
Planning with Robust (L)RTDP

Olivier Buffet & Doug Aberdeen
National ICT Australia &

The Australian National University
Canberra, Australia

{olivier.buffet, doug.aberdeen }@nicta.com.au

November 15, 2004 - Revised March 14, 2005

Abstract

Stochastic Shortest Path problems (SSPs), a subclass of Markov Deci-
sion Problems (MDPs), can be efficiently dealt with usingReal-Time Dy-
namic Programming(RTDP). Yet, MDP models are often uncertain (ob-
tained through statistics or guessing). The usual approach is robust planning:
searching for the best policy under the worst model. This paper shows how
RTDP can be made robust in the common case where transition probabilities
are known to lie in a given interval.
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1 Introduction
In decision-theoretic planning, Markov Decision Problems[Bertsekas and Tsitsiklis,
1996] are of major interest when a probabilistic model of the domain is available. A
number of algorithms make it possible to find plans (policies) optimizing the expected
long-term utility. Yet, optimal policy convergence results all depend on the assumption
that the probabilistic model of the domain is accurate.

Unfortunately, a large number of MDP models are based on uncertain probabilities
(and rewards). Many rely on statistical models of physical or natural systems, such
as plant control or animal behavior analysis. These statistical models are sometimes
based on simulations (themselves being mathematical models), observations of a real
system or human expertise.

Working with uncertain models first requires answering two closely related ques-
tions: 1– how to model this uncertainty, and 2– how to use the resulting model.
Existing work shows that uncertainty is sometimes represented as a set of possible
models, each assigned a model probability[Munos, 2001]. The simplest example
is a set of possible models that are assumed equally probable[Bagnellet al., 2001;
Nilim and Ghaoui, 2004]. Rather than construct a possibly infinite set of models we
represent model uncertainty by allowing each probability in a single model to lie in an
interval[Givanet al., 2000; Hosakaet al., 2001].

Uncertain probabilities have been investigated in

• resource allocation problems[Munos, 2001], such as efficient exploration[Strehl
and Littman, 2004] and state aggregation[Givanet al., 2000], and

• policy robustness[Bagnellet al., 2001; Hosakaet al., 2001; Nilim and Ghaoui,
2004].

We focus on the later, considering a two-player game where the opponent chooses one
of the possible models to reduce the long-term utility.

Our principal aim is to develop an efficient planner for a common sub-class of MDPs
for which all policies are guaranteed to eventually terminate in a goal state: Stochastic
Shortest Path (SSP) problems. The greedyReal-Time Dynamic Programmingalgo-
rithm (RTDP) [Barto et al., 1995] is particularly suitable for SSPs, as it finds good
policies quickly and does not require complete exploration of the state space.

This paper shows that RTDP can be made robust. In Section 2, we present SSPs,
RTDP and robustness. Then Sec. 3 explains how RTDP can be turned into a robust
algorithm. Finally, experiments are presented to analyse the behavior of the algorithm,
before a discussion and conclusion.

2 Background
2.1 Stochastic Shortest Path Problems
A Stochastic Shortest Path problem[Bertsekas and Tsitsiklis, 1996] is defined here as
a tuple〈S, s0, G,A, T, c〉. It describes a control problem whereS is the finite set of
statesof the system,s0 ∈ S is a starting state, andG ⊆ S is a set of goal states.A is the
finite set of possibleactionsa. Actions control transitions from one states to another
states′ according to the system’s probabilistic dynamics, described by thetransition
function T defined asT (s, a, s′) = Pr(st+1 = s′|st = s, at = a). The aim is to
optimize a performance measure based on thecost function c : S ×A× S → R+.1

SSPs assume a goal state is reachable from any state inS, at least for the optimal
policy, so that one cannot get stuck in a looping subset of states. An algorithm solving
an SSP has to find apolicy that maps states to probability distributions over actions
π : S → Π(A) which optimizes thelong-term costJ defined as the expected sum of
coststo a goal state.

1As the model is not certain, we do not make the usual assumptionc(s, a) = Es′ [c(s, a, s′)].
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In this paper, we only consider SSPs for planning purposes, with full knowledge of
tuple defining the problem:〈S, s0, G,A, T, c〉. In this framework, well-known stochas-
tic dynamic programming algorithms such asValue Iteration(VI) make it possible to
find a deterministic policy that corresponds to the minimal expected long-term costJ∗.
Value Iteration works by computing the functionJ∗(s) that gives the expected sum
of costs of the optimal policies. It is the unique solution of the fixed point Bellman
equation:

J(s) = min
a∈A

∑
s′∈S

T (s, a, s′) [c(s, a, s′) + J(s′)] . (1)

UpdatingJ with this formula leads to asymptotic convergence toJ∗. For convenience,
we also introduce theQ-value:

Q(s, a) =
∑
s′∈S

T (s, a, s′)[c(s, a, s′) + V (s′)].

SSPs can easily be viewed as shortest path problems where choosing a path only
probabilistically leads you to the expected destination. They can represent a useful sub
set of MDPs, as they are essentially finite-horizon MDPs with no discount factor.

2.2 RTDP
Trial based2 Real-Time Dynamic Programming(RTDP), introduced in[Barto et al.,
1995], uses the fact that the SSP costs are positive and the additional assumption that
every trial will reach a goal state with probability 1. Thus, with a zero initialization
of the long-term cost functionJ , bothJ andQ-values monotonically increase during
their iterative computation.

The idea behind RTDP (Algorithm 1) is to follow paths from the start states0, always
greedily choosing actions with the lowest long-term cost and updatingQ(s, a) as states
s are encountered. In other words, the action chosen is the one expected to lead to the
lowest future costs, until the iterative computations show that another action may do
better.

Algorithm 1 RTDP algorithm for SSPs
RTDP(s:state)// s = s0

repeat
RTDPTRIAL (s)

until // no termination condition

RTDPTRIAL (s:state)
while ¬GOAL(s) do

a =GREEDYACTION(s)
J(s)=QVALUE (s, a)
s =PICKNEXTSTATE(s, a)

end while

RTDP has the advantage of quickly avoiding plans that lead to high costs. Thus,
the exploration looks mainly at a promising subset of the state space. Yet, because
it follows paths by simulating the system’s dynamics, rare transitions are only rarely
taken into account. The use of a simulation makes it possible to get good policies early,
but at the expense of a slow convergence, because of the bad update frequency of rare
transitions.

2We always assume a trial based RTDP implementation.
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2.3 Robust Value Iteration
Pessimism and Optimism — We now turn to the problem of taking the model’s
uncertainty into account when looking for a “best” policy. The (possibly infinite) set
of alternative models is denotedM.

A simplistic approach computes the average model overM, or the most probable
model inM, then uses standard SSP optimization methods. Such approaches guaran-
tee nothing about the long-term cost of the policy if the true model differs from the one
chosen for optimization.

We follow the approach described in[Bagnellet al., 2001], that consists of finding a
policy that behaves well under the worst possible model. This amounts to considering
a two-player zero-sum game where a player’s gain is its opponent’s loss. The player
chooses a policy over actions while its “disturber” opponent simultaneously chooses a
policy over models (as this is a simultaneous game, optimal policies can be stochastic).
This results in a max-min-like algorithm:

max
πM∈ΠM

min
πA∈ΠA

JπM,πA
(s0).

As illustrated by Figure 1, this is a Stochastic Shortest-Path Game (SSPG) as de-
scribed in[Patek and Bertsekas, 1999], where are proved the existence of a solution
and the convergence of Value Iteration.
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a1: shoot-left
a2: shoot-right
s′1: success
s′2: failure

A simple example to show why this problem
is a simultaneous game is that of a player
trying to score a goal, having the choice be-
tween two actions: shoot-left (a1) and
shoot-right (a2). The environment’s dy-
namics are mainly linked to the goal-keeper’s
behavior, which may (randomly)dive-left
or dive-right . The optimal policy for the
“opponent” is a mixture strategy: probabilityp
to dive-left and 1 − p to dive-right ,
with p ∈ [0, 1]. The result of both decisions is
either a success (s′1) or a failure (s′2). If the goal-
keeper’s behavior were deterministic, it would
be easy to adapt and always score goals.

Figure 1: A simple example to show why this problem is a simultaneous game

It is also possible to be optimistic, considering that both players collaborate (as they
endure the same costs), which turns themax into a min in previous formula. This
second case is equivalent to a classical SSP where a decision consists of choosing an
action and a local model.

Locality — Such a max-min algorithm would be particularly expensive to imple-
ment. Even restricting the search to a deterministic policy over models, it requires
computing the optimal long-term cost function for each model before picking the worst
model found and the optimal policy associated with it. However, a simpler process may
be used to computeJ while looking simultaneously for the worst model. It requires the
hypothesis that next-state distributionsT (s, a, ·) are independent from one state-action
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pair (s, a) to another. This assumption does not always hold. However, this makes
things easier for the opponent because it now has larger set of models from which to
choose. This consequence is conservative for producing robust policies.

Because we assume independence at the state-action level (not only at the state
level), it is equivalent to a situation where the second player makes a decision de-
pending on the current state and the first player’s action. This situation amounts to
a sequential game (see Fig. 2) where the previous players move is known to the next
player: both players can act in a deterministic way without loss of efficiency.

Coming back to the goal-scoring example, the
independence assumption amounts to say that
the behavior of the goal-keeper will not be the
same depending on the player’s action (what is
here not realistic). In this case, the worst case
for the player is the goal-keeper jumping right
(respectively left when actiona1 (resp. a2) is
chosen i.e.,p1 = 0 andp2 = 1.
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Figure 2: How the independence assumption turns a simultaneous game in a sequential
one

The result of this assumption is that the worst model can be chosen locally whenQ
is updated for a given state-action pair. As can be seen from Algorithm 2, the worst
local modelma

s may change whileQ-values evolve. Previous updates of reachable
states’ long-term costs may change their relative ordering, changing which outcomes
are considered to be worst.

Algorithm 2 Robust Value Iteration (for an SSP)
Initialize J to 0.
repeat

for all s: statedo
for all a: actiondo

Qmax(s, a)← maxma
s∈Ma

s

∑
s′∈S Tma

s
(s, a, s′)

[
J(s′) + cma

s
(s, a, s′)

]
end for
J(i)← mina∈A Qmax(s, a)

end for
until J converges

The key contribution of this paper is to show that RTDP can be maderobust, al-
lowing for planning in very large and uncertain domains, retaining worst (or best) case
behaviour guarantees.

3 Robust RTDP
From now on, we considerinterval-baseduncertain SSPs, whereT (s, a, s′) is known
to be in an interval[Prmin(s′|s, a), P rmax(s′|s, a)]. Figure 3 is an example. We dis-
cuss the pessimistic approach, the optimistic one leading to similar results.

For a given state-action pair(s, a), there is a listR = (s′1, · · · , s′k) of reach-
able states. For each reachable stateT (s, a, s′i) ∈ Ii = [pmin

i , pmax
i ]. Thus, pos-

5



s0

a1

s1

a0

[.7] [.7]

[.3][.3]

(c=1) (c=.87)

a) certain SSP

s0

a1

s1

a0

[.5,.9]

[.1,.5]

[.7,.7]

[.3,.3]

(c=1)

(c=1) (c=.8)

(c=.9)
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Figure 3: Two views of one SSP, depending on whether model uncertainty is taken into
account (costs in parenthesis). In the uncertain SSP, actiona0 will be prefered as it
quickly reaches the goals1.

sible models are the ones that comply with these interval constraints while ensuring∑
i T (s, a, s′i) = 1. Fig. 4 illustrates this with three reachable states.
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Figure 4: A triangle is a probability simplex representing all possible probability distri-
butions with three different outcomes (Pr(s′i) = 1 at thes′i vertex). On the left triangle
is the trapezium showing the interval constraint fors′1. The right triangle shows possi-
ble models at the intersection of the three interval constraints.

Worst Local Models — The maximisation step to computeQ(s, a) in Alg. 2 is done
by giving the highest probability to the worst outcome. This requires firstly sorting
reachable states in decreasing order of the values:c(s, a, s′1) + J(s′1) ≥ c(s, a, s′2) +
J(s′2) ≥ · · · c(s, a, s′k) + J(s′k). Then, the worst distribution is the one giving the
highest probability to the first states′1, then tos′2, and so on up tos′k. As pointed out in
[Givanet al., 2000], this is equivalent to finding the highest indexr ∈ [1..k] such that

r−1∑
i=1

pmax
i +

k∑
i=r

pmin
i ≤ 1.

The resulting transition probabilities are

Pr(s′i) =
{

pmax
i if i < r

pmin
i if i > r

(2)

Pr(s′r) = 1−
k∑

i=1,i 6=r

Pr(s′i). (3)

Using the pre-computed boundBmin =
∑k

i=1 pmin
i , Alg. 3 gives a complete imple-

mentation. Theinsertion sortalgorithm3 is chosen as the list will usually be ordered

3http://en.wikipedia.org/wiki/Insertion sort
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from previousJ updates.

Algorithm 3 Worst Model for State-Action Pair(s, a)
WORSTMODEL(s: state,a: action)
R = (s′1, · · · , s′k) = REACHABLESTATES(s,a)
SORT(R)
i = 1, bound = Bmin

while (bound− pmin
i + pmax

i < 1) do
bound← bound− pmin

i + pmax
i

Pr(s′i)← pmax
i

i← i + 1
end while
r = i
Pr(s′r)← 1− (bound− pmin

r )
for all i ∈ {r + 1, . . . , k} do

Pr(s′i)← pmin
i

end for
return(R,Pr(·))

To summarise, Robust VI on an interval-based SSP consists of applying normal
Value Iteration with the transition probabilities updated through Alg. 3.

We need only a single worst model to compute the correspondingQ-value. Yet,
because several reachable statess′i may have the same valuec(s, a, s′i) + J(s′i) ass′r
(we call this set of statesS′r), there may be an infinite number of equivalent worst local
models. Any model differing only in how the probability mass is distributed among the
equally bad states ofS′r is also a worst local model.

Worst Global Models — Contrary to VI, RTDP does not necessarily visit the com-
plete state-space. This is why[Barto et al., 1995] introduces the notion ofrelevant
states, which we extend to the uncertain case: a states is said to berelevantforM if
there exists a start states0, a modelm ∈M and an optimal policyπ under that model
such thats can be reached from states0 when the controller uses that policy under that
model.

This notion is important because two equally worst local models on a given state-
action pair may forbid different states, so that for two modelsm1 andm2, a state may
be relevant inm1 but not inm2. Yet, RTDP should not find an optimal policy just
for the relevant states of only one worst global model. Neither does the policy have to
apply to all possible states. It should apply to allreachablestates underanymodel (for
optimal policies) i.e., for relevant states. But covering all relevant states in the worst
model used for updatingQ-values does not necessarily cover all relevant states inM:
it depends on the model used to choose the next state, i.e., to simulate the system’s
dynamics.

To avoid missing relevant states, each local model used for the simulation should
ensure that all reachable states can be visited. As can be seen in Fig. 6, the set of
possible local models for a state-action pair is ann-dimensional convex polytope. Any
modelinsidethis polytope, excluding the boundary, is therefore adequate because, for
all s′i, it ensures thatP (s′i|s, a) > 0.

So there exists a global modelmd that can be used to effectively simulate the sys-
tem’s dynamics without missing any potentially reachable state.

3.1 Robust (Trial-Based) RTDP
RobustRTDP differs from the original RTDP in that:
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Transition(s0, a0) → s1 (and any other
transition leading tos1 may be forbidden
in all worst models. Yet, robust planning
should tell what to do from states1, in
case the true model can lead to it.

Figure 5: Why relevant states forMmay not be relevant for any worst global model.
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A model on the boundary of the sim-
plex (asmb) forbids at least one po-
tentially reachable state. Thus, the
model used to simulate the dynamics
should beinsidethe polytope of possi-
bles models, in a view to ensure that all
relevant states ofM are visited.

Figure 6: Why only a modelinside the polytope of possible models can be used to
simulate the system’s dynamics

• Each time the algorithm is updating a state’s evaluation, an opponent is looking
for a worst local model which serves to compute theQ-values.

• For exploration purposes, the algorithm follows dynamics of the system that con-
sider all possible transitions (using modelmd).

• “Relevant” states are now the states reachable by following any optimal policy
under any possible model.

From this, we adapt to our context convergence Theorem 3 from[Bartoet al., 1995]
and the corresponding proof, discussing mainly its changes.

Theorem 1. In uncertain undiscounted stochastic shortest path problems,robust
Trial-Based RTDP with the initial state of each trial restricted to a set of start states,
converges (with probability one) toJ∗ on the set of relevant states, and the controller’s
policy converges to an optimal policy (possibly nonstationary) on the set of relevant
states, under the following conditions:

1. the initial cost of every goal state is zero,

2. there is at least one proper policy,4

4If trials are allowed to time out before a goal state is reached, it is possible to eliminate the
requirement that at least one proper policy exists. Timing out prevents getting stuck in fruitless
cycles, and the time-out period can be extended systematically to ensure that it becomes long
enough to let all the optimal paths be followed without interruption.
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3. all immediate costs incurred by transitions from non-goal states are positive, i.e.,
ci(a) > 0 for all non-goal statesi and actionsa ∈ A(i), and

4. the initial costs of all states are non-overestimating, i.e.,J0(i) ≤ J∗(i) for all
statesi ∈ S.

Proof. (more details in Appendix A) The proof in[Bartoet al., 1995] shows that states
infinitely updated by RTDP are all the relevant ones, so that a classical convergence
proof on SSPs can be invoked if restricting the SSP to relevant states.

A first remark is that introducingmaxm∈M in the update formula does not change
the fact thatJt is increasing and non-overestimating.

In our case, the use of the modelmd ensures similarly that states infinitely updated
by robustRTDP are all relevant ones (of the uncertain SSP).

We have established that we are in sequential Stochastic Shortest Path Games
(SSPGs). Bertsekas and Tsitsiklis[1996] establish that these are a special case of
general SSPGs. The convergence of general SSPGs is proved in Patek and Bertsekas
[1999] (Proposition 4.6), which states that long-term costs converge with probability1
on the set of relevant states.

Whatever the true model, the algorithm learns all optimal decisions in any relevant
state under the more pessimistic assumption. Importantly, a relevant states may be not
be reachable through a worst global model, but the true environment may lead to that
state. So the policy must cover all relevant states but always assumes that the worst
model will apply afterwards.

4 Experiments
LabelledRTDP[Bonet and Geffner, 2003] is a modified version of RTDP which can
be made robust in a similar way. The experiments conducted illustrate the behavior of
robust LRTDP. To that end, it is compared to Bagnellet al.’s Robust Value Iteration,
as well asLRTDP. In all cases, the convergence criteria isε = 10−3 for LRTDP, and
for VI we stop when the maximum change in a state long-term cost over one iteration
is less than10−3.

4.1 Heart
In this first experiment, we compare a non-robust optimal policy with a robust one on
the small example of Fig. 3-b. Table 1 shows the theoretical expected long-term costs
of each policy on the normal (most probable) model, as well as the pessimistic and
optimistic ones. The robust policy is largely better in the pessimistic case.

Table 1: Theoretical evaluation of robust and non-robust policies on various models,
exactly matched by empirical evaluation.

Normal Pessimistic Optimistic
Non-robust 2.90 8.90 1.70

Robust 3.33 3.33 3.33

Fig. 7 shows the theoretical cost-to-goal, integrated over all possible models in the
interval, for a given interval2r. Each point represents the integral calculation divided
by the width of the interval.

This allows us to state, for example, that for an interval of 0.4 (corresponding to
Fig. 3-b and Table 1), the optimalnon-robust policy has an average cost-to-goal of
3.52over all possible models, and since the average cost-to-goal for the robust case is
a constant3.33, the robust policy is safer if we do not know which model represents re-
ality. This assumes all models are equally probable. The limit caser = .3 corresponds
to the goals1 being unreachable through actiona1 which loops tos0.
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Figure 7: Average cost of the non-robust policy with equiprobable models but with
variable uncertainty.

4.2 Mountain-Car
We use here the mountain-car problem as defined in[Sutton and Barto, 1998]: starting
from the bottom of a valley, a car has to get enough momentum to reach the top of a
mountain (see Fig. 8). The same dynamics as described in the mountain car software5

have been employed. The objective is to minimize the number of time steps to reach
goal.

−1.2 0.6position

acceleration
road reaction

gravity

goal

Figure 8: The mountain-car problem.

• State space:−1.2 ≤ x ≤ 0.6 and−0.07 ≤ v ≤ 0.07.

• Actions:a = +1 (go right) anda = −1 (go left).

• Dynamics of the system[Sutton and Barto, 1998] (time-step = 1 second):{
xt+1 = xt + vt

vt+1 = vt + 0.001 ∗ at − 0.0025 ∗ cos(3.xt)

• Cost: 1 per time-step (second).

• Starting situation:x = −0.5, v = 0
• Goal:x ≥ 0.5 (corresponds to an additional goal state)

The continuous state-space is discretized (32 × 32 grid) and the corresponding un-
certain model of transitions is obtained by sampling1000 transitions from each state-
action pair(s, a). For each transition, we computed intervals in which the true model
lies with95% confidence (using the process described in Appendix B.1).

5http://www.cs.ualberta.ca/˜sutton/ · · ·
MountainCar/MountainCar.html
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Results — Preliminary remark: simulating a path generally shows a car oscillating
several times before leaving the valley. This has two main explanations: 1- the speed
gathering is just sufficient to reach the summit, but not over it; and 2- the discretized
model is not accurate enough and applying the policy obtained on the true mathematical
model (instead of the discretized one) should be much better.

Fig. 9 shows the long-term cost function obtained by usingvalue iteration, LRTDP,
and their robust counterparts on the mountain-car problem. Thex andy axes are the
car’s position and speed. Thez axis is the expected cost to the goal. On the surface is
an example path from the start state to a goal state: it follows the greedy policy under
the average model.

The general shape of the surface obtained is always the same, with some unexplored
parts of the state-space in LRTDP and Robust LRTDP (as expected). The vertical scales
are much larger in robust cases. This reflects the fact that reaching the goal is much
more time-consuming under a pessimistic model. BecauseJ can here be interpreted
as the average time to the goal, these graphs show how a small uncertainty can lead to
longer policies. Here the times are multiplied by more than2.5.

While executing the four different algorithms, an evaluation of the current greedy
policy was made every10 ∗ nStates = 10 240 Q-value updates. The result appears
in Fig. 10, they axis being the expected cost to the goal from the start state. On
both sub-figures, LRTDP-based algorithms obtain good policies quickly, but have slow
convergence times of VI=2.83 × 106 updates, LRTDP=6.76 × 106, rVI=8.31 × 106,
rLRTDP=11.06× 106.

4.3 Sailing
The sailing problem used here shares similarities with the mountain-car task. It’s com-
plete description can be found in[Vanderbei, 1996], and another use in[Peret and
Garcia, 2004]. Here, the space is discretized to a10 × 10 grid, ×8 wind angles and
×8 possible headings. The uncertainty of the system is due to the stochastic changes
in the wind’s direction. The uncertain model is also learned by drawing1000 samples
for each state-action pair, using the sameα = 0.05.

Results
The same tests as in the mountain-car problem have been conducted. The long-term
cost functions obtained show similar phenomena such as the time increase. Only Figure
11 is of particular interest, as it shows how quickly LRTDP-like algorithms converge.
In this higher-dimensional problem, finding solutions takes more time at the beginning,
but LRTDP proves to be very efficient at pruning inefficient paths. In fact, most solved
states are along the main diagonal of the lake (most side states can be avoided by the
optimal policy). For the various algorithms, the time to converge is: VI=3.67 × 106,
LRTDP=0.49× 106, rVI=5.22× 106, rLRTDP=0.60× 106.

4.4 Temporal Decision-Theoretic Planning
Our work with the Australian Defence Science Technology Organisation is exploring
a general probabilistic planning domain that considers concurrent tasks, resource allo-
cation, and uncertain outcomes[Aberdeenet al., 2004]. The aim is to maximize the
probability of operation success while also minimizing plan duration and resource use.
Our planner accepts a modified version of Probabilistic PDDL[Younes and Littman,
2004]. All actions are grounded (no variables), and only conjunctions of (possibly neg-
ative) effects and conditions are allowed. Effects and conditions can be applied at the
start or end of tasks, as well as over the duration of a task. The space of plans described
by our language corresponds closely with the types of plans that can be entered using
planning aids such as Microsoft Project.

Planning staff use a graphical interface to specify tasks, their preconditions, effects,
and resource requirements. They also specify a probability of task failure (which se-
lects different effects and resource use). Staff use their expertise and intuition to choose
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d) Robust LRTDP

Figure 9: Long-term cost functions for the mountain-car problem
In all cases, the most likely model is used to generate the example path.12
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b) Robust Algorithms

Figure 10: Average cost to goal for the mountain-car problem, measured every10 ∗
nStates updates ofQ-values.

probabilities, but they are often slightly, or entirely, wrong. For example, in the build-
ing industry, the success of a concrete pour might be effected by the probability of
rain over the period of the pour — a highly uncertain quantity. There is no feedback
mechanism available to check the accuracy of probabilities because the plan is rarely
implemented more than once in the real world. If humans also provide a confidence
interval on their probability assignments we can significantly improve the plan’s worst
case performance.

We experiment on two scenarios in our language. The first consists of 15 tasks
designed to represent the high level process of building a sky-scraper. These tasks
achieve a set of 10 conditions needed for operation success. Four of the effects can
be established independently by two different tasks, however resource constraints only
allow one of the tasks to be chosen. We have constructed this example to demonstrate
the effectiveness of planning with intervals. Thus, for each effect that has two tasks
that can achieve it, we have selected one task to have a high probability of success, but
also a high uncertainty. The second task has a lower probability of success, but a an
interval of 0. The second (lower) probability of success is chosen to be higher than
the lower boundon the first tasks success probability. The robust plan should (and
does) choose tasks with the lower probability of success, but zero interval. Table 2
shows that the results of evaluating the robust and non-robust plans assuming: 1- the
original human specified model, 2- the pessimistic model, 3- the optimistic model.
Because optimization has a stochastic component, the results presented are the average
over 100 training runs each evaluated with 1,000,000 simulations of the resulting plan.
Each LRTDP plan optimization ran for a maximum of 10s.

13
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Figure 11: Average cost to goal for the sailing problem measured every2 ∗ nStates
updates ofQ-values.

We can see that the robust plans perform much better in the pessimistic case, and
in general have more uniform cost over different models (but this is not necessarily
the case for other domains). However, averaged over just these 3 extreme points, the
non-robust has an advantage demonstrating that this method may cause you to be non-
optimal under most models.

The second data set is a small military operations planning scenario based on cap-
turing a small island[Aberdeenet al., 2004]. It defines 18 tasks and 11 conditions
based on a real military planning data. The original data does not define uncertainty
intervals so we added a random interval to each task probability (maximum interval of
±30%). The point of this experiment is to demonstrate the sensitivity of the plans to
changes in probabilities. On a single plan optimized for 10 minutes both robustly and
non-robustly, and evaluated over 1,000,000 evaluation trials, the worst case long-term
cost dropped from 1066 to 972 under robust planning and resulted in a different plan.

Norm. Pessimistic Optimistic Avg.
Non-robust 284 732 114 376
Robust 500 563 404 489

Table 2: Average total cost of the optimized Building plan. Cost is a function of failure
probability, plan duration, and resource use; however in these experiments the cost is
dominated by failure probability. (The failure probability is approximately the total
cost/1000.)
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In general a small change in probability can result in a large change in plan. Planning
with intervals can provide some assurance that a small error in probabilities will not
catastrophically worsen the average total cost.

5 Discussion and Conclusion
An interesting work on robust MDPs is Hosakaet al. [2001]. The developed theory
is difficult to implement, but it introduces the idea that one should not only look at
policies that are optimal under the worst model but choose, among the policies that have
optimal long-term cost for the worst models, one that is best under optimistic models.
This is possible in the RTDP framework as it can be simply modified to assume the
best model after optimizing for the worst model. A problem is to do this efficiently:
only a pessimist long-term cost function can benefit from an optimist one (the later
underestimates the former). This has recently been addressed (see Appendix C).

The approach to robustness adopted in this paper considers the knowledge of a set
of possible models. An open question is whether it is possible to use more information
from our uncertain model, by taking the probability distribution over possible models
into account.

Model uncertainty has similarly been considered in model learning while planning
[Strehl and Littman, 2004]. The algorithm proposed is optimistic, but does not seem to
adapt well to our framework as an evolving model can break the “no-overestimation”
assumption:∀s ∈ S, t ≥ 0, Jt(s) ≤ J∗(s). It is still important to notice thatrobust
RTDP would not suffer on-line, as the real dynamics can be employed to pick a next
state (the worst model appearing only in the long-term cost update formula).

Finally, a crucial assumption in RTDP is that a goal state must be reachable from
any state. We present an algorithm tackling this problem in[Buffet, 2004].

Conclusion — Recent works show that model uncertainty is a major issue in
decision-theoretic planning. We have proposed a modification of the RTDP algorithm
enabling it to compute robust policies efficiently in large and uncertain domains. Model
uncertainty is represented through confidence intervals on transition probabilities. The
convergence of the resulting algorithm is proved. We demonstrate robust LRTDP on
various domains where statistics are used to estimate appropriate intervals.
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A Complete Proof of Theorem 1
Proof. This proof follows the convergence proof of Trial-Based RTDP presented in
[Bartoet al., 1995], the differences being marked by previous text stroken through and
new text in bold. We only consider the special case in which only the cost of the current
state is backed up at each time interval, i.e.,6 Bt = {st} andkt = t, for t = 0, 1, . . . .
As in [Bartoet al., 1995], we can observe that the proof does not change when eachBt

is allowed to be an arbitrary set containingst.
Let G denote the goal set and letst, at, mt andJt respectively denote the state,

action, local model and evaluation function at time stept in an arbitrary infinite se-
quence of states, actions, local models and evaluation functions generated by robust
Trial-Based RTDP starting from an arbitrary start state.

6We follow Bartoet al.’s notations whereBt is the set of states updated at time stept andkt

is the total number os asynchronous dynamic programming stages completed up to timet.
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First observe that the evaluation functions remain non-overestimating, i.e., at any
time t, Jt(i) ≤ J∗(i) for all statesi. This is true by induction becauseJt+1(i) = Jt(i)
for all i 6= st and ifJt(j) < J∗(j) for all j ∈ S, then for allt

Jt+1(st) = min
a∈A(i)

max
ma

i ∈Ma
i

cst(a) +
∑
j∈S

p
ma

i
stj

(a)Jt(j)


≤ min

a∈A(i)
max

ma
i ∈Ma

i

cst(a) +
∑
j∈S

p
ma

i
stj

(a)J∗(j)


= J∗(st),

where the last equality restates the Bellman Optimality Equation.It is also important
to note that Jt is here again increasing, what justifies the greediness of (robust)
RTDP.

Let I ⊆ S be the set of all states that appear infinitely often in this arbitrary sequence;
I must be nonempty because the state set is finite. LetAd(i) ⊂ A(i) be the set of
admissible actions for statei that have zero probability of causing a transition to a state
not in I, i.e., Ad(i) is the set of all actionsa ∈ A(i) such thatpij(a) = 0 for all
j ∈ (S − I), considering the modelmd used to pick the next state. Because states
in S − I appear a finite number of times, there is a finite timeT0 after which all states
visited are inI. Then with probability one any action chosen an infinite number of
times for any statei that occurs afterT0 must be inAd(i) (or else with probability
one a transition out ofI would occur), and so with probability one there must exist
a timeT1 > T0 such that for allt > T1, we not only have thatst ∈ I but also that
at ∈ Ad(st).

We know that at each time stept, RTDP backs up the cost ofst becausest ∈ Bt.
We can write the backup operation as follows:

Jt+1(st) = min
a∈A(i)

max
ma

i ∈Ma
i

cst
(at) +

∑
j∈I

p
ma

i
stj

(at)Jt(j)

+
∑

j∈(S−I)

p
ma

i
stj

(at)Jt(j)

 . (4)

But for all t > T1, we know thatst ∈ I and thatpma
i

sti
(at) = 0 for all j ∈ S − I

becauseat ∈ Ad(st). Thus, fort > T1 the right-most summation in Eq. (4) is zero
(∀m ∈ M, pm

sti
(at) = 0). This means that the costs of the states inS − I have no

influence on the operation of RTDP afterT1. Thus, afterT1, robust RTDP performs
asynchronous DP on aMarkovian decisionproblemsequential stochastic shortest
path gamewith state setI. From now on, we view our problem as a simultaneous
stochastic shortest path game. As pointed out in[Bertsekas and Tsitsiklis, 1996],
Section 7.2, a sequential game is just a particular case of simultaneous game.

If no goal states are contained inI, then all the immediate costs in thisMarkovian
decisionproblemstochastic shortest path gameare positive. Because there is no
discounting, it can be shown that asynchronous DP must cause the costs of the states in
I to grow without bound. But this contradicts the fact that the cost of a state can never
overestimate its optimal cost, which must be finite due to the existence of a proper
policy. ThusI contains a goal state with probability one.

After T1, therefore,robust Trial-Based RTDP performs asynchronous DP on a
stochastic shortest pathproblemgamewith state setI that satisfies the conditions of the
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convergence theorem for asynchronous DP applied to undiscounted stochastic shortest
pathproblemsgames(BertsekasandTsitsiklis [12, Proposition3.3, p. 318])([Patek
and Bertsekas, 1999], Proposition 4.6). Consequently,robust Trial-Based RTDP
converges to the optimal evaluation function of this stochastic shortest pathproblem
game under the optimal pessimistic models. We also know that the optimal evalu-
ation function for this problem is identical to the optimal evaluation function for the
original problem restricted to the states inI because the costs of the states inS − I
have no influence on the costs of states inI after timeT1.

Furthermore, with probability oneI contains the set of all states reachable from any
start state via any optimal policy,and with any possible model. Clearly,I contains
all the start states because each start state begins an infinite number of trials.Robust
Trial-Based RTDP always executes a greedy action with respect to the current evalua-
tion function and breaks ties in such a way that it continues to execute all the greedy
actions. Because we know that the number of policies is finite and that Trial-Based
RTDP converges to the optimal evaluation function restricted toI, there is a time after
which it continues to select all the actions that are greedy with respect to the optimal
evaluation function, i.e., all the optimal actions. Thus with probability one,I contains
all the states reachable from any start state via any optimal policyunder any possi-
ble model, and there is a time after which a controller using RTDP will only execute
optimal actions.

Finally, with trivial revision the above argument holds if RTDP backs up the costs of
states other than the current state at each time step, i.e., if eachBt is an arbitrary subset
of S.

B Obtaining an Interval-Based Model
This appendix presents practical ways of obtaining an uncertain interval-based model:

• a method for computing confidence intervals from available statistics, and

• a process to turn a temporal planning problem with uncertain task outcomes into
a USSP.

B.1 Computing Confidence Intervals from Statistics
Uncertain models can be learnt if real or simulated state transition data is available. The
information we have about a given transition(s, a)→ s′ comes fromN uses of action
a in states, n of them which led to states′. So, our maximum-likelihood estimate of
the true probabilityT (s, a, s′) is p = n/N . With a simple uniform prior over[0, 1] (all
transition probabilities being equiprobable from our point of view), the central limit
theorem states that the sample distribution approaches a normal distribution with a
decreasing variance as the sample sizeN increases. This fact can be used to compute
a confidence interval around the estimated probabilityp:

I = [p− z.σp, p + z.σp],

wherez depends on the desired level of confidence, and the standard error of the pro-
portion is estimated by

σp =

√
p(1− p)

N
.

Calculatingz requires us to decide of a level of confidence. This is done by choosing
the probabilityα that the true valueT (s, a, s′) is out of the confidence interval or,
conversely thatPr(T (s, a, s′) ∈ I) = 1−α. Usingα = 0 would make any estimation
p ∈ (0, 1) correspond to probability intervals[0, 1], sincePr(T (s, a, s′) ∈ I) = 1 is
achieved only when all possible models are considered. With a confidence levelα, z is
the unique solution of

erf(
z.σp√

2
) = 1− α,
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whereerf is the error function[Abramowitz and Stegun, 1972]7

erf(x) =
2√
π

∫
[0,x]

e−t2dt,

yielding

z =
√

2
σp

.erf−1(1− α). (5)

This process requires the extra constraint that intervals must stay in[0, 1]. If the
estimationp is 0 or 1, the estimated standard errorσp is zero and the interval is reduced
to a point (see Fig. 12). Whether we accept this or impose a minimum interval is
domain dependent.

The central limit theorem provides us with a complete probability distribution over
possible models.8 But our approach to taking uncertainty ignores the probability of
each feasible model.
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Figure 12: Radius of a confidence interval depending on the estimated proportion

B.2 Uncertain Model for Temporal Planning
We consider a temporal planning setting where each action can start several tasks. The
resulting state depends on the probabilistic outcome of running tasks, on their durations
and on the resources they consume. Here we assume that the task outcome probabilities
are:
• assigned by a human expert who also gives an estimate of how certain they are, in

the form of intervals around the probability values, or

• learned through experience (using the process described in previous section).
States are generated from task descriptions the first time they are visited so we never

generate the entire state space. The process starts from the current state. A list of valid
actions for this state is generated, corresponding to the power set of tasks with satisfied
pre-conditions. Future states are generated by applying the effects of each action and
adding future — possibly probabilistic — effects of the action to an event queue for the
newintermediatestate. To generate the successor states for a particular action, we take
the intermediate state and process events in the queue until an event allows new tasks
to be started, i.e., a state in which we can choose a new action. Processing probabilistic
events splits the search for successors, as shown in Figure 13. The root is the current
states after applying theimmediateeffects of actions. Eventse1, e2 are processed
and each arc going out of an event corresponds to a possible outcome, labeled with its
probability interval, and leaves are reachable states froms under a particular action.

7http://mathworld.wolfram.com/Erf.html
8A better approach should be that of[Weissmanet al., 2003], used for example by[Strehl

and Littman, 2004].
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Figure 13: Computing the states reachable from current state.

In Figure 13 the probability of evente1’s left outcome (leading tos′1) lies in the
interval I left

e1
= [.3, .4], and the probability of reaching event nodee2 is Pr(e2) ∈

I right
e1 = [.6, .7]. This tree is built by considering the events one after another. States

appearing several times in the tree are merged. The uncertain probabilities known
for the outcomes of an event are used to compute the probability intervals of next
event or reachable state in the tree. The probability of reachings′2 is for example:
Pr(s′2) ∈ I right

e1 .I left
e2

= [.6 ∗ .0, .2 ∗ .7].
Robust RTDP requires that the model parameters are independent from one state-

action pair to another. However, in the temporal planning domain, an action starts
multiple tasks and several actions may start the same task. States represents the status
of all tasks. Thus selecting the worst model, by choosing a fixed point in aT (s, a, s′)
transition probability interval, implies that we have selected a fixed probability of fail-
ure for all tasks involved in that transition, and that fixed probability should be applied
to all other transition intervalsT (s′′, a′, s′′′) involving the same tasks. Ignoring these
dependencies has the effect of allowing the disturber to select a model that is not in
the original setM, and can consequently be even more pessimistic than is strictly
necessary.

C Being Optimistic After Being Pessimistic (work in progress)
The main idea, taken from[Hosakaet al., 2001] is that being robust should not mean
only looking for a best policy under worst models. Among these policies, one can
extract one that behaves better than others under the best model. In other words, one
can be optimistic after having been pessimistic.

In the case of the uncertain SSP presented on Fig. 14, optimal actions under worst
models area0 anda1 (because of the propability0.9 of coming back to states0. Yet,
a1 should be prefered as it leads to a better outcome under an optimistic model.

C.1 How to Compute the Various Long-Term Cost Functions
The set of relevant states we care about is that of relevant states under worst models
(and corresponding best policies).

We define three long-term cost functions:

• Jpess, the usual one in robust algorithms: the long-term cost function under worst
models (pessimistic long-term cost),

• Jopt, the opposite notion: the long-term cost function under best models (opti-
mistic long-term cost), and

• Joap, the function we are interested in: the long-term cost function under best
models when allowing only decisions which are optimal with respect toJpess.
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Figure 14: An uncertain SSP with two deterministic robust policies, one being better
when adopting an optimistic point of view.

One can note that, for alls ∈ S: Jopt(s) ≤ Joap(s) ≤ Jpess(s). It follows, consid-
ering the greedy nature of RTDP, thatJopt can be used as an initialization ofJoap or
Jpess. ButJpess cannot useJoap since the later is computed thanks to the former (Voap

requires restraining the set of actions to the “robust” ones).
Yet, computingJopt could help saving computation time only in the first of the two

possible algorithms we propose:

• 1-Use RTDP (with optimistic models) to computeJopt which will serve as an
initialization, 2- use RTDP (with pessimistic models) to computeJpess, and 3-
use RTDP (with optimistic models) with actions restricted to the ones optimal
underJpess to computeJoap.

• Use RTDP (with pessimistic models) to computeJpess and simultaneously com-
puteJoap. Joap will converge only afterJpess, as it needs that optimal decisions
are stable.

We have decided to follow the second approach, as it involves only minor modifica-
tions. The fact thatJoap may not be non-decreasing is not a problem as this property is
required only for exploration purposes.

C.2 Modifications of LRTDP
As we are using in practice LRTDP[Bonet and Geffner, 2003], we have to take particu-
lar care of a view implementation details. Indeed, one can notice that LRTDP does not
respect one requirement of RTDP[Bartoet al., 1995]: the fact that all equally greedy
actions should be equally chosen. This could be forgotten if being pessimistic only,
but it is essential in the current process. This problem can be corrected through minor
changes:

• greedyAction() has to pick an action randomly among all best actions (not
always the same),

• checkSolved() has to consider all reachables states of states, considering all
best actions (not one best action only), and

• checkSolved() has to check simultaneously for the residual related toJpess

and the one related toJoap before deciding if a state issolved .
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