

ρ -POMDPS have Lipschitz-Continuous ϵ -Optimal Value Functions

Introduction

Many state-of-the-art algorithms for solving Partially Observable Markov Decision Processes (POMDPs) rely on turning the problem into a "fully observable" problem a belief MDP—and exploiting the piece-wise linearity and convexity (PWLC) of the optimal value function in this new state space (the belief simplex Δ). This approach has been extended to solving ρ -POMDPs—*i.e.*, for information-oriented criteria when the reward ρ is **convex** in Δ .

Here: focus on ρ -POMDPs with $\lambda_{\rho}(b)$ -Lipschitz-Continuous reward function.

POMDP $\langle S, A, Z, P, r, \gamma, b_0 \rangle$

 $\mathcal{S}, \mathcal{A}, \mathcal{Z} = \text{finite sets of states, actions & observations}$ $P_{a,z}(s,s') = Pr(s',z|s,a)$ $r(s, a) = \text{reward associated to } s \xrightarrow[(a-2)]{a} (s' =?)$ = discount factor $(\in [0; 1))$ = initial belief state $(\in \Delta = \Pi(\mathcal{S}))$

Information-Oriented Control : ρ -POMDPs

Information-oriented performance criterion? $\rho(b)$ **Replace** r(s, a) with $\rho(b)$ [Araya-López et al., 2010] Examples: $ho(b) \doteq -H(b) = \sum b(s) \log b(s) \quad (\text{neg-Entropy}) \rightarrow \text{convex}$ $\rho(b) \doteq \sigma(\alpha(\|b_X\|_{\infty} - \beta)) \quad \text{(with } \sigma(\cdot) \text{ the sigmoid function)} \to \mathrm{LC}$

Solving (ρ) -POMDPs as belief MDPs

Solving a POMDP = Finding a policy π so as to maximize the expected discounted sum of rewards. Common approach: (i) **Turn** POMDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{Z}, P_{z,a}(s'|s), r(s, a), \gamma, b_0 \rangle$ $\mathbb{E}_{b}[r(S,a)]$ into belief MDP $\langle \Delta, \mathcal{A}, P(b'|b, a), r(b, a), \gamma, b_0 \rangle$ (ii) **Compute** V^* , fixed point of Bellman's *optimality* operator (\mathcal{H}) , $\mathcal{H}V: b \mapsto \max_{a} [r(b, a) + \gamma \sum_{z} \|P_{a,z}b\|_{1} V(b^{a,z})].$ (iii) Act greedily with respect to V^* . For ρ -POMDPs, the reward function ρ is given a priori.

Mathieu Fehr¹, Olivier Buffet², Vincent Thomas², Jilles Dibangoye³

¹ École Normale Supérieure de la rue d'Ulm, Paris, France – firstname.lastname@ens.fr ² Université de Lorraine, CNRS, Inria, LORIA, Nancy, France – firstname.lastname@loria.fr ³ Université de Lyon, INSA Lyon, Inria, CITI, Lyon, France – firstname.lastname@inria.fr

\land Lipschitz Continuities (LC) \land

Here, usual uniform+scalar LC $\xrightarrow{\text{becomes}}$ local+vector LC:

Definition 1 Let $f: X \to Y$ be a function, with X and Y two normed spaces. f is local+vector Lipschitz-continuous if $\forall \boldsymbol{x}, \exists \boldsymbol{\lambda}_f(\boldsymbol{x}) \in \mathbb{R}^+ \ s.t., \ \forall \boldsymbol{x}', \ \|f(\boldsymbol{x}) - f(\boldsymbol{x}')\| \leq \boldsymbol{\lambda}_f(\boldsymbol{x})|\boldsymbol{x} - \boldsymbol{x}'|.$

Properties of \mathcal{H} and $V_{\mu}^{*}(b)$ (H finite)

Proposition 1 (\mathcal{H} preserves Piece-wise Linearity and Convexity (PWLC)

Proposition 2 (\mathcal{H} preserves Lipschitz-Continuity (LC)) If ρ is $\lambda_{\rho}(\cdot, \cdot)$ -LC, and V is $\lambda_{V}(\cdot)$ -LC, then $\mathcal{H}V$ is $\lambda_{\mathcal{H}V}(\cdot)$ -LC with, $\forall b$, $\boldsymbol{\lambda}_{\mathcal{H}V}(b) = \overline{\operatorname{max}}_{a} \Big[\boldsymbol{\lambda}_{\rho}(b,a) + \gamma \sum_{z} \left[\left(|V(b^{a,z})| + \boldsymbol{\lambda}_{V}(b^{a,z})b^{a,z} \right) \mathbf{1} + \boldsymbol{\lambda}_{V}(b^{a,z}) \right] P_{a,z} \Big].$

	ho(b) is	$V_H^*(b)$ is	(note)
Properties of $V_H^*(b)$	linear	PWLC	(= POM
	PWLC	PWLC	$(\Leftrightarrow \operatorname{IR-P}$
	$\boldsymbol{\lambda}_{\rho}(\cdot,\cdot)$ -LC	$\boldsymbol{\lambda}_{H}^{\prime}(\cdot)$ -LC	(new)

Bounding $V^*(b)$

PWLC	LC	(pointwise - PW)
U(b) sawtooth approx.	downward cones	(points)
L(b) upper envelope of hyperplanes	upward cones	(points)

Here: U and L computed using HSVI [Smith, 2007].

Other topics: criteria $(-H(b), var(b), \ldots)$, initialization, MCTS/POMCP, POSGs, LC MDPs, ...

(= POMDP) [Smallwood and Sondik, 1973] LC (\Leftrightarrow IR-POMDP [Satsangi et al., 2015])

$(H = \infty)$

Comparing variants of HSVI

Setting: Experiments conducted on (i) several standard POMDPs + (ii) a ρ -POMDP on a grid (Fig. 4) with the goal of (not) knowing the x or y position.

Not shown: results evaluating the two (complementary) criteria used to detect invalid λ values in inc-lc-HSVI.

<i>x</i> -HSVI	pwlc				pw				lc			inc-lc(nonui)			
	t (s)	(#it)	$gap(b_0)$	λ	t (s)	(#it)	$gap(b_0)$	t (s)	(#it)	$gap(b_0)$	λ	t (s)	(#it)	$gap(b_0)$	λ
4x3.95	1	(134)	0.10	1.19	600	(447)	0.94	600	(214)	3.27	1.9e+05	1	(254)	0.10	1
4x4.95	1	(120)	0.10	0.66	1	(134)	0.10	6	(134)	0.10	2.4e+05	0	(125)	0.10	1
hallway	600	(414)	0.35	0.70	600	(683)	1.30	600	(203)	1.33	1.8e+00	600	(611)	1.12	1
hallway2	600	(385)	0.67	0.63	600	(690)	1.04	600	(208)	1.06	4.0e+00	600	(668)	1.00	1
milos-aaai97	600	(1152)	29.55	89.49	600	(1725)	49.05	600	(595)	52.87	2.3e+03	600	(1797)	43.78	64
network	498	(7703)	0.10	168.22	600	(3021)	453.62	600	(941)	510.76	5.0e + 16	34	(2819)	0.10	128
paint.95	2	(143)	0.10	1.00	600	(3695)	3.55	600	(1008)	4.37	1.7e + 281	0	(84)	0.10	1
pentagon	601	(27)	0.31	1.00	600	(89)	0.83	600	(32)	0.83	2.8e+01	600	(60)	0.73	1
shuttle.95	0	(23)	0.10	22.77	0	(42)	0.09	0	(42)	0.09	7.5e+00	0	(47)	0.08	4
tiger85	0	(15)	0.09	55.00	0	(15)	0.08	0	(15)	0.08	2.2e+02	0	(15)	0.07	64
grid-info k x	_	(-)		_	600	(709)	0.24	600	(358)	1.82	3.6e + 01	1	(279)	0.10	4
grid-info k y	_	(-)		_	27	(432)	0.10	344	(426)	0.10	4.0e+01	1	(279)	0.10	4
grid-info $\neg \mathbf{k}x$	_	(-)		_	600	(2319)	9.15	600	(889)	13.74	3.3e+01	4	(695)	0.10	4
grid-info $\neg ky$	_	(-)	_		600	(1393)	6.66	600	(604)	8.52	3.1e+01	4	(707)	0.10	4

• inc-lc-HSVI interrupted on LXU (L crosses U), NUI (non-unif. improvement), UR (unstable results) • lc-HSVI scales poorly due to (i) large $\lambda_{\text{lc-HSVI}}$ + (ii) high CPU cost • inc-lc-HSVI much better, sometimes competes with pwlc-HSVI • $\lambda_{\text{inc-lc-HSVI}}$ same order of magnitude as $\lambda_{\text{pwlc-HSVI}}$

$L(b_0)$ and $U(b_0)$ as a function of time

M. Araya-López, O. Buffet, V. Thomas, and F. Charpillet. A POMDP extension with belief-dependent rewards. In Advances in Neural Information Processing Systems 23 (NIPS-10), 2010.

. Satsangi, S. Whiteson, and M. T. J. Spaan. An analysis of piecewise-linear and convex value functions for active perception POMDPs. Technical Report IAS-UVA-15-01, IAS, Universiteit van Amsterdam, 2015.

Operation Research, 21, 1973.

Smith. Probabilistic Planning for Robotic Exploration. PhD thesis, Carnegie Mellon University, 2007.

Fig. 4: grid-info

R. Smallwood and E. Sondik. The optimal control of partially observable Markov decision processes over a finite horizon.