
Robust LRTDP: Reachability Analysis

Olivier Buffet
National ICT Australia &

The Australian National University
Canberra, Australia

olivier.buffet@nicta.com.au

December 21, 2004 - Revised March 24, 2005

Abstract

Stochastic Shortest Path problems (SSPs) can be efficiently dealt with by the
Real-Time Dynamic Programmingalgorithm (RTDP). Yet, RTDP requires
that a goal state is always reachable. This paper presents an algorithm check-
ing for goal reachability, especially in the complex case of anuncertainSSP
where only a possible interval is known for each transition probability. This
gives an analysis method for determining if SSP algorithms such as RTDP
are applicable, even if the exact model is not known. We aim at a symbolic
analysis in order to avoid a complete state-space enumeration.

Contents

1 Introduction 2

2 Background 2
2.1 Stochastic Shortest Path Problems 2
2.2 RTDP . 3
2.3 Robust Value Iteration . 4

3 Algorithms 5
3.1 Basic Problem . 6
3.2 Performing the Reachability Analysis 7
3.3 How to Obtain the Lists . 10

4 Application 13
4.1 Test Problems . 13
4.2 Mountain-Car . 13
4.3 Sailing . 15

5 Conclusion 16

A Improved Reachability Analysis (in progress) 18
A.1 Upper- and Lower-Bounding Reachability Graphs 18
A.2 Principle . 18

1

A.3 Algorithms’ Complexities . 19
A.4 Experiments . 19

1 Introduction
In decision-theoretic planning, Markov Decision Problems[Bertsekas and Tsitsiklis,
1996] are of major interest when a probabilistic model of the domain is available. A
range of algorithms make it possible to find plans (policies) optimizing the expected
long-term utility. Yet, optimal policy convergence results all depend on the assumption
that the probabilistic model of the domain is accurate.

Unfortunately, a large number of MDP models are based on uncertain probabilities
(and rewards). Many rely on statistical models of physical or natural systems, may they
be toy problems such as the mountain-car or the inverted-pendulum, or real problems
such as plant control or animal behavior analysis. These statistical models are based
on simulations (themselves being mathematical models), observations of a real system
or human expertise.

Working with uncertain models first requires answering two closely related ques-
tions: 1- how to model this uncertainty, and 2- how to use the resulting model.
Existing work shows that uncertainty is sometimes represented as a set of possible
models, each assigned a model probability[Munos, 2001]. The simplest example
is sets of possible models that are assumed equally probable[Bagnell et al., 2001;
Nilim and Ghaoui, 2004]. Rather than construct a possibly infinite set of models we
represent model uncertainty by allowing each probability in a single model to lie in an
interval[Givanet al., 2000; Hosakaet al., 2001].

Uncertain probabilities have been investigated in

• resource allocation problems[Munos, 2001], such as efficient exploration[Strehl
and Littman, 2004] and state aggregation[Givanet al., 2000], and

• policy robustness[Bagnellet al., 2001; Hosakaet al., 2001; Nilim and Ghaoui,
2004].

We focus on the later, considering a two-player game where the opponent chooses one
of the possible models to reduce the long-term utility.

Our principal aim is to develop an efficient planner for a common sub-class of
MDPs for which optimal policies are guaranteed to eventually terminate in a goal
state: Stochastic Shortest Path (SSP) problems. A greedy version ofReal-Time Dy-
namic Programming algorithm(RTDP)[Bartoet al., 1995] is particularly suitable for
SSPs, as it finds good policies quickly and does not require complete exploration of the
state space. Yet, if it can be made robust[Buffet and Aberdeen, 2005], it also requires
that a goal state is reachable from any visited state, which can be checked through a
reachability analysis.

This paper shows how to make the reachability analysis for SSPs, including un-
certain ones. Working towards a symbolic analysis would give an essential tool for
algorithms such as RTDP. In Section 2 we present SSPs, RTDP and robustness. We
then explain the algorithm for reachability analysis. Finally, a practical experiment is
presented before a conclusion.

2 Background
2.1 Stochastic Shortest Path Problems
A Stochastic Shortest Path Markov Decision Problem[Bertsekas and Tsitsiklis, 1996]
is defined here as a tuple〈S, s0, G,A, T, c〉. It describes a control problem whereS is

2

the finite set ofstatesof the system considered,s0 ∈ S is a starting state, andG ⊆ S is
a set of goal states.A is the finite set of possibleactionsa. Actions control transitions
from one states to another states′ according to the system’s probabilistic dynamics,
described by thetransition function T defined asT (s, a, s′) = Pr(st+1 = s′|st =
s, at = a). The aim is to optimize a performance measure based on thecost function
c : S ×A× S → R+.1

SSPs assume a goal state is reachable from any state inS, at least for the optimal
policy, so that one cannot get stuck in a looping subset of states. An algorithm solving
an SSP has to find apolicy that maps states to probability distributions over actions
π : S → Π(A) which optimizes the chosen performance measure, here thevalue V
defined as the expected sum ofcoststo a goal state.

In this paper, we only consider SSPs for planning purposes, with only inaccurate
knowledge of the transition functionT . In this framework, well-known stochastic dy-
namic programming algorithms such asvalue iteration(VI) make it possible to find a
deterministic policy that corresponds to the minimal expected long-term costV . Value
iteration works by computing the value functionV ∗(s) that gives the expected reward
of the optimal policies. It is the unique solution of the fixed point equation[Bellman,
1957]:

V (s) = min
a∈A

∑
s′∈S

T (s, a, s′) [c(s, a, s′) + V (s′)] . (1)

UpdatingV with this formula leads to the optimal value function. For convenience, we
also introduce theQ-value:

Q(s, a) =
∑
s′∈S

T (s, a, s′)[c(s, a, s′) + V (s′)].

This kind of problem can easily be viewed as a shortest path problem where choosing
a path only probabilistically leads you to the expected destination. SSPs can represent
a useful subset of MDPs. They are essentially a finite-horizon MDP with no discount
factor.

2.2 RTDP
A first algorithm making use of the structure of SSPs is a version of theReal-Time
Dynamic Programmingalgorithm (RTDP)[Bartoet al., 1995]. It uses the fact that the
SSP cost function is positive and the additional assumption that every trial will reach a
goal state with probability 1. Thus, with a zero initialization of theJ , both theJ and
Q-values monotonically increase during their iterative computation.

The idea behind RTDP (Algorithm 1) is to follow paths from the start states0, always
greedily choosing actions of low value and updatingQ(s, a) as statess are encountered.
In other words, the action chosen is the one expected to lead to the lowest future costs,
until the iterative computations show that another action may do better.

RTDP has the advantage of quickly avoiding plans that lead to high costs. Thus, the
exploration looks mainly at a promising subset of the state space. Because it follows
paths by simulating the system’s dynamics, common transitions are favored, so that
good policies are obtained early. Yet, the bad update frequency of rare transitions
slows the convergence.

1As the model is not sufficiently known, we do not make the usual assumptionc(s, a) =
Es′ [c(s, a, s′)].

3

Algorithm 1 RTDP algorithm for SSPs
RTDP(s:state)// s = s0

repeat
RTDPTRIAL (s)

until // no termination condition
. .
RTDPTRIAL (s:state)
while ¬GOAL(s) do

a =GREEDYACTION(s)
J(s) =QVALUE (s, a)
s =PICKNEXTSTATE(s, a)

end while

2.3 Robust Value Iteration
We now turn to the problem of taking the model’s uncertainty into account when look-
ing for a “best” policy. The (possibly infinite) set of alternative models is denoted
M.

We follow the approach described in[Bagnellet al., 2001], that consists of finding a
policy that behaves well under the worst possible model. This amounts to considering
a two-player zero-sum game where a player’s gain is its opponent’s loss. The player
chooses a policy while its “disturber” opponent simultaneously chooses a model. A
simple process may be used to compute the value function while looking simultane-
ously for the worst model. It requires the hypothesis that state-distributionsT (s, a, ·)
are independent from one state-action pair(s, a) to another. Under this assumption,
the worst model can be chosen locally whenQ is updated for a given state-action pair.
If this assumption does not always actually hold, it induces a larger set of possible
models, what results in a worst-case assumption in the pessimistic approach.

Problem — We are particularly interested in handlinguncertain SSPs(USSP),
where only intervals of possible transition probabilities are known:T (s, a, s′) ∈
[Prmin(s′|s, a), P rmax(s′|s, a)].Figure 1 is an example.

s0

a1

s1

a0

[.7] [.7]

[.3][.3]

(c=1) (c=.87)

a) certain SSP

s0

a1

s1

a0

[.5,.9]

[.1,.5]

[.7,.7]

[.3,.3]

(c=1)

(c=1) (c=.8)

(c=.9)

b) uncertain SSP

Figure 1: Two views of one SSP, depending on whether model uncertainty is taken into
account (costs in parenthesis). In the uncertain SSP, actiona0 will be prefered as it
quickly reaches the goals1.

For a given state-action pair(s, a), there is a listR = (s′1, · · · , s′k) of reachable

4

states, and for each of them:T (s, a, s′i) ∈ Ii = [pmin
i , pmax

i]. Thus, possible models are
the ones that comply with these interval constraints while ensuring

∑
i T (s, a, s′i) = 1.

Figure 2 illustrates this with three reachable states.

s
′

1

s
′

2s
′

3

p
min

s
′

1

p
max

s
′

1

s
′

1

s
′

2
s

′

3

Figure 2: Here, a triangle is a probability simplex representing all possible probability
distributions with three different outcomes (Pr(s′i) = 1 at vertexs′i). On the left
triangle is the trapezium showing the interval constraint fors′1. The right triangle shows
possible models at the intersection of the three interval constraints.

Yet, to use (robust) RTDP, this theorem is of major interest:

Theorem 1. [Bertsekas and Tsitsiklis, 1996] If the goal is reachable with positive
probability from every state, RTDP unlike the greedy policy cannot be trapped into
loops forever and must eventually reach the goal in every trial. That is, every RTDP
trial terminates in a finite number of steps.

The purpose of this paper is to determine from which states a goal state is still reach-
able in uncertain SSPs. This could be achieved by fixing our policy to one that chooses
all actions with equal probability and let the opponent learn how to prevent goal states
from being reached. Yet, this problem is no SSP, what would imply coming back from
RTDP toValue Iteration. Moreover, we prefer performing a graph analysis, as it gives
more practical information and would be a first step toward a symbolic analysis avoid-
ing the enumeration of the complete state-space.

3 Algorithms
When applying algorithms such as RTDP on an SSP having no proper policy, the main
problem is to detect if current states still has a positive probability of reaching the goal
set, in which cases is said to be “reaching ”. If s is non-reaching , RTDP should
stop and a specific process be applied, such as associating this state to an infinite cost.

Non-reaching states constitute looping sub-sets of states which we will refer
to as “dead-ends”. The process just described results in dead-ends avoidance. Yet
some states may bereaching but also have a positive probability to lead to a
dead-end whatever the policy. If non-reaching states incur infinite costs, these
“dangerous ” states will necessarily have an infinite long-term cost to the goal. It
would thus be of interest to also identify thesedangerous states.

Note that what to do when in a non-reaching state may depend on the user’s pref-
erences. But in all cases the first step is to perform a “reachability analysis” through a
graph traversal beginning with goal states. Then, if required, a “danger analysis” can be
performed through another (simpler) graph traversal beginning with non-reaching

5

states. This paper mainly focuses on the “reachability analysis”, as this process is
necessary and somewhat subtle in the case of USSPs.

3.1 Basic Problem
In a certain SSP, ifs′ is reaching , any states such thatT (s, a, s′) > 0 for some
actiona is also reaching. This results in a straightforward analysis by making a graph
traversal starting with goal states.

In an uncertain SSP, the reachability analysis depends on the fact that the oppo-
nent can forbid a transition(s, a) → s′ if Prmin(s′|s, a) = 0. A difficulty is that
Prmin(s′1|s, a) = 0 andPrmin(s′2|s, a) = 0 are not sufficient to tell ifs′1 ands′2 may
be forbidden simultaneously in some possible model. Fig. 3 shows an example where
the 3 potentially reachable states cannot be forbidden simultaneously (there is no pos-
sible model s.t.∀j ∈ {1, 2, 3} T (so, a0, s

′
j) = 0). With upper probabilities of1, any 2

states could be forbidden.

(c=1) (c=1)
[0,.6] [0,.6]

(c=1)[0,.6]

s0 a0

s
′

1
s

′

2
s

′

3

Figure 3: USSP where only 1 of the 3 reachable states can be forbidden (goal states in
bold circles).

Let us define the set of all lists of states which cannot be forbidden simultaneously
(from (s, a)):2

L�
(s,a) =

l ⊆ S s.t. s′ ∈ l⇒ Prmax

(s′|s,a) > 0,

and
∃s′ ∈ l s.t.Prmin

(s′|s,a) > 0
or

∑
s′∈S\l Prmax

(s′|s,a) < 1

 .

Each list is only made of potentially reachable states, hence the condition:s′ ∈ l ⇒
Prmax

(s′|s,a) > 0. Then, the states in a list cannot be all forbidden simultaneously if and
only if:
• either one of them has a positive minimum probability:∃s′ ∈ l s.t.Prmin

(s′|s,a) > 0,

• or there is no way to but a total probability mass of one in remaining states:∑
s′∈S\l Prmax

(s′|s,a) < 1.

To know if a given actiona can lead to a goal state from current states, one has
to find at least one such list where all states arereaching . In this case, the oppo-
nent cannot prevent the planner having some chance of terminating. The reachability
analysis only needs to work with the subset of minimal lists:

Lmin�
(s,a) =

{
l ∈ L�

(s,a) s.t.∀l′ ∈ L�
(s,a) :

l ∩ l′ = l or (l ∩ l′) 6∈ L�
(s,a)

}
.

2� ∼ “statescannotbe forbidden simultaneously”

6

In other words, removing any state of such a list makes it possible for the opponent to
forbid all states in the list. On Fig. 3:Lmin�

(so,ao) = {{s′1, s′2}, {s′1, s′3}, {s′2, s′3}}. A
minimal list is:

• either a singletonl = {s′} made of one states′ which cannot be forbidden:

Prmin
(s′|s,a) > 0,

• or a listli = {si1 , si2 , . . . } in which:

– each state can be individually forbidden:

Prmin
(sij

|s,a) = 0

(otherwise the list would include one of the singletons we just mentionned),
and

– removing any statesij would make it possible to forbid the complete list:∑
s′∈(S\l)∪{sij

}

Prmax
(s′|s,a) ≥ 1.

From this basic idea, two problems arise:

• How to perform the reachability analysis ? (Sec. 3.2)

• How to obtain these lists ? (Sec. 3.3)

3.2 Performing the Reachability Analysis
From (s, a) to s — Deciding whether a states may reach a goal according to its
children does not require considering all actions separately. Indeed, when setsLmin�

(s,a)

have been determined for alla, they can be merged in a single set of minimal lists:⋃
a∈A(s) Lmin�

(s,a) and removing lists including other lists: ifl ⊆ l′, thenl′ is not minimal

in our new set of lists. This process is detailed in Alg. 2.3

[0.,1.] [1.,1.]
[0.,1.]

s

a1 a2

s
′

1
s

′

2

In this situation, two actionsa1 anda2

are possible from states, each having a
single minimal list of states which can-
not be forbidden simultaneously (l1 =
{s′1, s′2} and l2 = {s′2}). As l2 ⊆
l1, checking if the states inl2 are
reaching is sufficient to know ifs is
reaching , since choosing actiona2

will ensure that there is some chance
of reaching a goal state.

Figure 4: An example of list of states which cannot be forbidden from a given state.

3As 2 lists may be the same objector may contain the same elements, we use two notations:
is(l, l′) andl = l′.

7

Algorithm 2 NOTFORBIDDENFROMS (s: state,Lmin�
(s,·) : minimal lists of states which

cannot be forbidden simultaneously froms and an action)

L← ∅
{a- Put all minimal lists obtained inLmin�

(s) .}
for all a ∈ A(s), l ∈ Lmin�

(s,a) do
if ∀l′ ∈ L, l′ 6= l then

L← L
⋃
{l}

parents(l)← {s}
end if

end for
{ b- Remove lists subsuming other lists.}
for all l, l′ ∈ L s.t. isnot(l, l′) do

if l ⊂ l′ then
L← L\{l′}

end if
end for
returnLmin�

(s) = L

Building a Graph — Determining which states can reach a goal state will be done
through a propagation starting from these goal states. This “back”-propagation takes
place in anAND-ORgraph where nodes are states and their minimal lists, as illustrated
by Fig. 5. This is anAND-ORgraph because a list is “reaching ” if all its child
states arereaching (AND), and a state isreaching if oneof its children lists is
reaching (OR).

...

......

s0

s1 s2

s3

l1

l2

Figure 5: Example ofAND-ORgraph in which the reachability analysis is done (start-
ing with goal states ass2 here). Ifs3 is reaching , then so isl1 (the opponent cannot
forbid s2 ands3), and therefores1.

To help the graph traversal, we also benefit from Alg. 2 to record which are the
parent-states of each of these lists. Yet a list may have several parents, and the traversal
also requires knowing for each state in which minimal lists it appears (its parent-lists).
To that end, Alg. 3 builds a set of all minimal listsLmin� =

⋃
s∈S Lmin�

(s) , computing

at the same time the sets of parents of each list:parents(l) and of each state:Lparents
(s)

in theAND-ORgraph.

8

Algorithm 3 ALL M INL ISTS (Lmin�
(·) : minimal lists from a given state)

Lmin� ← ∅
for all s ∈ S, l ∈ Lmin�

(s) do

if ∃l′ ∈ Lmin� s.t. l′ = l then
parents(l′)← parents(l′)

⋃
parents(l)

else
Lmin� ← Lmin� ⋃

{l}
for all s′′ ∈ parents(l) do

Lparents
(s′′) ← Lparents

(s′′)

⋃
{l}

end for
end if

end for
returnLmin�, Lparents

(·)

Graph Traversal — We now have a complete description of the graph in which to
propagate the reachability. As mentionned earlier, this propagation starts from goal
states. Alg. 4 shows an implementation of this process using a stack of states to visit.
In this algorithm, when a state is recognized asreaching , it is removed from all its
parent-lists. Then, when such a list is empty (i.e. isreaching), all its parent-states
can be marked asreaching .

Algorithm 4 PROPAGATEREACHABILITY (Lmin�, Lparents
(·))

PUSHALL(G, st) {st: stack of goal states}
while st 6= ∅ do

POP(s, st)
if ¬reaching(s) then

MARK(s, reaching)
for all l ∈ Lparents

(s) do
l← l\{s}
if l = ∅ then

PUSHALL(parents(l), st)
end if

end for
end if

end while

Note: In fact, once the AND-OR graph is known, checking if a goal state is reachable
from a given states amounts to a non-deterministic planning problem where:

• a list is considered as an action: when in a statesi, a list has to be chosen, and

• the outcome of an action is a non-deterministic transition to one of the states in
the list.

In our particular case, checking one state at a time if it can reach a goal state is
not interesting, since the danger analysis can be performed only if the reachability
analysis has been accomplished on all states (or at least all states reachable froms0).

9

Danger analysis differs from reachability analysis as:

• it starts from non-reaching states (identified through the reachability analysis),
and

• the graph used is not the same: a states is dangerous if, for all actiona ∈ A(s),
there exists a dangerous state inchildren(s, a).

Moreover, here Alg. 5 is recursive while Alg. 4 is iterative.

Algorithm 5 PROPAGATEDANGER()
for all s ∈ S s.t.¬reaching(s) do

MARK(s, dangerous)
for all s′′ ∈ Parents(s) do

FINDDANGEROUS(s′′)
end for

end for
. .
FINDDANGEROUS(s: state)
if reaching(s) then

if ∀a ∈ A, ∃s′ ∈ Children(s) s.t. dangerous(s′) then
MARK(s,dangerous)
for all s′′ ∈ Parents(s) do

FINDDANGEROUS(s′′)
end for

end if
end if

3.3 How to Obtain the Lists
Previous section has detailed how to use the minimal lists mentioned in the introduction
of Sec. 3 to perform the reachability analysis. An essential question that we still have
to answer is how to obtain these lists. The process adopted is indirect, as it consists in
1- looking formaximallists of states whichcanbe forbidden simultaneously, then in
2- adding a state to turn them intominimal lists of states whichcannotbe forbidden
simultaneously.

As we have defined the notion of “list of states whichcannotbe forbidden simul-
taneously”, we define the opposite notion of “list of states whichcan be forbidden
simultaneously”:

L�
(s,a) =

{
l ⊆ S s.t.

∑
s′∈S\l Prmax

(s′|s,a) ≥ 1 and
s′ ∈ l⇒ Prmin

(s′|s,a) = 0 & Prmax
(s′|s,a) > 0

}
.

But we only need to consider the subset of these lists which are “maximal”:

Lmax�
(s,a) =

{
l ∈ L�

(s,a) s.t.∀l′ ∈ L�
(s,a) :

l ∪ l′ = l or l ∪ l′ 6∈ L�
(s,a)

}
.

Indeed, adding any reachable state to such a list turns it into a list fromL�
(s,a). We will

now describe how to obtainLmax�
(s,a) and then deduceLmin�

(s,a) .

10

Maximal Lists — Considering a state-action pair(s, a), the opponent’s work con-
sists in distributing a total probability mass of1 so as to respect the uncertain model
and to forbid as many reachable states as possible. A first action is then to put as much
probability mass as possible on states which cannot be forbidden and ons itself (if it
is reachable), so that as little probability mass as possible remains for other reachable
states. This operation is accomplished in the first “for ” loop of Alg. 6. The remaining
states inS′ are the statess′ which can be forbidden:Prmin(s′|s, a) = 0.

Then, the recursive function FFSA tries all “minimal lists of reachable states in
which the remaining probability massp can be placed”.4 When one such list is found,
the remaining states constitute one of the maximal lists we are looking for. This recur-
sive selection process is illustrated by Fig. 6. When the total probability mass1 has
been distributed, FFSA can stop and gather all unused states as a newmaximal list.

“Minimality” is here guaranteed because states are sorted in decreasing order of
Prmax(·|s, a), and added sequentially to “reachable states” lists following this order.
Without this condition, if the remaining probability massp were bounded by the maxi-
mal probabilities of the two remaining states to considers′1 ands′2: Prmax(s′1|s, a) <
p < Prmax(s′2|s, a), trying to distributep throughs′1 first would lead to also assign
p − Prmax(s′1|s, a) > 0 to s′2, authorizing access to both states (whereass′1 could be
forbidden).

Algorithm 6 FORBIDDENFROMSA (s: state,a: action,S′ = {s′1, . . . , s′|S′|}: states
reachable from(s, a))

Ensure: Method building the list of maximal sets of states which can be forbidden
simultaneously (for a given state-action pair).
S′ ← SORTDECREASING(S′, P rmax(·|s, a))
p← 0
for all s′ ∈ S′ s.t.Prmin(s′|s, a) 6= 0 ∨ is(s′, s) do

p← p + Prmax(s′|s, a)
S′ ← S′\{s′}

end for
return FFSA(0, s, a, S′, p)
. .
FFSA(j: integer,s: state,a: action,S′: set of states,p: probability)
Lmax�

(s,a) ← ∅
if pmax ≥ 1 then

Lmax�
(s,a) ← {S

′}
else

for i = j to |S| s.t. s′i ∈ S′ do
Lmax�

(s,a) ← Lmax�
(s,a)

⋃
FFSA(i + 1, S′\{s′i}, p + Prmax(s′i|s, a))

end for
end if
returnLmax�

(s,a)

4These minimal lists should not be confused with the ones fromLmin�
(s,a) .

11

...

......

s
′

1

s
′

2
s

′

2

Prmax(s′1|s, a) ≥
Prmax(s′2|s, a) ≥
Prmax(s′3|s, a) ≥ · · ·
Note: here we start with
states′1, assuming that all
reachable states can be
forbidden.

Figure 6: Tree view of the process selecting unforbidden states in function FFSA
(Alg. 6).

From Maximal to Minimal Lists — A first set of minimal lists fromLmin�
(s,a) consists

of singletons whose state cannot be forbidden (Prmin(s′|s, a) > 0), or s′ = s. They
are built in the firstfor loop of Alg. 7.

Then, all other minimal lists are created by adding a state (that can be forbidden) to a
maximal list obtained previously. The main difficulty is to ensure that the lists created
are minimal, i.e. do not subsume another generated list. The solution lies again in the
fact that reachable states are sorted by decreasingPrmax(·|s, a). Indeed, for a maximal
list lf = {s′f(1), · · · , s

′
f(k)}, corresponding minimal lists have to be obtained only by

adding statess′i such thatf(1) < · · · < f(k) < i, as done in the second part of Alg. 7.
This condition is necessary and sufficient as, if there existsi such thati < f(k) and

lf ∪ {s′i} is a minimal list, then this minimal list will be obtained by addings′f(k) to
lf ∪ {s′i} \ {s′f(k)}, which is one of the maximal lists obtained through Alg. 6.

Example: Let us suppose we have 5 reachable statess′1 to s′5, such that
∀iPrmin(s′i|s, a) = 0 andPrmax(s′1|s, a) ≥ · · · ≥ Prmax(s′5|s, a). If l = {s′2, s′4}
is a maximal list of states which can be forbidden simultaneously, then:

• Because
∑

i∈{1,3,5} Prmax(s′i|s, a) ≤
∑

i∈{1,3,4} Prmax(s′i|s, a), then
{s′2, s′5} is necessarily another maximal list. A similar reasoning also identi-
fies{s′3, s′4} and{s′4, s′5} as maximal lists.

• Following the rule defined, we get:

– s′1 is not added to{s′2, s′4}, ass′1 may be a maximal list all alone, result-
ing in {s′1, s′2} being a minimal list (of states which cannot be forbidden
simultaneously). There is no guarantee that{s′1, s′2, s′4} is minimal.

– s′3 is not added to{s′2, s′4}, the same minimal list being obtained by adding
s′2 to {s′3, s′4}.

– s′5 is added to{s′2, s′4} as, in a symetric way,s′2 (resp.s′4) will not be added
to {s′4, s′5} (resp.{s′2, s′5}).

Alg. 8 sums up the process followed to analyse the reachability of a USSP.

12

Algorithm 7 NOTFORBIDDENFROMSA (s: state,a: action,S′: states reachable from
(s, a), Lmax�: maximal lists of states which can be forbidden simultaneously)

L← ∅
{S′ ordered as in previous algorithm.}
{a- Remove states which cannot be forbidden all alone, and put them as singletons
in our resulting meta-list.}
S′′ ← S′

for all s′ ∈ S′ s.t.Prmin(s′|s, a) > 0 ∨ is(s′, s) do
if is not(s′, s) then

L← L
⋃
{{s′}}

end if
S′′ ← S′′\{s′}

end for
{b- Loop through the maximal lists of states which can be forbidden simultane-
ously.}
for all l ∈ Lmax� do

for all s′ ∈ S′ up tos′ ∈ l do
if Prmin(s′|s, a) = 0 ∧ is not(s, s′) then

L← L
⋃
{l ∪ {s′}}

end if
end for

end for
returnL

4 Application
4.1 Test Problems
During its implementation, the different parts of the complete process have been tested
on various test problems. Fig. 7 shows two of these interesting cases, which are often
rather difficult to represent.

4.2 Mountain-Car
Problem — We use here the mountain-car problem as defined in[Sutton and Barto,
1998]: starting from the bottom of a valley, a car has to get enough momentum to reach
the top of a mountain (see Fig. 8). The same dynamics as described in the mountain
car software5 have been employed, with the only difference that the left boundary has
been moved from−1.2 to−2.0, creating a valley in which the car can be trapped(see
also[Buffet and Aberdeen, 2004]). The objective is to minimize the number of time
steps to reach goal.

The continuous state-space is discretized (32 × 32 grid) and the corresponding un-
certain model of transitions is obtained by sampling1000 transitions from each state-
action pair(s, a). For each transition, we computed intervals in which the true model
lies with95% confidence (cf.[Buffet and Aberdeen, 2004] Appendix B.1).

Results — In practice, we use LRTDP[Bonet and Geffner, 2003] as an improved
version of RTDP with a convergence criterion. With no prior reachability analysis,
the algorithm is unable to stop, being stuck in the new valley. Yet, a first reachability

5http://www.cs.ualberta.ca/˜sutton/MountainCar/MountainCar.html

13

Algorithm 8 REACHABILITYANALYSIS (
〈S, s0, G,A, T, c〉: USSP)
Ensure: Mark states as

reaching if they may reach a goal state or
dangerous if they may lead to a dead-end.
for all s ∈ S s.t.¬(s ∈ G) do

for all a ∈ A(s) do
Lmax�

(s,a) ← FORBIDDENFROMSA (s, a, Children(s, a))
Lmin�

(s,a) ← NOTFORBIDDENFROMSA (s, a, Children(s, a), Lmax�
(s,a))

end for
Lmin�

(s) ← NOTFORBIDDENFROMS(s, Lmin�
(s,·))

end for
(Lmin�, Lparents

(·))← ALL M INL ISTS(Lmin�
(·))

PROPAGATEREACHABILITY (Lmin�, Lparents
(·))

PROPAGATEDANGER()

[0,.8] [0,1] .1

[0,.6] [0,.5]

[0,.5]
[0,.4] [0,.2]

1

PSfrag replacements

s0

s1 s2 s3 s4

a0 a1

a2

[0,.8] [0,1] .1

[0,.6] [0,.5]

[0,.5]
[0,.4] [0,.2]

1

PSfrag replacements

s0

s1 s2 s3 s4

a0 a1

a2

Figure 7: Two of the test problems used to check the algorithms.s3 ands4 are goal
states. Transition costs are not represented.

−1.2 0.6position

acceleration
road reaction

gravity

dead−end

−2.0

goal

Figure 8: The mountain-car problem with a dead-end.

14

analysis does not show any non-reaching state. The difficulty comes in fact from a
few transition probabilities of very low value (Prmin(s′|s, a) < 0.01) which make it
practically impossible to leave the valley. We have therefore decided to consider that
such transitions can also be forbidden.

With this new criterion, a second reachability analysis finds a subset of non-
reaching states, all other states being heredangerous (so that no policy can avoid
danger). In such a case, there is no way to definitely avoid a dead-end. We can only
turn non-reaching states into new goal states with a high cost of10, 000. With this
new problem, LRTDP produces the value function from Fig. 9, where a0-valued cor-
ner indicates that this part of the state space was not visited (either avoided by rLRTDP,
or forbidden after the reachability analysis).

Long-Term Cost Function
Example Path

-0.07

-0.035

 0

 0.035

 0.07

v

-1.875
-1.25

-0.625
 0

x

 0

 2000

 4000

 6000

 8000

 10000

 12000

V(x,v)

Figure 9: Value function obtained with the help of the reachability analysis.

The reachability analysis is nearly instantaneous in this case. Most of the computa-
tion time is used by LRTDP itself.

4.3 Sailing

Problem — The sailing problem used here shares similarities with the mountain-car
task. It’s complete description can be found in[Vanderbei, 1996], and another use in
[Peret and Garcia, 2004]. Here, the space is discretized to a10 × 10 grid, ×8 wind
angles and×8 possible headings. The uncertainty of the system is due to the stochastic
changes in the wind’s direction. The uncertain model is also learned by drawing1000
samples for each state-action pair, using the sameα = 0.05.

Results — Here, the analysis is much more expensive (whereas LRTDP is very fast
to converge). This is clearly due to the fact that this second problem not only has more
states, but also more actions and more reachable states per state-action pair. Table 2
gives for each problem: number of states, number of actions, time to create the model
(including the statistical computation of interval-probabilities), time to perform the

15

reachability analysis, and time for rLRTDP to converge. All times are in seconds (on a
2.8GHz P4 with 512Mo of memory).

mountain-car sailing
#S 1024 6400
#A 2 8
Init 0.7780 5.8647

Reachability 0.2810 167.7658
rLRTDP 10.6862 1.4320

Table 1: Performance (speed) of the various algorithms. “Init” is the phase where the
model is built (including the statistical modeling).

5 Conclusion
The goal reachability checked through the algorithm presented here is an essential tool
for the robust version of RTDP we present in[Buffet and Aberdeen, 2004]. An open
question is how to use the information obtained through the reachability analysis. If
one does not want to forbid states which arereaching anddangerous , the cost
function is not sufficient for decision-making and a new (non-classical ?) preference
criterion has to be introduced.

How to use reachability and danger analyses amounts to a risk management issue:
Do we want to necessarily avoid dead-ends ? What compromise could be done ? If
even the start state isdangerous , it may be infeasible to completely avoid dead-ends.
Here are some options:

• If in a non-dangerous state, simply optimize while forbidding actions that
could lead to a dangerous state.

• If in a dangerous (but still reaching) state, try to reach a non-dangerous
state with the highest probability.

• If there is very few non-dangerous states (as in our experiment), turn dead-ends
into goal states with some very high cost.

• Introduce a non-classical preference criterion making a compromise between
danger-avoidance and low expected cost to the goal.

A first drawback of our approach is the high computation cost. Yet, the uncertain
analysis can be preceded by much more efficient certain analyses, what dramatically
speeds up the process. Appendix A gives details on this process and the experimental
results obtained.

The main remaining issue is then how to avoid enumerating the complete state-space.
In a structured domain, as in temporal planning, it would be of great interest to conduct
a symbolic analysis, as it has been done for other purposes for Finite State Automata
[Coudertet al., 1990] by using BDDs[Bryant, 1985]. The major problem should be
the algorithm producing the minimal lists inLmin�

(s,a) , what would enable to a symbolic
characterization of the AND-OR graph.

Finally, it is important to notice that the core of the algorithm presented in this doc-
ument is not specific to decision-making, but rather to uncertain Markov chains (with
goal states). It would be simple to rewrite the various procedures to that end, as Markov
chains could be described as SSPs with no costs and a single available action per state.

16

References
[Bagnellet al., 2001] J.A. Bagnell, A. Y. Ng, and J. Schneider. Solving uncertain

markov decision problems. Technical Report CMU-RI-TR-01-25, Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, August 2001.

[Bartoet al., 1995] A.G. Barto, S. Bradtke, and S. Singh. Learning to act using real-
time dynamic programming.Artificial Intelligence, 72, 1995.

[Bellman, 1957] R. Bellman. Dynamic Programming. Princeton University Press,
Princeton, New-Jersey, 1957.

[Bertsekas and Tsitsiklis, 1996] D.P. Bertsekas and J.N. Tsitsiklis.Neurodynamic
Programming. Athena Scientific, 1996.

[Bonet and Geffner, 2003] B. Bonet and H. Geffner. Labeled rtdp: Improving the con-
vergence of real time dynamic programming. InProceedings of the Thirteenth In-
ternational Conference on Automated Planning and Scheduling (ICAPS’03), June
2003.

[Bryant, 1985] R.E. Bryant. Symbolic manipulation of boolean functions using a
graphical representation. InACM/IEEE Design Automation, pages 688–694, 1985.

[Buffet and Aberdeen, 2004] O. Buffet and D. Aberdeen. Planning with robust (l)rtdp.
Technical report, National ICT Australia, november 2004.

[Buffet and Aberdeen, 2005] O. Buffet and D. Aberdeen. Robust planning with
(l)rtdp. In Proceedings of the 19th International Joint Conference on Artificial In-
telligence (IJCAI’05), 2005.

[Coudertet al., 1990] O. Coudert, J.-C. Madre, and C. Berthet. Verifying temporal
properties of sequential machines without building their state diagrams. InPro-
ceedings of the Workshop on Computer-Aided Verification, 1990.

[Givanet al., 2000] R. Givan, S. Leach, and T. Dean. Bounded parameter markov
decision processes.Artificial Intelligence, 122(1-2):71–109, 2000.

[Hosakaet al., 2001] M. Hosaka, M. Horiguchi, and M. Kurano. Controlled markov
set-chains under average criteria.Applied Mathematics and Computation, 120(1-
3):195–209, 2001.

[Munos, 2001] R. Munos. Efficient resources allocation for markov decision pro-
cesses. InAdvances in Neural Information Processing Systems 13 (NIPS’01), 2001.

[Nilim and Ghaoui, 2004] A. Nilim and L. El Ghaoui. Robustness in markov decision
problems with uncertain transition matrices. InAdvances in Neural Information
Processing Systems 16 (NIPS’03), 2004.

[Peret and Garcia, 2004] L. Peret and F. Garcia. On-line search for solving markov
decision processes via heuristic sampling. InProceedings of the 16th European
Conference on Artificial Intelligence (ECAI’2004), 2004.

[Strehl and Littman, 2004] A. L. Strehl and M. L. Littman. An empirical evaluation of
interval estimation for markov decision processes. InProceedings of the Sixteenth
International Conference on Tools with Artificial Intelligence (ICTAI’04), 2004.

[Sutton and Barto, 1998] R. Sutton and G. Barto.Reinforcement Learning: an intro-
duction. Bradford Book, MIT Press, Cambridge, MA, 1998.

[Vanderbei, 1996] Robert J. Vanderbei. Optimal sailing strategies, statis-
tics and operations research program, 1996. University of Princeton,
http://www.sor.princeton.edu/˜rvdb/sail/sail.html.

17

A Improved Reachability Analysis (in progress)
Applying the algorithms (reachability and danger analyses) designed for uncertain
SSPs is time consuming whereas in many cases, only few parts of the model require
this special treatment.

What we propose here is to apply the certain counterpart of these algorithms on an
optimistic and a pessimistic model first, to quickly obtain a classification of most states.
Then, the uncertain algorithms only need to be run on unclassified (uncertain ?) states.
As detailed below, this process can be viewed as lower- and upper-bouding a solution
with simple technics before using an exact –but costly– computation.

A.1 Upper- and Lower-Bounding Reachability Graphs
The precomputation phases work on two reachabilitu graphs obtained from the original
uncertain reachability graph:

• the lower-bounding reachability graph Glo: in which s′ is reachable froms if
there exist an actiona such thatPrmin(s′|s, a) > 0, and

• the upper-bounding reachability graph Gup: in whichs′ is reachable froms if
there exist an actiona such thatPrmax(s′|s, a) > 0.

Glo represents all transitions which are certainly valid, andGup represents all transi-
tions which could be valid. Yet, these graphs should not be seen as an “optimistic” and
a “pessimistic” graph, as the point of view may differ depending on which analysis is
being performed.

A.2 Principle
The optimistic, pessimistic and exact-computation phases are the following:

1. optimistic:

(a) useGup to perform a certain reachability analysis and get states whichmay
bereaching (and subsequently those certainly not-reaching), and

(b) useGlo to perform a certain danger analysis and get states whichare cer-
tainly dangerous .

2. pessimistic:

(a) useGlo to perform a certain reachability analysis and get states whichare
certainlyreaching , and

(b) useGup to perform a certain danger analysis and get states whichmay be
dangerous .

3. exact-computation: To complete the search forreaching and trapped
states, uncertain algorithms need to be applied to states for which nothing is cer-
tain. This amounts to:

(a) constructing the AND-OR graph for states which remain uncertain,
(b) performing the reachability analysis (starting with states known to potentially

reach a goal), and
(c) performing the danger analysis (starting with states known to be trapped).

Here, one could say that the planner is optimistic when the opponent is pessimistic
(and conversely), what the explain the inverted use ofGlo andGup with the reachability
and danger analyses. The former tells whether the planner has some hope to reach a
goal state, and the later tells if the opponent has some hope to definitely avoid a goal
state.

18

Some Implementation Details — In the various steps described above, the danger
analysis in the lower-bouding phase 2.(b) is in fact useless: uncertain information on
the danger of a state has no interest.

A second remark is that this complete process requires a three-state logic telling if a
property is true, false or unknown.

A.3 Algorithms’ Complexities
Overview — Due to the number of independent algorithms in the uncertain reacha-
bility analysis, it is a difficult task to give its algorithmic complexity with some confi-
dence. We list below the main problem’s parameters which appear to be important for
this algorithmic complexity.

Here are some notations used to compute the complexity of the various algorithms:

• |S|: number of states,

• |A|: maximum number of actions (maxs∈S |A(s)|),
• ba: maximum branching-factor for a state-action pair (i.e. maximum number of

reachable states from any state-action pair),

• b: maximum branching-factor for a state (i.e. maximum number of reachable
states from a state, considering all actions),

• bp: maximum “reverse” branching-factor for a state (i.e. maximum number of
parents for a state).

Sketched Computations of Algorithmic Complexities — With these notations, we
have the following worst-case complexities (constants are notedki):

• ForbiddenFromSA:O(k1.ba. log(ba) + k2.ba + k3.2ba)
The number of lists obtained is upper-bounded byL1 = ba!

[ba/2]!.[ba/2]! .

• NotForbiddenFromSA:O(k1.b
2
a + k2.L1.ba)

The number of lists obtained is upper-bounded byL2 = L1.ba.

• NotForbiddenFromS:O(k1.|A|.L2 + k2.L2
3)

The number of lists obtained is upper-bounded byL3 = |A|.L2.

• AllMinLists: O(k1.|S|.L3
2.bp) The number of lists obtained is upper-bounded by

L4 = |S|.L3.

The first two algorithms are called|S|.|A| times, the third one|S| times, and the
last one once. Afterwards are executed both the reachability and dangerosity analyses,
on graphs of size|S| + L4 and|S|. The preprocessing only has an effect on|S|, as it
aims at quickly determining (with analyses in certain cases) for most states if they are
reaching or dangerous .

A.4 Experiments
The various branching factors play here a noticeable role in the various formulas we
have just seen. This, and the important number of available actions, may explain the
dramatic increase in observed computation time in the sailing problem, as shown on
Table 2, column “sailing”-“raw”. Yet, the preprocessing obviously help quickly deter-
mining for most states if they arereaching or not, hence the huge speed-up observed
for each problem’s reachability analysis (columns “help”).

19

mountain-car sailing
|S| 1024 6400
|A| 2 8

raw help raw help
Init 0.7780 0.7801 5.8647 5.8670

Reachability 0.2810 0.0277 167.7658 0.4468
rLRTDP 10.6862 10.6447 1.4320 0.5442

Table 2: Average performance (duration in seconds) obtained with 100 executions
for the 3 phases: 1- modelInit ialization (including the statistical modeling), 2-
Reachability analysis and 3-rLRTDP itself.
(“raw”= “no preprocessing”, “help”= “with preprocessing”)

In the mountain-car problem, most of the state space in handled through the certain
analyses, only a small part depending on “uncertain” dynamics. In the sailing problem,
the complete state-space is handled through the certain analyses.

A surprising observation is that rLRTDP is much faster on the sailing problem when
a preprocessing phase is used. This may be linked to the fact that the computer has no
problem handling memory in this case, what may slow down rLRTDP if used after the
expensive reachability analysis on a complete uncertain graph. The same experiment
on a lake of4×4 instead of10×10 shows little difference between both cases: without
(0.0161s) and with (0.0197s) preprocessing.

20

