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Belief-dependent Rewards

Our proposal is to extend POMDPs to a more general framework allowing
arbitrary (convex) belief-dependent rewards (pPOMDP).

Dr. House must perform actions (ex-
ams) to infer the health status of a
patient. His job is not to treat the
patient, but to perform the correct
exams to reduce the uncertainty.

Pr(lupus) = 0.2
Pr(cancer)= 0.3

Pr(sarcoid) = 0.1
Pr(simul) = 0.4

State-dependent rewards are always linear functions in the belief-state space
(a), but more complex functions can be defined directly as belief-dependent
rewards, such as piecewise linear function (b) or non-linear functions (c).

Examples of belief-dependent rewards
(a) (b) (©)

This and other problems such as
surveillance [1], are usually modelled

as Partially Observable Markov Deci- \ 5 _
sion Processes (POMDPs), but this 5 3 é
framework do not support reward | , = 3 S
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Introducing pPOMDPs Solving pPOMDPs
PPOMDPs consist in a relaxation of the POMDPs definition of the reward func- If p = func(b) is piecewise-linear and convex (PWLC), it can be represented
tion. Instead of defining the reward over the state space &, we define the reward by a set of hyperplanes.
as a function on the belief-state space A. (@) (b) (©)
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Solution techniques for POMDPs rely on the convexity of the value function [2], Few modifications to Value lteration are needed to support pPOMD_ >

based on the linearity of the state-dependent reward r(s, a). Yet, this property - _
holds for a wider class of p-functions. Va(b) = B b - argé?fx(a +b) + E :afc;g;;ilx(a +b)| ¢
P o n

where I} represents the reward function for a given action a, and I'7° is the
set of projections for a and o of the last value function.

Theorem (Convexity)

It p and V{y are convex functions over A, then the value function
V,, of the belief MDP is convex over A at any time step n. If p is not piecewise-linear (but convex), then we can build an approximation
Proof in NIPS supplementary material [3] | using PWLC functions and then solve value iteration.

Approximating non-linear p-functions

Idea: Use a lower piecewise-linear approxi- Is this approximation bounded?
mation of p(b) using a set of pivot points
b cBCA. If p(b) is Lipschitzian, then the aproximation is bounded. But, some

uncertainty measurements (such as entropy) have undefined gradient
at the simplex boundary. For these cases, a more generic result can be
proven for a-Holderian functions:

Ja € (0,1], 3Ky > 0, st. [f(z) — f(y)| < Kallxz — yI7

O
S Theorem (p-bound)
c% Let p be a continuous and convex function over A, differentiable every-
where in A° (the interior of A), and satisfying the a-Holder condition
with constant K. The error of an approximation wpg can be bounded|  This theorem uses the fact that for each b,
. . - 7
by Coy¥, where C' is a scalar constant that depends on K, and 0y is there is always a b € B far enough from
the density of the set B. the bOundary of the Simplex but within a
0 b 1 Proof in NIPS supplementary material [3] | bounded distance to b.
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