
Optimal Priority Assignment Algorithms for Probabilistic Real-Time Systems

Dorin Maxim∗, Olivier Buffet∗, Luca Santinelli∗, Liliana Cucu-Grosjean∗ and Robert I. Davis]
∗ INRIA, Nancy Grand-Est, France

] University of York, Real-Time Systems Research Group, United Kingdom
firstname.lastname@inria.fr, rob.davis@cs.york.ac.uk

Abstract

In this paper we investigate the problem of optimal pri-
ority assignment in fixed priority pre-emptive single pro-
cessor systems where tasks have probabilistic execution
times. We identify three sub-problems which optimise dif-
ferent metrics related to the probability of deadline fail-
ures. For each sub-problem we propose an algorithm that
is proved optimal. The first two algorithms are inspired
by Audsley’s algorithm which is a greedy (lowest prior-
ity first) approach that is optimal in the case of tasks with
deterministic execution times. Since we prove that such a
greedy approach is not optimal for the third sub-problem,
we propose a tree search algorithm in this case.

1 Introduction

Across a wide range of industries in the real-time em-
bedded systems domain, including aerospace, automotive
electronics, and telecommunications, there is a strong de-
mand for new functionality that can only be met by us-
ing advanced high performance microprocessors. Build-
ing real-time systems with reliable timing behaviour on
such platforms represents a considerable challenge. The
wide variability of execution times due to aggressive hard-
ware acceleration features like cache, and deep memory
hierarchies means that deterministic approaches to worst-
case execution time analysis and worst-case response time
analysis can indicate that timing constraints will not be
met, when in practice the probability of a deadline miss
actually occurring in the lifetime of the system is vanish-
ingly small. In this way, deterministic analysis can lead to
significant overprovision in the system architecture, effec-
tively placing an unnecessarily low limit on the amount of
new functionality that can be included in a given system.

An alternative approach is to use probabilistic analy-
sis. System reliability is typically expressed in terms of
probabilities for hardware failures, memory failures, soft-
ware faults, etc. This approach also extends to the time
domain. For example, the reliability requirements placed
on the timing behaviour of a sub-system implemented on
an advanced high performance microprocessor might in-
dicate that the timing failure rate must be less than 10−9

per hour of operation. Probabilistic analysis techniques
that seek to meet this requirement, rather than attempt-
ing to provide an absolute guarantee, have the potential to
outperform deterministic techniques. In this case, the use
of deterministic techniques will inevitably lead to over-
provision, and may require the use of advanced hardware
features to be limited so that meaningful results can be ob-
tained. Turning off such features has a significant impact
on average case performance, degrading quality of service
and/or increasing power consumption.

A key problem that needs to be addressed by proba-
bilistic analysis is calculation of the timing failure rate.
This can then be compared with reliability requirements
to determine if the system is acceptable. With this ul-
timate goal in mind, this paper examines three simple
sub-problems (see Section 2) relating to optimal prior-
ity assignment for fixed priority pre-emptive scheduling
of uniprocessor real-time systems.

Related work. The problem and solutions we propose
in this paper belong to the realm of probabilistic analysis.
Recently, the real-time community has been using terms
like stochastic analysis regardless of the approach (prob-
abilistic or statistical) [15, 21, 4]. In this paper we use
the notion of probabilistic analysis to indicate that the ap-
proach is based on the theory of probability. Moreover, by
probabilistic real-time system we mean a real-time sys-
tem with at least one parameter described by a random
variable. Therefore probabilistic analysis consists of the
temporal analysis of systems that have at least one param-
eter described by a random variable. Such analyses have
been proposed for calculating the response time of tasks
[19, 9, 1, 12, 10] under a known scheduling policy.

In this paper we are interested in priority assignment
policies for fixed priority pre-emptive scheduling of sin-
gle processor systems with probabilistic execution times.
In particular, we aim to derive priority assignment poli-
cies that are optimal in the sense that they optimise some
metric related to the probability of deadline failures.

In the deterministic case, a priority assignment policy P
is referred to as optimal with respect to a given task model,
if and only if the following holds: P is optimal if there are
no tasksets that are compliant with the task model that are
schedulable using another priority assignment policy, that

are not also schedulable using policy P. [5, 6].
In the deterministic case, solutions to the problem of

finding an optimal priority assignment are well known.
In 1973, Liu and Layland [14] showed that Rate Mono-
tonic (RM) priority ordering is the optimal fixed priority
assignment policy for implicit-deadline tasksets. In 1982,
Leung and Whitehead [13] showed that Deadline Mono-
tonic (DM) priority ordering is optimal for constrained-
deadline tasksets. In 1990, Lehoczky [11] showed that
DM is not optimal for tasksets with arbitrary deadlines;
however, an optimal priority ordering for such tasksets can
be determined, in at most n(n +1) / 2 task schedulability
tests, using Audsley’s optimal priority assignment algo-
rithm [2, 3].

In this paper, we focus on the problem of finding an op-
timal priority assignment for real-time systems with prob-
abilistic execution times, scheduled pre-emptively on one
processor according to fixed priorities. Initial versions of
this problem were presented in [17, 16]. To the best of
our knowledge this paper presents the first solution to the
problem.

Paper organization. The remainder of the paper is
structured as follows. Section 2 presents the task model,
terminology and notation used in the rest of the paper.
Section 3 defines the three problems we consider, and
Section 4 provides preliminary results which are used in
their solution. Solutions to each problem are given in Sec-
tions 5, 6 and 7. Finally, Section 8 concludes with a brief
summary and discussion of possible future work.

2 Task Model, Terminology, and Notation

In this paper, we consider a set Γ of n synchronous
constrained deadline periodic tasks {τ1, τ2, . . . , τn}. Each
task τi is characterized by three parameters (Ci, Ti, Di)
where Ti is the period, Di the relative deadline, and Ci
the worst-case execution time described by a random vari-
able1. We assume a constrained-deadline task model such
that Di ≤ Ti.

The worst-case execution time of task τi is assumed
to have a known probability function (PF) fCi(·) with
fCi(c) = P (Ci = c) giving the probability that τi has a
computation time equal to c. The values of the worst-case
execution time of τi are assumed to belong to the interval
[Cmin
i , Cmax

i].
The worst-case execution time Ci can be written as fol-

lows:

Ci =

(
C0
i = Cmin

i C1
i · · · Ckii = Cmax

i

fCi(C
min
i) fCi(C

1
i) · · · fCi(C

max
i)

)
,

(1)
where

∑ki
j=0 fCi(C

j
i) = 1.

For example for a task τi we might have a worst-

case execution time Ci =

(
2 3 25

0.5 0.45 0.05

)
; thus

fCi
(2) = 0.5, fCi

(3) = 0.45 and fCi
(25) = 0.05.

1In this paper we will use a calligraphic typeface to denote random
variables.

Each task τi generates an infinite number of successive
jobs τi,j , with j = 1, . . . ,∞. All jobs are assumed to
be independent of other jobs of the same task and those
of other tasks, hence the execution time of a job does not
depend on, and is not correlated with, the execution time
of any previous job.

The set of tasks is scheduled according to a fixed-
priority policy, i.e., all jobs of the same task have the same
priority. Let HP (i) to denote the set of tasks with priori-
ties higher than that of task τi and LP (i) denote the set of
tasks with priorities lower than that of τi.

Further, we use Φ to denote a (partial or total) prior-
ity assignment defined by a list of tasks ordered from the
lowest to the highest priority. priority(i) is used to de-
note the priority level of task τi. All tasks are assumed to
have unique priorities.

The response time of a job is the elapsed time between
its release and its completion.Since we consider jobs with
probabilistic execution times, the response time of a job is
also described by a random variable. Let Ri,j(Φ) be the
response time of job τi,j ,∀i, j for a given priority assign-
ment Φ.

In the case of fixed-priority scheduling, the main result
providing the calculation ofRi,j(Φ), (∀i, j,Φ) is given by
Diaz et al. [8], where the PF of the response time of the
j-th job of task τi is given by

fRi,j(Φ) = f
[0,λi,j]

Ri,j(Φ) + (f
(λi,j ,∞)

Ri,j(Φ) ⊗ fCi
), (2)

where λi,j is the release time of τi,j . A solution for Equa-
tion (2) can be obtained recursively.

Equation (2) can be reformulated as follows:

Ri,j(Φ) = Bi(λi,j ,Φ)⊗ Ii(λi,j ,Φ)⊗ Ci, (3)

where Bi(λi,j ,Φ) is the accumulated backlog of higher
priority tasks released before λi,j and still active (not com-
pleted yet) at λi,j . Ii(λi,j ,Φ) is the sum of the execution
times of higher priority tasks arriving after λi,j .

For a task τi, a time interval [a, b] and a priority assign-
ment Φ, the response timeR[a,b]

i (Φ) of τi is obtained from
the calculation of its PF by averaging the job response
times over the interval [a, b]:

fR[a,b]
i (Φ)

=
1

n[a,b]

n[a,b]∑
j=1

fRi,j(Φ), (4)

with n[a,b] = d b−aTi
e giving the number of jobs belonging

to τi released in the interval.

3 Problems

In this paper we consider the problem of finding a pri-
ority assignment such that the associated schedule meets
a requirement specifying the maximum acceptable proba-
bility of timing (i.e. deadline) failure within a given time
interval. We refer to a priority ordering that meets such

2

a requirement as a feasible priority assignment. We note
that this use of the term feasible is an extension of its nor-
mal use in the deterministic case, where a feasible priority
ordering is one in which the associated schedule has zero
probability of timing failure.

Before defining the sub-problems we deal with, we first
introduce some additional notation and definitions.

Definition 1 (Job deadline miss). For a job τi,j and a pri-
ority assignment Φ, the deadline miss probability DMPi,j
is the probability that the j-th job of task τi misses its
deadline:

DMPi,j(Φ) = P (Ri,j(Φ) > Di). (5)

Definition 2 (Task deadline miss ratio). For a task τi, a
time interval [a, b] and a priority assignment Φ, the task
deadline miss ratio is computed as follows

DMRi(a, b,Φ) =
P (R[a,b]

i (Φ) > Di)

n[a,b]

=
1

n[a,b]

n[a,b]∑
j=1

DMPi,j(Φ), (6)

where n[a,b] = d b−aTi
e is the number of jobs of task τi

released during the interval [a, b].

In this paper we consider that at the end of each hy-
perperiod any incomplete job is aborted. This is a form
of reset prior to synchronously releasing all of the tasks at
the start of the next hyperperiod. In future work we aim
to relax this assumption and move towards a more general
case.

The consequence of resetting the system after each hy-
perperiod is that we can focus our analysis on the first hy-
perperiod [0, H] (with H = lcm{T1, T2, · · · , Tn}) which
is a feasibility interval. During the first hyperperiod of a
schedule, i.e., a = 0 and b = H , the task deadline miss
ratio is denoted by DMRi(Φ) for a priority assignment Φ
and a task τi. Unless specified otherwise, in the following
we consider the interval [a, b] = [0, H].

The DMP gives the probability that a job misses its
deadline, whereas the DMR gives the average probability
over the hyperperiod that a job of the task will miss its
deadline, and hence the average probability over the en-
tire lifetime of the system, that a job of the task will miss
its deadline.

For each task τi we consider a specified parameter pi ∈
[0, 1], referred to as the maximum permitted deadline miss
ratio.

We define three new problems:

1. Basic Priority Assignment Problem (BPAP). This
problem involves finding a priority assignment such
that the DMR of every task does not exceed the
threshold specified, i.e. DMRi(Φ) ≤ pi. Hence, we
search for a feasible priority assignment Φ∗ such that
DMRi(Φ

∗) ≤ pi,∀i.

2. Minimization of the Maximum Priority As-
signment Problem (MPAP). This problem in-
volves finding a priority assignment that mini-
mizes the maximum deadline miss ratio of any
task. Hence, we search for a priority assign-
ment Φ∗ such that maxi{DMRi(a, b,Φ

∗)} =
minΦ{maxi DMRi(a, b,Φ)}.

3. Average Priority Assignment Problem (APAP). This
problem involves finding a priority assignment that
minimizes the sum of the deadline miss ratios for
all tasks. Hence, we search for a feasible prior-
ity assignment Φ∗ such that

∑
i DMRi(a, b,Φ

∗) =
minΦ{

∑
i DMRi(a, b,Φ)}.

In the following we use the relationship � as it is de-
fined in [8], summarized as follows. A random variable
X is greater than or equal to another random variable Y ,
notedX � Y if and only if ∀V P (Y ≤ V) ≤ P (X ≤ V).
The relationship � between two probabilistic response
times defines a probabilistic order among probabilistic
variables and allows us to compare random variables.

To motivate our work we prove in Section 3.1 that
Rate Monotonic (RM) priority ordering is not optimal for
BPAP.

3.1 Non-optimality of Rate Monotonic priority or-
dering

Rate monotonic priority assignment [14] is optimal for
the deterministic problem of scheduling implicit deadline
tasksets according to a fixed-priority policy. We therefore
analyzed the applicability and optimality of RM to BPAP.
Below, we present a counter example, a case where there
exists a feasible priority assignment for BPAP, but RM
priority assignment is not feasible.

Let Γ = {τ1, τ2} be a taskset such that each task is
characterized by the parameters (C, T,D, p). We have τ1

defined by (

(
2 3

0.5 0.5

)
, 4, 4, 0.5) and τ2 defined by

(

(
2 3

0.5 0.5

)
, 8, 8, 0.1).

According to RM priority assignment, τ1 has the higher
priority and τ2 the lower priority. In this case the response

time of task τ1 is R1 =

(
2 3

0.5 0.5

)
and the response

time of task τ2 isR2 =

(
4 7 8 D+

2

0.25 0.25 0.375 0.125

)
Table 1 summarizes the computation of the response

time of task τ2. The higher priority task, τ1, has two jobs
released in the hyperperiod, while the lower priority task,
τ2, has only one job released in the hyperperiod.

If jobs τ2,1 and τ1,1 have execution times equal to 2,
then job τ2,1 is not pre-empted by the second job of τ1
and it has a response time equal to 4. In the other three
cases job τ2,1 is pre-empted and its response time is fur-
ther increased. In these cases, only if all three jobs have
execution times equal to 3 does job τ2,1 miss its deadline,

3

τ1,1 τ1,2
2 3 2 3

0.5 0.5 0.5 0.5

τ2,1

2 4 5 7 8
0.5 0.25 0.25 0.125 0.125
3 5 6 7 8 8 D+

2

0.5 0.25 0.25 0.125 0.125 0.125 0.125

Table 1. The response time of τ2 when τ2 is the lowest priority task

with a probability of 0.125. We indicate by D+
2 that the

response time values are larger than the deadline.
Given that the deadline miss ratio of task τ2 is DMR2 =

0.125, which is greater than the maximum permitted
value, p2 = 0.1, then RM priority assignment is not feasi-
ble for this taskset with respect to the specified constraints.

Next we consider the alternative priority ordering
where task τ2 has a higher priority than task τ1. For this
priority ordering, the response time of task τ2 is given by

R2 =

(
2 3

0.5 0.5

)
.

Task τ1 has two jobs released in the hyperperiod
[0, 8). The response time of its first job is R1,1 =(

4 5 6
0.25 0.5 0.25

)
, giving a deadline miss probabil-

ity of DMP1,1 = 0.75.
Its second job has a response time of R1,2 =(

2 3 4 D+
1

0.125 0.375 0.375 0.125

)
, giving a deadline

miss probability of 0.125.
Combining the response times of the two jobs

we get a response time for task τ1 of R1 =(
2 3 4 D+

1

0.0625 0.1875 0.3125 0.4375

)
and hence a

deadline miss ratio of DMR1 = 0.4375 which is less than
the maximum permitted value of p1 = 0.5. Thus the pri-
ority assignment is a feasible one, with all tasks having
deadline miss ratios that are less than their maximum per-
mitted values.

As RM priority assignment is not feasible for this
taskset with respect to the specified constraints, and there
exists an alternative priority ordering that is feasible, then
RM is not an optimal priority assignment policy for the
Basic Priority Assignment Problem (BPAP).

4 Preliminary results

Before providing solutions to the problems described
in Section 2 we first state some preliminary theorems and
results.

4.1 Order of higher priority tasks
Theorem 1 (Order of higher priority tasks). Let Γ =
{τ1, τ2, . . . , τn} be a set of n constrained-deadline pe-
riodic tasks with probabilistic execution times scheduled
pre-emptively according to a fixed-priority algorithm on

a single processor. If a task τi has its priority known
and given, then the priority order of the higher pri-
ority tasks (belonging to HP (i)) does not impact the
value of DMPi,j(Φ) for any job of τi or the value of
DMRi(a, b,Φ),∀a, b. Stated otherwise, if membership of
the sets HP (i) and LP (i) are unchanged, then the re-
sponse time Ri,j of any job of τi is unchanged and the
response time R[a,b]

i of task τi is unchanged whatever the
priority order of tasks within HP (i) and within LP (i).

Proof. Concerning the lower priority tasks, with pre-
emptive scheduling, the tasks in LP (i) do not influence
the response time of task τi (or of that of any job τi,j of
task τi), whatever their priority order.

Let us consider now the case of higher priority tasks.
Let τi,j be the job of the task τi that is released at time
t. According to Equation (3) the response time Ri,j of
τi,j is obtained by adding to the existing backlog Bi its
own execution time and the sum of execution times of all
higher priority jobs that arrive after its release.

Since the backlog Bi at time t represents the execution
times of the higher priority tasks that have been released
before time t (including those that have been released at
time t) and that have not been completed yet, its value
does not depend on the priority order of the higher priority
tasks.

In a time interval of length t, any task τk can have
only dt/Tke releases which are relevant to the calcula-
tion of the response time of task τi, whatever its priority.
This is true for all the tasks that have higher priority than
the task for which we are computing the response time.
Furthermore, the same reasoning is valid for the number
of pre-emptions, i.e., the number of pre-emptions from a
task with priority higher than τi is the same, regardless of
whether that task has the highest priority or any priority
higher than that of τi. Moreover, since the summation of
two random variables is commutative, it follows that the
response time of task τi is the same whatever the priorities
we assign to the rest of the tasks in HP (i).

4.2 Monotonicity of the response time
Theorem 2 (Monotonicity of the response time). Let Γ =
{τ1, . . . , τn} be a set of constrained-deadline tasks with
probabilistic execution times, scheduled pre-emptively ac-
cording to a fixed priority algorithm. Recall that Φ is a
priority assignment that may be represented by a list of

4

tasks in sequence from lowest to highest priority. Let Φ1

and Φ2 be two priority assignments such that, to get from
one assignment to the other, one only has to change the
position of one unique task τi in the list, leaving the rela-
tive order of all other tasks unchanged. If the priority of τi
is lower in Φ1 than in Φ2, then the response time of any of
its jobs is such that Ri,j(Φ1) � Ri,j(Φ2). Consequently,
the task response timeR[a,b]

i (Φ1) � R[a,b]
i (Φ2).

Proof. Follows from the fact that the backlog and the in-
terference increase with decreasing priority of the task,
and consequently increasing priority of other tasks with
respect to τi.

More precisely for each job in the interval [a, b), we
compare the response time distributions and the way they
are derived in the two cases. With priority assignment Φ1

(where task τi is at lower priority) τi has backlog and in-
terference that is no smaller than with priority assignment
Φ2. This is because all of the tasks that are at higher prior-
ity than task τi in Φ2 are also at higher priority than τi in
Φ1. Hence, from Equation (3) the response time of any job
of task τi cannot increase when the priority assignment is
changed from Φ1 to Φ2. Further, from Equation (4) nei-
ther can the response time of task τi

The response time of a task increases with respect to
the priority of the task. The lower the priority level, the
more the interference from higher priority tasks, and so
the larger the response time. The monotonicity of the task
response time leads to a similar conclusion about the dead-
line miss probability (DMP).

Corollary 1 (Monotonicity of DMP and DMR). Let Γ =
{τ1, . . . , τn} be a set of constrained-deadline tasks with
probabilistic execution times, scheduled pre-emptively ac-
cording to a fixed priority algorithm. Let Φ1 and Φ2 be
two priority assignments such that, to get from one assign-
ment to the other, one only has to change the position of
one unique task τi in the list (priority sequence), leaving
the relative order of all other tasks unchanged. If the pri-
ority of τi is lower in Φ1 than in Φ2, then DMPi,j(Φ1) ≥
DMPi,j(Φ2) and DMRi(a, b,Φ1) ≥ DMRi(a, b,Φ2).

Proof. Under the condition stated in Theorem 2 the re-
sponse time of the generic task τi cannot decrease with a
decrease in its relative priority. Under the same condition,
since DMPi,j(Φ) = P (Ri,j(Φ) > Di) (Equation (5)) and

DMRi(a, b,Φ) =
P (R[a,b]

i (Φ)>Di)

n[a,b]
(Equation (6)), the job

deadline miss probability and the task deadline miss ra-
tio cannot decrease with a decrease in the task’s relative
priority.

5 Solution for BPAP

In this section we present an optimal algorithm that
solves the Basic Priority Assignment Problem (BPAP) as
defined in Section 2. First we provide a definition of what
we mean by an optimal priority assignment in this case.

Definition 3 (Optimal algorithms for BPAP). Let Γ be a
set of constrained-deadline tasks with probabilistic exe-
cution times and each task characterized by paramters
(Ci, Ti, Di, pi). An algorithm is optimal with respect to
BPAP if, for any arbitrary taskset Γ, it always finds a
feasible priority assignment whenever such an assignment
exists.

5.1 The intuitive (but incorrect) solution for BPAP
At first glance, one might think that an optimal prior-

ity assignment for the Basic Priority Assignment Problem
could be obtained by assigning priorities to tasks in in-
creasing order of their maximum permitted deadline miss
ratios, (i.e. the lower the maximum permitted deadline
miss ratio, the higher the priority).

Below, we provide a counter example showing that this
priority assignment policy is not optimal for BPAP.

Consider a taskset Γ = {τ1, τ2} such that τ1 is de-

fined by (

(
1 2 3 4

0.2 0.3 0.3 0.2

)
, 5, 5, 0.4) and τ2 by

(

(
4
1

)
, 10, 10, 0.2).

Assuming that τ2, which has the smaller permitted
deadline miss ratio, is assigned the higher priority, then
we have the following response times for the two jobs of
task τ1:

R1,1 =

(
5 6 7 8

0.2 0.3 0.3 0.2

)
R1,2 =

(
6 7 8 9 10 11 12

0.04 0.12 0.21 0.26 0.21 0.12 0.04

)
.

The deadline miss ratio of task τ1 is given by DMR1 =
DMP1,1+DMP1,2

2 = 0.8+0.16
2 = 0.96

2 = 0.48 which is higher
than its maximum permitted deadline miss ratio of 0.4.

Alternatively, if τ1 is assigned the higher pri-
ority, then τ1 would have DMR1 = 0, and
τ2 would have a response time of R2 =(

5 7 8 9 10 11 12
0.2 0.06 0.15 0.22 0.21 0.12 0.04

)
and DMR2 = 0.16 which is less then its maximum
allowed DMR of 0.2.

This example shows that there exists tasksets and con-
straints on their maximum permitted deadline miss ratios
that are not feasible when priorities are assigned accord-
ing to each task’s maximum permitted deadline miss ra-
tio, and yet are feasible with an alternative priority assign-
ment. Hence assigning priorities based on the maximum
permitted deadline miss ratio of each task is not an opti-
mal solution for BPAP.

5.2 A first optimal solution for BPAP
Theorem 1 indicates that the order of higher priority

tasks does not impact the response time of a task. This
result suggests that a greedy approach similar to Audsley’s
optimal priority assignment algorithm [2, 3] can be used
to solve BPAP.

Theorem 1 means that we can assign priorities to tasks
in a greedy fashion, starting at the lowest priority level

5

and continuing up to the highest priority level. While as-
signing task τi to a particular priority level, we need not
be concerned about the tasks that have already been as-
signed to lower priority levels (tasks in LP (i)) as their
response times will be unchanged, and we do not need
to know the priority assignment for the remaining tasks,
since this does not impact the response time of task τi as
all of those tasks will be in HP (i) whatever their relative
priority ordering.

Since the maximum permitted deadline miss ratio pi
for each task τi is specified as part of the problem de-
scription, we can use this information within the priority
assignment algorithm to determine whether or not a task
is feasible at a particular priority level or if it needs to oc-
cupy a higher one (see Algorithm 1).

To find a task to place at the next available priority
level k, Algorithm 1 checks each unassigned task in turn
to see if its maximum permitted deadline ratio would be
exceeded if it were placed at priority level k, if not, then
the task is assigned to that priority level, and the algorithm
continues to the next higher priority. If it is exceeded, then
that task needs to be placed at a higher priority level, and
the algorithm continues to check other unassigned tasks to
see if any of them can be assigned to priority level k.

Note, that when computing the deadline miss ratio for
a task at priority level k we do not need to assign priorities
to the unassigned tasks that will occupy the priority levels
above priority k, any assignment can be assumed, since
this will not affect the response time of the task placed at
priority k.

Algorithm 1 is similar to Audsley’s algorithm [2] and
does not require backtracking. Indeed, once we have as-
signed a subset of tasks to lower priority levels where they
do not exceed their maximum allowed deadline miss ratio
p, and we are now seeking a task to place at priority level
k, if none of the tasks left unassigned can be assigned to
this priority level, then it would be useless to backtrack
and try and move any of the unassigned tasks to a lower
priority level, where it would have an even higher DMR.
Since none of the tasks left unassigned can be placed at
priority level k without exceeding their maximum permit-
ted deadline miss ratios the tasks set is infeasible, and no
priority assignment exists such that all of the tasks can
meet the requirements placed on their deadline miss ra-
tios.

Theorem 3. Algorithm 1 is optimal with respect to BPAP.

Proof. The proof follows directly from the description of
Algorithm 1, Theorem 1 and Definition 3.

6 Solution for MPAP

6.1 The Lazy and Greedy Algorithm
For MPAP we propose a Lazy and Greedy Algorithm

(LGA). It is inspired by Audsley’s optimal priority assign-
ment algorithm [2]. Indeed, Algorithm 2 incrementally
builds a solution Φ as a sequence of tasks, starting with

Algorithm 1: Solution to BPAP: the feasibility func-
tion verifies that for ∀τi, DMRi < pi

Input: Γ = {τi, i ∈ 1..n} /* source set of tasks */

Output: Φ /* destination sequence of tasks */

Φ← ()
for l ∈ n..1 do

assignment← FALSE
for τi ∈ Γ′ do

/* feasibility function such that the computedDMRi < pi */

if feasible(τi,Φ) then
Φ← Φ.τi
Γ′ ← Γ′\{τi}
assignment← TRUE
break

if assignment = FALSE then
/* could not find a task to put at this priority level */

break

the lowest priority first, and adding to Φ at each iteration
an unassigned task. This algorithm is:

• lazy because, if there exists an unassigned task τ
which could be used at the current priority level l
without degrading the worst DMR, then τ is assigned
to this priority level, and

• greedy because, if no such non-degrading task ex-
ists, then it assigns to the current priority level the
task that would have the smallest deadline miss ratio,
without reasoning about what will happen at higher
priority levels.

Algorithm 2’s main loop goes through the priority lev-
els in order: l ∈ n..1. At each iteration, it performs a for
loop over the unassigned tasks to search for the one (τbest)
that has the best DMR (DMRbest) at the current priority
level l (this is the greedy part). This requires computing,
for each unassigned task τi, its potential DMR δ (if τi is
not in Φ, DMRi(Φ) is the DMR of τi if appended at the end
of Φ) and comparing it to the current most promising task.
Further, each unassigned task’s DMR is compared with the
worst DMR over all of the tasks already in Φ (referred to as
DMRworst) so that, whenever a task is found with a dead-
line miss ratio better than or equal to DMRworst, the search
is cancelled and this task is assigned (this is the lazy part).

6.2 Optimality of the Lazy and Greedy algorithm
Before proceeding to show that the Lazy and Greedy

algorithm provides an optimal solution to MPAP, we must
first define what we mean by optimality in this case.

Definition 4 (Optimal algorithms for MPAP). Let Γ be a
set of constrained-deadline tasks with probabilistic execu-
tion times, where each task is characterized by the param-
eters (Ci, Ti, Di). A priority assignment algorithm P is
optimal with respect to MPAP if the priority ordering de-
termined by algorithm P, for any arbitrary taskset Γ, has

6

Algorithm 2: Lazy and Greedy Algorithm
Input: Γ = {τi, i ∈ 1..n} /* source set of tasks */

Output: Φ /* sequence of tasks */, DMRworst /* worst DMR */

Φ← ()
DMRworst ← 0
/* Loop over the priority levels (from lowest to highest) */

for l ∈ n..1 do
/* Search among unassigned tasks */

(τbest, DMRbest)← (0,+∞)
for τi ∈ Γ do

/* Compute DMR of current task τi */

δ ← DMRi(Φ)
/* If this DMR is better than (or equal to) the current worst DMR

in Φ, be lazy: pick this task and stop the search. */

if δ ≤ DMRworst then
(τbest, DMRbest)← (τi, δ)
break

/* If this DMR improves on other unassigned tasks, remember

this task. */

if δ < DMRbest then
(τbest, DMRbest)← (τi, δ)

/* The search is done. The task in τbest can be assigned at the current

priority level. */

Γ← Γ\{τbest}
Φ← Φ.τbest
/* Update the value of the worst DMR in Φ. */

if DMRworst < DMRbest then
DMRworst ← DMRbest

return (Φ, DMRworst)

a maximum deadline miss ratio for any task, which is no
larger than that obtained with any other priority ordering.

Theorem 4. The Lazy and Greedy Algorithm (LGA) is
optimal with respect to MPAP.

Proof. Let us consider a problem with n tasks τ1, . . . , τn.
Let Φg be the solution returned by the Lazy and Greedy
Algorithm (Φg is a permutation over 1..n, and Φg(i) is the
index of the i-th task by order of priority).

Let M be the set of positions in Φg corresponding
to items with the maximum deadline miss ratio: M =
arg maxi DMRΦg(i)(Φ

g) = {m1, . . . ,m|M |}, as illus-
trated in Table 2. A first observation is that this set con-
tains at least one item (but possibly more). Let us also as-
sume that these indices are ordered as they appear in Φg ,
meaning that they verify: m1 > m2 > · · · > m|M | (as
the first tasks introduced have low priorities). Due to the
algorithm, when the first of these tasks (τΦg(i)) is added to
M (m1 = i), each remaining task has a deadline miss ra-
tio (DMR) at that priority level that is greater than or equal
to that of τΦg(m1), but it will subsequently become equal
or better, once the task is assigned a higher priority level.
Note also that there is no a priori reason for these “worse
tasks” to be contiguous.

Let Φ′ be any other complete solution, and let us refer
to:

(low P.)← → (high P.)
tasks τΦg(4) τΦg(3) τΦg(2) τΦg(1)

DMR 13 22 17 22
M – m1 = 3 – m2 = 1

Table 2. Example fixed priority assignment
with associated DMRs and M set

• τc = τΦg(m1) as the critical task of Φ, i.e., the low-
est priority task in Φ that has the maximum or worst
DMR for any task in priority order Φ;

• DMRgc as the DMR of τc in Φg;

• HP (τ,Φ) as the set of tasks with higher priorities
than τ in Φ (Φ omitted when using the current per-
mutation);

• LP (τ,Φ) as the set of tasks with lower priorities than
τ in Φ;

• τb as the task in HP (τc,Φ
g) which has the lowest

priority in Φ′; this will be our “bad” task in the proof;

• DMR′b as the DMR of τb in Φ′.

To show that Φ′ has a “worst DMR” that is no smaller than
that of Φg , we now describe a transform that turns Φg into
Φ′ while also demonstrating that DMR′b is greater than or
equal to DMRgc . This transform is illustrated in Table 3,
with numbers indicating tasks, and with tasks that will be
moved underlined. The transformation proceeds as fol-
lows (starting from Φg):

1. lower τb to the position just above τc without alter-
ing the relative priority order of the other tasks; this
only alters the response times, and thus the DMRs,
of higher priority tasks, and can only improve these
values;

2. swap the priorities of tasks τc and τb; task τb then
has a DMR greater than or equal to DMRgc (otherwise
the Lazy and Greedy Algorithm would have selected
it—or another task—instead of τc);

3. permute the tasks in LP (τb) so that they are in the
same relative priority order as in Φ′; this does not
alter the response time, and thus the DMR, of task τb;

4. lower the priority of task τb to place it at its appropri-
ate position among the tasks in LP (τb) as defined by
the priority ordering Φ′; this cannot make τb’s DMR
better;

5. permute the tasks inHP (τb) to finally obtain Φ′; this
last operation does not alter τb’s DMR.

Following this process guarantees that, in Φ′, at least
one task (τb) has a DMR greater than or equal to DMRgc .
This concludes the proof that the priority assignment
found by the Lazy and Greedy Algorithm is optimal for
MPAP

7

(low P.)← → (high P.)
Φg = 6 5 4 3 2 1

6 5 4 3 1 2 (1. lower τb)
6 5 4 1 3 2 (2. swap τc and τb)
4 5 6 1 3 2 (3. permute LP (τb))
4 1 5 6 3 2 (4. lower τb)

Φ′ = 4 1 3 5 6 2 (5. permute HP (τb))

Table 3. Example process leading from a
permutation Φg to another one Φ′ with
τc=task 3 and τb=task 1.

Complexity Let us consider the non-lazy version of
LGA, i.e., not picking a task just because its DMR is better
than the current worst DMR in Φ. Then, numbering iter-
ations from n to 1 (reflecting the number of unassigned
tasks), iteration i has to compute the DMRs of i tasks and
choose the best of these i tasks to assign. Assuming that
a DMR is computed with a fixed cost, this means that it-
eration i has complexity O(i) and that the complete algo-
rithm has a complexity of O(n(n+ 1)/2) DMR computa-
tions.

In the normal (lazy) version of LGA, many searches
for the best task to choose will be interrupted early, which
may lead to significant speed-ups. In the best case, the
algorithm has complexity O(n) DMR computations.

7 Solutions for APAP

The max criterion used in MPAP can be seen as pes-
simistic as it optimizes the worst DMR among all tasks. A
different objective is to optimize the average DMR over all
tasks, which is equivalent to using a sum operator instead
of max. The sum and max criteria can be written as:

g(Φ) =
⊕
τi∈Φ

DMRi(Φ), (7)

where
⊕

represents either the sum (
∑

) or the max op-
erator.

This section investigates solutions to APAP (i.e. the
optimization of the summation criterion). First we provide
a definition of what we mean by an optimal solution in this
case.

Definition 5 (Optimal algorithms for APAP). Let Γ be a
set of constrained-deadline tasks with probabilistic execu-
tion times, where each task is characterized by parameters
(Ci, Ti, Di). A priority assignment algorithm P is optimal
with respect to APAP if the priority ordering determined
by algorithm P, for any arbitrary taskset Γ, has a value for
the metric g(Φ) (as defined by Equation (7)), which is no
larger than that obtained with any other priority ordering.

7.1 When Being Greedy is not the Best Choice
A first question is whether the Lazy and Greedy Algo-

rithm produces an optimal solution for APAP. As we will

τ2 > τ1 τ1 > τ2

DMR1 0.5 0.85
DMR2 0.6 0
sum 1.1 0.85

Table 4. Results for Example 1 depending
on the task priorities.

now see, a simple example demonstrates that this is not
the case.

Theorem 5. The Lazy and Greedy Algorithm may return
a solution with a non-optimal average DMR.

The above theorem is proved by the following counter
example, using a time interval [a, b] corresponding to one
hyperperiod.

Example 1 (counter-example for the sum crite-
rion). Let τ = {τ1, τ2} with each task charac-
terized by parameters (Ci, Ti, Di). We consider τ1

defined by (

(
1 3

0.5 0.5

)
, 4, 2) and τ2 defined by

(

(
1 2 4

0.3 0.2 0.5

)
, 4, 4).

For this example, we can compute the response times,
the DMRs, and the values of the sum criterion for the two
possible Priority orderings:

• τ2 > τ1:

R1 =

(
1 D+

1

0.5 0.5

)
R2 =

(
2 3 4 D+

2

0.15 0.1 0.15 0.6

)
• τ1 > τ2:

R2 =

(
1 2 4

0.3 0.2 0.5

)
R1 =

(
2 D+

1

0.15 0.85

)
Table 4 gives the DMR of each task and the value of the

sum criterion depending on the priority assignment.
Algorithm 2 would pick task τ2 to be at the lower prior-

ity level, since with that priority it would have a deadline
miss ratio of DMR2 = 0.6, which is less than the deadline
miss ratio of DMR1 = 0.85 that task τ1 would have if it
were assigned that priority.

This priority assignment would be a good solution if
we tried to minimize the maximum DMR, but when we
look at the sum of the two deadline miss ratios, we see
that, with task τ1 at the higher priority and task τ2 at the
lower priority, the sum of the deadline miss ratios is 1.1.
However, if instead we reverse the priority order, we ob-
tain a sum of the deadline miss ratios of 0.85, which is less
than the solution provided by Algorithm 2, thus proving
that Algorithm 2 is not an optimal algorithm for APAP.

8

7.2 Tree Search algorithm
As the Lazy and Greedy Algorithm is not optimal, we

need to resort to a different approach.
To optimize g(Φ) =

∑
i DMRi(Φ), a simple approach

is to use a tree search algorithm enumerating all solu-
tions. Among various possible tree search algorithms,
we choose here Depth-First Search (DFS), which explores
each branch as far as possible before backtracking. As in
previous algorithms, we start with the lowest priority, ex-
tending the partial priority ordering Φ progressively as we
go down the tree. The partial assignment Φ obtained in
any node of the tree gives a lower bound for any complete
assignment Φ′ containing it (Φ ⊆ Φ′ and |Φ′| = n):

g(Φ) =
∑
τi∈Φ

DMRi(Φ) =
∑
τi∈Φ

DMRi(Φ
′)

≤
∑
τi∈Φ′

DMRi(Φ
′) = g(Φ′).

This allows for:

• incrementally refining the lower bound while going
down the tree: g(Φ.τi) = g(Φ) + DMRi(Φ); and

• pruning branches when the current lower bound is
higher than the best complete solution found so far
(variable gbest initialized to +∞).

The resulting process is detailed in Algorithm 3.
Because of the different criteria optimized in APAP,

one cannot be as lazy as in LGA. Nevertheless, if a task is
encountered with a DMR of zero, then the search loop can
also be interrupted early.

Complexity As in any tree search algorithm, the worst-
case scenario is when all candidate solutions have to be
visited, which means a complexity ofO(n!) (again assum-
ing a fixed cost for computing a task’s response time and
thus a DMR).

Improvement Other natural candidate algorithms are
best-first search algorithms, e.g., A∗ or IDA∗ [18]. In all
cases an important point would be to improve the lower
bounds by using an admissible heuristic which can be ob-
tained:

• by solving all problems with, e.g., 2 or 3 tasks; but
the cost of these pre-computations could be detri-
mental;

• by using Algorithm 2, which will presumably return
a first good candidate solution to complete the cur-
rent partial priority assignment; or

• by using their current DMRs to decide in which order
to try candidate tasks.

Note that there is no point trying to refine this search
algorithm as long as one does not know how problems are

Algorithm 3: Depth-First Search
fbest = +∞ /* best value so far (glob. var) */

Γ = {τi, i ∈ 1..n} /* source set of tasks */

(Φ, g)← RECUR(Γ, (), n, 0)
return (Φ, g)

/* Function recursively completing the current solution Φ. */

RECUR(Γ,Φ, l, g) /* Note: g = g(Φ) */

/* If priority level 0 is attained, we have a complete solution. */

if l = 0 then
/* Is this solution the new best solution? */

if g < gbest then
gbest ← g

return (Φ, g)
/* Otherwise, if the current partial solution is worse than the best solution

so far, then backtrack. */

if g ≥ gbest then
return (Φ, g)

/* Try each unassigned task τi at the current priority level. */

(Φmin, gmin)← ((),+∞)
for τi ∈ Γ do

δ ← DMRi(Φ)
/* Get the best solution completing Φ.τi. */

(Φ′, g′)←RECUR(Γ\{τi},Φ.τi, l − 1, g + δ)
/* Memorize the best completed solution. */

if g′ < gmin then
(Φmin, gmin)← (Φ′, g′)

/* If task τi has a null DMR, then backtrack. */

if δ = 0 then
break

/* Return the best completed solution. */

return (Φmin, gmin)

distributed. Indeed, as stated by the no-free-lunch theo-
rem(s) for search [20], there is no “best” overall algorithm.
Given two algorithmsA andB, one will be better than the
other on a subset of problems.

One could also exploit the fact that, if Φ and Φ′ are
partial and contain the same tasks, then one only needs to
develop the subtree for the one with the lowest value.

Finally, a reversed search (setting highest priority tasks
first) would give a simple admissible—but not necessar-
ily very informative—heuristic by computing the deadline
miss ratio of all remaining tasks as if each were the next
task.

Tree-search algorithms can be used with other crite-
ria, for example to optimize the mean squared DMR with
g(Φ) =

∑
τi∈Φ DMR2

i (Φ), which provides an intermedi-
ate objective between the worst and the average criteria.

8 Conclusions

In this paper, we recognised that a key problem that
needs to be addressed by probabilistic analysis is the cal-
culation of the timing failure rate, the rate at which we
can expect deadlines to be missed during the operation of
a system. This failure rate can then be compared with

9

reliability requirements to determine if the system is ac-
ceptable.

As a first step towards a solution to this problem, we
proposed three sub-problems. These sub-problems relate
to finding an optimal priority assignment for fixed priority
pre-emptively scheduled systems with probabilistic exe-
cution times. The problems involve optimising three dif-
ferent metrics based on the probability of tasks missing
their deadlines over some interval of time.

The three sub-problems were as follow:

1. Basic Priority Assignment Problem (BPAP). This
problem involves finding a priority assignment such
that the deadline miss ratio of every task does not ex-
ceed the threshold specified.

2. Minimization of the Maximum Priority Assignment
Problem (MPAP). This problem involves finding a
priority assignment that minimizes the maximum
deadline miss ratio of any task.

3. Average Priority Assignment Problem (APAP). This
problem involves finding a priority assignment that
minimizes the sum of the deadline miss ratios for all
tasks.

For each sub-problem we proposed an optimal algo-
rithm. The first two algorithms were inspired by Aud-
sley’s algorithm which is a greedy, lowest priority first,
approach that is optimal for the equivalent deterministic
case. As shown in Section 7 such a greedy approach is
not suitable for the third sub-problem (APAP). Therefore
we proposed a tree search algorithm in this case.

As future work we intend to provide conditions that
need to be met in order to obtain an optimal priority or-
dering for APAP using a greedy algorithm. Such general
conditions exist for the deterministic case [7] and our first
step will be to consider their extension to the probabilistic
case.

References

[1] L. Abeni and Buttazzo. QoS guarantee using probabilistic
deadlines. In IEEE Euromicro Conference on Real-Time
Systems (ECRTS99), pages 242–249, 1999.

[2] N. Audsley. Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times. Technical
Report YCS 164, University of York, 1991.

[3] N. Audsley. On priority assignment in fixed priority
scheduling. Information Processing Letters, 79(1):39–44,
2001.

[4] L. Cucu and E. Tovar. A framework for response time
analysis of fixed-priority tasks with stochastic inter-arrival
times. ACM SIGBED Review, 3(1), 2006.

[5] R. Davis and A. Burns. Robust priority assignment for
fixed priority real-time systems. In the 28th IEEE Real-
Time Systems Symposium (RTSS07), pages 3–14, 2007.

[6] R. Davis and A. Burns. Robust priority assignment for
messages on controller area network (CAN). Real-Time
Systems, 41(2):152–180, 2009.

[7] R. Davis and A. Burns. Improved priority assignment
for global fixed priority pre-emptive scheduling in multi-
processor real-time systems. Real-Time Systems Journal,
47(1):1–40, 2011.

[8] J. Dı́az, D. Garcia, K. Kim, C. Lee, L. Bello, J. López,
and O. Mirabella. Stochastic analysis of periodic real-time
systems. In the 23rd IEEE Real-Time Systems Symposium
(RTSS02), pages 289–300, 2002.

[9] M. Gardner and J. Lui. Analyzing stochastic fixed-priority
real-time systems. In 5th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, 1999.

[10] G. Kaczynski, L. Lo Bello, and T. Nolte. Deriving ex-
act stochastic response times of periodic tasks in hybrid
priority-driven soft real-time systems. 2007.

[11] J. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. In the 11th IEEE Real-Time
Systems Symposium (RTSS’90), pages 201–209, 1990.

[12] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average
case bahavior. 1989.

[13] J.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks. Perfor-
mance Evaluation, 2(4):237–250, 1982.

[14] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of
the ACM, 20(1):46–61, 1973.

[15] J. Lopez, J. L. Dı́az, J. E., and D. Garcı́a. Stochastic anal-
ysis of real-time systems under preemptive priority-driven
scheduling. Real-time Systems, 40(2):180–207, 2008.

[16] D. Maxim and L. Cucu-Grosjean. Towards optimal
priority assignment for probabilistic real-time systems
with variable execution times. In the 3rd Junior Re-
searcher Workshop on Real-Time Computing (JRWRTC
2009), 2009.

[17] D. Maxim and L. Cucu-Grosjean. Towards optimal pri-
ority assignment for probabilistic CAN-based systems. In
WIP session of the 8th IEEE International Workshop on
Factory Communication Systems (WFCS’2010), 2010.

[18] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Englewood Cliffs, NJ: prentice Hall, 1995.

[19] T. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. Wu,
and J. Liu. Probabilistic performance guarantee for real-
time tasks with varying computation times. In the 1st
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, 1995.

[20] D. Wolpert and W. Macready. No free lunch theorems
for search. Technical Report SFI-TR-95-02-010, Santa Fe
Institute, 1995.

[21] H. Zeng, M. D. Natale, P. Giusto, and A. L. Sangiovanni-
Vincentelli. Stochastic analysis of distributed real-time
automotive systems. IEEE Trans. Industrial Informatics,
5(4):388–401, 2009.

10

