{POMDP} \\ \langle \mathcal{S}, \mathcal{A}, \Omega, T, O, r, b_0 \rangle & \langle \mathcal{S}, \mathcal{A}, \Omega, T, O, func(b), b_0 \rangle \\ & \downarrow & \downarrow \\ \mathsf{belief MDP} & \mathsf{belief MDP} \\ \langle \Delta, \mathcal{A}, \tau, \rho = \sum_s b(s) r(s, a), b_0 \rangle & \langle \Delta, \mathcal{A}, \tau, \rho = func(b), b_0 \rangle \end{array}$$ Solution techniques for POMDPs rely on the convexity of the value function [2], based on the linearity of the state-dependent reward r(s,a). Yet, this property holds for a wider class of ρ -functions. #### Theorem (Convexity) If ho and V_0 are convex functions over Δ , then the value function V_n of the belief MDP is convex over Δ at any time step n. Proof in NIPS supplementary material [3] ## Solving ρ POMDPs If ho = func(b) is piecewise-linear and convex (PWLC), it can be represented by a set of hyperplanes. Few modifications to **Value Iteration** are needed to support ρ POMDPs. $$V_n(b) = \max_{a \in \mathcal{A}} \left\{ b \cdot \left[rgmax(lpha \cdot b) + \gamma \sum_o rgmax(lpha \cdot b) ight] ight\},$$ where $\Gamma_{ ho}^a$ represents the reward function for a given action a, and $\Gamma_{n}^{a,o}$ is the set of projections for $oldsymbol{a}$ and $oldsymbol{o}$ of the last value function. If ρ is not piecewise-linear (but convex), then we can build an approximation using PWLC functions and then solve value iteration. ### Approximating non-linear ρ -functions Idea: Use a lower piecewise-linear approximation of ho(b) using a set of pivot points $b' \in B \subset \Delta$. ### Is this approximation bounded? If $\rho(b)$ is Lipschitzian, then the approximation is bounded. But, some uncertainty measurements (such as entropy) have undefined gradient at the simplex boundary. For these cases, a more generic result can be proven for α -Hölderian functions: $$\exists lpha \in (0,1], \, \exists K_lpha > 0, \, ext{s.t.} \, |f(x) - f(y)| \leq K_lpha \|x - y\|_1^lpha.$$ #### Theorem (ρ -bound) Let ρ be a continuous and convex function over Δ , differentiable everywhere in Δ^o (the interior of Δ), and satisfying the α -Hölder condition with constant K_{lpha} . The error of an approximation ω_B can be bounded by $C\delta_b^lpha$, where C is a scalar constant that depends on K_lpha , and δ_b is the density of the set \boldsymbol{B} . Proof in NIPS supplementary material [3] This theorem uses the fact that for each b, there is always a $b'' \in B$ far enough from the boundary of the simplex but within a bounded distance to b. ### Value Function Bound If ρ is α -Hölderian, then it can be proven that: $$\|V_t - V_t^*\|_\infty \leq rac{C\delta_B^lpha}{1-\gamma}$$ meaning that the error of the value function V_t using the ho-approximation is bounded for exact solving algorithms [4]. For **point-based algorithms** [5] a proper bound can also be found. $$\|\hat{V}_t - V_t\|_{\infty} = rac{(R_{max} - R_{min} + C\delta^lpha_B)\delta_B}{1 - \gamma}$$ - [1] M. Spaan, "Cooperative active perception using POMDPs," in AAAI 2008 Workshop on Advancements in POMDP Solvers, July 2008. - [2] R. Smallwood and E. Sondik, "The optimal control of partially observable Markov decision processes over a finite horizon," Operation Research, vol. 21, pp. 1071–1088, 1973. - [3] M. Araya-López, O. Buffet, V. Thomas, and F. Charpillet, "A POMDP extension with belief-dependent rewards – extended version," Tech. Rep. RR-7433, INRIA, Oct 2010. (See also NIPS supplementary material). - [4] A. Cassandra, Exact and approximate algorithms for partially observable Markov decision processes. PhD thesis, Providence, RI, USA, 1998. - [5] J. Pineau, G. Gordon, and S. Thrun, "Anytime point-based approximations for large POMDPs," Journal of Artificial Intelligence Research (JAIR), vol. 27, pp. 335–380, 2006.