
Global Multiprocessor Real-Time Scheduling as a Constraint Satisfaction Problem

Liliana Cucu-Grosjean & Olivier Buffet
INRIA Nancy Grand-Est

615 rue du Jardin Botanique
54600 Villers-lès-Nancy, France

firstname.lastname@loria.fr

Abstract—In this paper we address the problem of global
real-time periodic scheduling on heterogeneous multiprocessor
platforms. We give a solution based on a constraint satisfac-
tion problem that we prove equivalent to the multiprocessor
problem. A solution has to satisfy a set of constraints and
there is no performance criterion to optimize. We propose two
different CSP formulations. The first one is a basic encoding
allowing to use state of the art CSP solvers. The second one is
a more complex encoding designed to obtain solutions faster.
With these encodings, we then study the resolution of the
scheduling problem using systematic search algorithms based
on backtracking.

I. INTRODUCTION

Real-time systems are systems for which the logical
results of the computation as well as the time at which
these results are produced are important. Nowadays real-time
systems have become the focus of much study. These sys-
tems typically involve the sharing of one or more resources
among various processes and such systems are modelled as
finite collections of repetitive tasks, each of which generates
jobs. If the jobs are generated in a predictable manner, then
we deal with periodic task systems. Each periodic task τi
generates jobs at each integer multiple of its period Ti with
the restriction that the first job is released at time Oi (the
task offset).

The scheduling algorithm determines which job[s] should
be executed at each time instant and on what processor.
When there is at least one schedule satisfying all constraints
of the system, the system is said to be feasible.

Uniprocessor real-time systems are well studied since the
seminal paper of Liu and Layland [1] which introduces a
model of periodic task systems. The literature considering
scheduling algorithms and feasibility tests for uniprocessor
scheduling is tremendous. In contrast for multiprocessor
platforms the problem of meeting timing constraints is a
relatively new research area.

In the design of scheduling algorithms for multipro-
cessor environments, one can distinguish between at least
two distinct approaches. In partitioned scheduling, all jobs
generated by a task are required to execute on the same
processor. Global scheduling, by contrast, permits task mi-
gration (i.e., different jobs of an individual task may execute
upon different processors) as well as job migration (an

individual job that is preempted may resume execution upon
a processor different from the one upon which it had been
executing prior to preemption). In this work we consider
global scheduling.

From a theoretical and practical point of view we can
distinguish between at least three kinds of multiprocessor
platforms (from less general to more general). We deal with
identical processors if all processors are identical, in the
sense that they have the same computing power. By contrast,
in the case of uniform processors, each processor Pj is
characterized by its own computing capacity: a job that
executes on processor Pj of computing capacity sj for t
time units completes sj × t units of execution. Finally in
the case of heterogeneous processors there is an execution
rate si,j associated with each job-processor pair: a job Ji

that executes on processor Pj for t time units completes
si,j × t units of execution. The heterogeneous processors
model dedicated processors (e.g., si,j = 0 means that Pj

cannot serve job Ji).
Related research. The problem of scheduling periodic

task systems on several processors was originally studied
in [2]. Recent studies provide a better understanding of
that scheduling problem and provide first solutions. E.g.,
[3] presents a categorization of real-time multiprocessor
scheduling problems.

The difficulty when one studies multiprocessor scheduling
comes from the fact that uniprocessor feasibility results do
not always hold for multiprocessor scheduling. For instance
the synchronous case (i.e., considering that all tasks start
their execution synchronously) is not a worst case for all
asynchronous situations upon multiprocessors. Initial results
indicate that real-time multiprocessor scheduling problems
are typically not solved by applying straightforward exten-
sions of techniques used for solving similar uniprocessor
problems because of scheduling anomalies [4].

Contribution of this paper

In this paper we propose a solution based on constraint
satisfaction problems. A similar approach has already been
used for multiprocessor real-time scheduling but in the
partitioned case [5]. To our best knowledge this is the first
paper using constraint satisfaction techniques to solve the
global multiprocessor real-time scheduling problem.

Organization of the paper

The paper is organized as follows. Section II provides the
model of tasks and its associated notations. In Section III
we present to the unfamiliar reader notions on constraints
satisfaction problem and we define the constraints of a
multiprocessor global real-time scheduling problem. The
first CSP formulation is provided in Section IV and the
second one in Section V. Possible extensions are formulated
in Section VI. The experiments associated to the two CSP
formulations are presented in Section VII. Discussion on
obtained results as well as on future work are provided in
the last section of the paper.

II. MODEL AND ASSOCIATED NOTATIONS

We consider the global preemptive1 scheduling of periodic
tasks on heterogeneous processors. A task system τ is
composed by n tasks and each task is characterized by a
4-tuple (Oi, Ci, Di, Ti) where:

Oi is the offset of task τi;
Ci is the worst-case execution time (WCET) of task

τi;
Ti is the period of task τi. Let Tmax =

max{T1, T2, · · · , Tn} ;
Di is the deadline of task τi, i.e., each job k generated

at time Oi + (k − 1)Ti must finish its execution
before Di +Oi + (k − 1)Ti.

In this paper we consider the case of constrained deadline
task systems, i.e., Di ≤ Ti,∀i ≤ n and the case of arbitrary
deadline task systems. The time being discrete, all these
parameters take integer values.

A solution of the Multiprocessor Global Real-Time
Scheduling (MGRTS) problem for any task system τ =
{τ1, . . . , τn} and any set of m processors {P1, . . . , Pm} is
defined by a schedule σ : N→ {0, 1, . . . , n}m where
σ(t) def= (σ1(t), σ2(t), . . . , σm(t)) with

σj(t)
def=

 0, if there is no task scheduled on Pj

at instant t;
i, if τi is scheduled on Pj at instant t;

∀1 ≤ j ≤ m.
We consider that the parallelism is forbidden, i.e., a task

is scheduled at any time instant on at most one processor.
Moreover, any processor can execute at any time instant at
most one task.

A feasible schedule is a schedule with all deadlines met
for all jobs of all tasks. Therefore in a feasible schedule
and from the definition of the deadline, a job k of a task τi
must be scheduled within its availability interval [Oi +(k−
1)Ti, Di +Oi + (k − 1)Ti).

Example 1. In the remainder of the paper, we use the
following running example: m = 2, n = 3, and the tasks

1A task is preemptive if it can be interrupted at any time.

τ1

τ2

τ3

t

D1 = T1 = 2

O2 = 1 D2 = T2 = 4

D3 = 2 T3 = 3

0 1 2 3 4 5 6 7 8 9 10 11

Figure 1. Representation of the availability intervals of example 1’s tasks
during one hyperperiod (with O1 = O3 = 0)

are defined by:

τi O C D T
τ1 0 1 2 2
τ2 1 3 4 4
τ3 0 2 2 3

Let T be the least common multiple of all periods:
T = lcm(T1, · · · , Tn). Since the same pattern of availability
intervals repeats every T time instants for any task set, T is
the hyperperiod of the availability intervals. In Example 1,
the hyperperiod is T = 12 and the pattern of availability
intervals is the one shown on Figure 1.

We denote:

• Ii,k the kth availability interval for task τi:

Ii,k = [Oi + (k − 1)Ti, Oi + (k − 1)Ti +Di − 1];

• U =
∑

i
Ci

Ti
the utilization factor for a given problem

(a necessary condition for a problem to be feasible is
that U ≤ m); and

• r = U
m the utilization ratio for a given problem (so that

the above condition can be rewritten r ≤ 1).

III. FINDING A FEASIBLE SCHEDULE

Since we deal with constrained deadline systems and
because of the existence of an availability intervals pattern,
there exists a feasible schedule for all jobs of all tasks if
and only if there exists a feasible finite schedule within an
interval of length T . This schedule is obtained by repeating
the finite schedule infinitely. A more formal discussion is
given in the proof of Theorem 1.

By focusing our effort on periodic solutions, we ensure
that a finite number of unknown variables is sufficient,
which is a prerequisite to translate the MGRTS problem to
a constraint satisfaction problem.2

Before proposing formulations of the MGRTS problem as
a CSP, this section gives some background on CSPs: how
they are defined and how they can be solved exactly.

2With aperiodic sets of 2D tiles, there exist non-periodic tilings of the
plane but no periodic tilings.

A. Constraint Satisfaction Problems

As our focus is on real-time scheduling, we deal with
Constraint Satisfaction Problems (CSPs) [6; 7]. A CSP is
defined by a set of variables X1, · · · , Xp — each defined
on a domain Di — and a set of constraints C1, · · · , Cq

involving one or several variables. A state is a partial
or complete assignment of values to variables. Solving a
CSP means either 1- finding a solution, i.e. a complete
state satisfying all constraints, or 2- making sure that no
valid/consistent solution exists.

A real-world problem can often be formalized as a CSP
in various ways and various resolution strategies can be en-
visioned. The difficulty is then to find the best combination.

In our setting (MGRTS), the domains are finite sets:
variables take positive (and bounded) integer values, and
constraints take the form of (linear) equalities or inequalities.

B. Exactly Solving a CSP

The search space being finite (because we have a finite
number of variables each with a finite domain), a systematic
generate-and-test procedure can be employed. This can be
achieved for example with a depth-first search starting
from the "empty-assignment" state and trying all possible
value assignments for variable Xi when at depth i (the
algorithm backtracks when a constraint is violated). This
search algorithm can be improved in various ways, such as:
• propagating constraints, i.e. using constraints to reduce

the variables’ domains; this process can be iterated re-
peatedly until this “chain reaction” has no more effects;
one issue is that searching for applicable constraints and
applying them can be time consuming and hinder the
benefit of this process;3

• ordering the variables to prune the search space more
efficiently; this can be achieved for example by con-
sidering the most constrained variables first and by
grouping variables linked by some constraints;

• ordering the values in each variable’s domain so as to
find a consistent solution earlier;

• adding constraints to reduce the size of the search space
if this does not make the problem unsolvable.

A given real-world problem may be formulated in various
ways. This leads to a choice that can change the complexity
of the scheduling task.

C. Definition of the multiprocessor global real-time schedul-
ing problem (MGRTS)

The following two sections propose two different formu-
lations based on constraint satisfaction problem for the con-
sidered multiprocessor global real-time scheduling problem.
We denote by MGRTS-ID the problem of finding a feasible
schedule for a periodic task system τ = {τ1, τ2, · · · , τn}

3Note: Sudoku games are often solvable with constraint propagation and
no backtracking.

upon m identical processors P1, P2, · · · , Pm. Each task τi
is given by (Oi, Ci, Di, Ti) and we have Di ≤ Ti,∀i ≤ n.
Finding a feasible schedule implies that the following con-
ditions are met:

C1 Each job of task τi is scheduled within its corre-
sponding availability interval.

C2 At time t, on processor Pj , at most one task is
running.

C3 At time t, task τi runs on at most one processor.
C4 Task τi should last exactly Ci during each avail-

ability interval.

IV. CSP ENCODING #1

In this first proposition our objective is to find a generic
model that could be tested on various state-of-the-art CSP
solvers. This leads to focusing on boolean variables so that
even boolean satisfiability (SAT) solvers could be used.

A. Variables

This CSP uses one binary variable xi,j(t) per task τi,
processor j and time step t — where t ∈ 1..T — indicating
whether task τi runs on processor j at time t:

xi,j(t) =
{

1 if τi on Pj at t;
0 otherwise. (1)

We therefore have n ∗m ∗ T variables, each taking one of
two possible values (Di,j(t) = {0, 1}, where 0=false and
1=true).

B. Constraints

With these variables, we define the following constraint
satisfaction problem that we denote by CSP1:

xi,j(t) = 0, ∀t 6∈ Ii,1 ∪ · · · ∪ Ii, T
Ti

; (2)∑
i

xi,j(t) ≤ 1; (3)∑
j

xi,j(t) ≤ 1; (4)

∑
t∈Ii,k

∑
j

xi,j(t) = Ci, ∀k ∈ 1..
T

Ti
. (5)

As it can be observed, constraint propagation can here be
very efficient:
• with constraint (2), the values of out-of-interval vari-

ables can be set before backtracking; then, the number
of “real” variables goes from

∑
im ∗ (T

Ti
∗ Ti) down

to
∑

im ∗ (T
Ti
∗Di);

• with constraints (3) and (4), if task τi is set to run on
processor j at time t (xi,j(t)), this sets the value of at
least:

– the n− 1 variables xi′,j(t) for i′ 6= i, and
– the m− 1 variables xi,j′(t) for j′ 6= j.

We prove in Theorem 1 that solving CSP1 is equivalent
to solving MGRTS-ID.

Theorem 1. x0 is a solution of CSP1 if and only if
σ : N → {0, 1, . . . , n}m with σj(t) = σj(t + kT) ={
i0, if x0

i0,j(t) = 1;
0, otherwise.

∀k ≥ 1 and ∀t ≥ 0 is a solution

of MGRTS-ID.

Proof: Since x0 is a solution of CSP1 then x0 satisfies
all constraints (2) - (5) given in Section IV-B. Based on the
definition of σ and because of (2) and (5) each job of task
τi is scheduled within its availability interval and it lasts for
exactly Ci. Moreover constraint (3) implies that at time t
on processor Pj at most one task is running. Constraint (4)
implies that at time t task τi runs on at most one processor.

We may observe that by construction of schedule σ, this
schedule is periodic and it is build from 0 that we define as
the time instant when the schedule repeats. The existence of
this time instant is ensured by the periodicity property of any
feasible schedule of constrained deadline task systems [8].

We may observe that the solution proposed by Theorem 1
considers the worst-case execution of tasks. If any job of
a task does not need the entire amount of time, then the
processor is considered idled in order to avoid scheduling
anomalies.

C. Search Strategy
We do not discuss possible search strategies related to this

model. We see in Section VII that we have decided to leave
this problem in the hands of a generic CSP solver.

V. CSP ENCODING #2
In this second proposition we look for both a CSP formu-

lation and a search strategy that would make the search more
effective. This leads to reducing the number of variables and
using symmetries of the problem to restrict the search space.

A. Variables
To reduce the number of variables, one has to replace bi-

nary (true/false) variables with multi-valued variables telling
for example on which processor a task is running at a given
time instant, or conversely which task is running on some
processor at a given time instant.

In this CSP, we use one n-ary variable xj(t) per processor
j and time step t — where t ∈ 1..T — indicating which
task τi (−1 if no task) runs on processor j at time t:

xj(t) =
{
i if τi on Pj at t;
−1 otherwise. (6)

We therefore have m∗T variables, each taking one of n+1
possible values (Dj(t) = {−1, 1, 2, · · · , n}).

By reducing the number of variables and because some
constraints are induced by the choice of the variables and
their domains, the problem to solve is defined only by
conditions (C1), (C3) and (C4) (see Section III-C).

B. Constraints

With these variables, we define the following constraint
satisfaction problem that we denote by CSP2:

xj(t) 6= i, ∀t 6∈ Ii,1 ∪ · · · ∪ Ii, T
Ti

; (7)

xj(t) = xj′(t)⇔ xj(t) = −1; (8)∑
t∈Ii,k

∑
j

δ(i, xj(t)) = Ci, ∀k ∈ 1..
T

Ti
; (9)

where δ(a, b) =

{
1 if a = b,

0 if a 6= b.
We prove that the new formulation is equivalent to CSP1

and therefore equivalent to MGRTS-ID.

Theorem 2. CSP1 has a solution if and only if CSP2 has
a solution.

Proof: Let be x0 a solution of CSP1. We build one

variable x1 with x1
j (t) =

{
i if x0

i,j(t) = 1
−1 otherwise.

. Note that

this construction is a bijection. The constraints of CSP1
are directly obtained from the conditions of CSP2 and the
variables’ domains and vice versa.

C. Search Strategy

As explained in Section III-B, efficiently solving CSPs
with a backtracking algorithm requires carefully controlling
the search. We now explain the choices made in our imple-
mentation.

1) Ordering the Variables: Considering the variables, the
main decision is to order them first in chronological order.
Even if time is cyclic (periodic modulo T) in our problem,
this ordering should be beneficial by ensuring that new
decisions are taken given the knowledge of most past events.

As only identical processors are considered, all processor
orderings are equivalent. So we just order them according
to their id number.

2) Ordering the Values: The values correspond to the
possible tasks (1..n) or to the absence of any task (−1).
Various heuristics can be envisioned to order the tasks, such
as:

RM: tasks with smallest period first (Rate Monotonic);
DM: tasks with smallest deadline first (Deadline Monotonic);
T-C: tasks with smallest T − C value first;
D-C: tasks with smallest D − C value first.
We do not mention the “no task” value (−1) now, as it is

considered as a special case in the next section.
3) Adding Constraints: We are here looking for con-

straints to reduce the search space. But, instead of adding
them explicitly to the CSP, we are able to encode them
directly in the search strategy.

Considering the “no task” value, it does not make sense
to leave a processor idle at time t if some task can run on
it. Thus, a first rule is: the “no task” value should be used
only when no tasks are available for running.

One can also observe that, at any time step t, all permu-
tations of tasks on processors are equivalent. The number of
value assignments for time step t can therefore be divided
by up to m! by applying a second rule: tasks and processors
should be considered in ascending order only, i.e.:

(j < j′)⇔ (xj(t) ≤ xj′(t)). (10)

VI. EXTENSIONS

The following extensions have not been implemented for
now, but we propose the corresponding formulations.

A. What if Processors are Heterogeneous ?
Let us now add the constraint that processors are hetero-

geneous. How should we adapt our two CSPs to take this
heterogeneity into account?

In both CSP encodings, moving from homogeneous
to heterogeneous processors first means rewriting con-
straint (C4). But if some processor Pj cannot execute a task
τi, we should also modify some variables’ domains.

1) CSP1: In CSP1, the heterogeneity leads to redefining
the domains for each variable xi,j(t):

Di,j(t) =

{
{0, 1} if si,j > 0,
{0} if si,j = 0;

and rewriting constraint (5) as∑
t∈Ii,k

∑
j

si,jxi,j(t) = Ci, ∀k ∈ 1..
T

Ti
. (11)

We do not mention search strategies here since it was
decided to let a generic solver do the work.

2) CSP2: Similarly, in CSP2, this heterogeneity translates
into a similar change in the domain definitions:

∀t, si,j > 0⇔ i ∈ Dj(t);

and into rewriting constraint (9) as∑
t∈Ii,k

∑
j

si,jδ(i, xj(t)) = Ci, ∀k ∈ 1..
T

Ti
. (12)

Moreover, the search strategies defined when designing
CSP2 need to be revised because of the processor hetero-
geneity:
• The ordering of variables should now take care of the

processors’ heterogeneity. One suggestion is to put less
capable processors first in order to prune the search
tree as early as possible. Processor Pj’s quality Q(Pj)
could be measured on the basis of its performance for
each task in the problem:

Q(Pj) =
∑

i

si,j
Ci

Ti
.

• The ordering of values could now put a higher priority
on tasks that can run on few processors.

• Avoiding “no tasks” is the same problem as before,
except that, for processor Pj , only the tasks that can
run should be considered.

• Permuting tasks on processors is not as easy as it was.
Constraint (10) can be adapted by restraining it to pairs
of identical processors Pj and Pj′ (noted Pj ∼ Pj′).
This is appropriate since the variable ordering groups
identical processors together.

(j < j′&Pj ∼ Pj′)⇔ (xj(t) ≤ xj′(t)). (13)

B. What if task systems are arbitrary deadline ?

Up to now we have only considered settings where, for
each task τi, the duration of the availability interval is less
than or equal to the period (∀i ∈ [1..n] Di ≤ Ti), case
commonly known as constrained deadline task systems. Let
us now consider that this assumption is not met, i.e., we
deal with arbitrary deadline systems. In this new setting, two
instances of some task τi could run simultaneously on two
separate processors. The proposed constrained satisfaction
problems cannot model this situation.

To solve this problem, the CSPs need to distinguish
multiple instances of the same task τi. We call these ki

instances clones of τi and note them τi,i′ , where i′ is their
identification number as a clone. To know how many clones
of τi are required, we need to count how many instances of
τi could be allowed to run at the same time, i.e. how many
availability intervals of τi can intersect simultaneously. The
answer is simply ki = dDi/Tie.4

A second question is how to define each clone τi,i′

(i′ = 1..ki), i.e. what values to choose for the 4-tuple
(Oi,i′ , Ci,i′ , Di,i′ , Ti,i′) ?
Oi,i′ : The availability intervals should be started one

after another with a delay corresponding to the
period Ti, hence Oi,i′ = Oi + (i′ − 1) ∗ Ti.

Ci,i′ : For each instance, the worst-case execution time
remains the same: Ci,i′ = Ci.

Di,i′ : For each instance, the duration of the availability
interval remains the same: Di,i′ = Di.

Ti,i′ : The period of a clone τi,i′ should be a multiple
of the original period Ti and be greater than Di,i′ .
The smallest such integer is Ti,i′ = ki ∗ Ti.

To summarize, for each task τi (even if Di ≤ Ti), ki =
dDi/Tie clones τi,i′ have to be created, each specified by:

Oi,i′ = Oi + (i′ − 1) ∗ Ti,

Ci,i′ = Ci,

Di,i′ = Di,

Ti,i′ = ki ∗ Ti.

4Where dxe denotes the smallest integer greater than or equal to x.

With this, we can directly find a feasible schedule by
building and solving a CSP as explained in Sections IV
and V. No additional changes are required. The resulting
problems have an increased complexity because of 1- the
larger number of tasks to schedule and 2- the often longer
hyperperiod. The schedule obtained from a CSP formulation
is feasible for all jobs because of the periodicity property of
any feasible schedule of arbitrary deadline task systems [9].

VII. EXPERIMENTS

For these experiments, we have decided to implement:
• CSP1 with a generic CSP solver, Choco [10],5 using

its default search strategy; and
• CSP2 in C++, using our own search strategy.

This choice makes it possible to compare our hand-made
search strategies with generic search strategies from a state-
of-the-art CSP solver. Plus, it turns out that the first im-
plementation (CSP1, almost bug-free because it relies on an
existing solver) has helped debugging the second implemen-
tation (CSP2) by comparing their respective results: some
bugs are rare and hardly noticeable.

Each experiment was run on one core of a Core2Quad
CPU at 2.4GHz.

A. Randomly Generating Problems

These experiments are conducted on random problems.
Generating these problems requires ensuring that i) the
constraint 0 ≤ Ci ≤ Di ≤ Ti is satisfied; and ii) 1 < m < n
(otherwise the problem is too easy to solve).

When randomly generating problems, we make the choice
of specifying:
• n > 2;
• m ∈ 1..(n − 1) — although it could be uniformly

sampled — as this provides a better control over the
problem’s difficulty;

• Tmax > 1 the maximum period:6 ∀i ∈ 1..n 1 ≤ Ti ≤
Tmax.

Now that we have these global parameters, one choice
remains to be done: for each task, in which order should its
parameters be selected. For a task τi, Oi is independent of
other parameters, but Ci, Di and Ti are dependent on each
other. Any of the 3! orderings over these three parameters is
possible, but results in a different distribution over problems,
e.g.:
• Ci → Di → Ti favors large periods since
Ci ∼ U(1..Tmax), Di ∼ U(Ci..Tmax) and Ti ∼
U(Di..Tmax);

• Ti → Di → Ci favors short WCETs since
Ti ∼ U(1..Tmax), Di ∼ U(1..Ti) and Ci ∼ U(1..Di);

where X ∼ U(min..max) means that X is sampled
uniformly over min..max. Our choice is the intermediate

5This solver is implemented in Java.
6The resulting hyperperiod T is likely to be greater than Tmax.

solution of sampling Di first, then Ci and Ti in any order
(they are independent given Di).

One could find a solution so that all problems have
equal chances of being sampled, but this does not give any
guarantee that the result is representative of a real-world
distribution.

B. Randomness & Reproducibility

A first observation is that our CSP2 solver is completely
deterministic — restarting the same algorithm twice on
the same problem returns the same outcome — whereas
Choco appears to use a randomized search algorithm, so
that multiple executions of the CSP1 solver on a given
problem may return different outcomes.

In our setting, obtaining one feasible scheduling or an-
other feasible schedule does not matter much. A real issue
is that, for a given problem, some executions of the CSP1
solver may be very quick while others are very slow. We
do not provide statistics about this phenomenon, but it has
been clearly observed, some problems being more likely to
be solved quickly.

C. Comparing CSP1 and CSP2

The objective of the first experiment is to figure out which
of our various CSP solvers is the most efficient. We therefore
experiment with CSP1, CSP2 and four variants of CSP2
(each with a different task ordering). The experiments are
conducted on 500 random problems with m = 5, n = 10,
Tmax = 7 and a maximum resolution time of 30 seconds
(we are talking here about the solver’s resolution time, not
a schedule’s execution time). We do not filter out problems
which, obviously, cannot be solved because there are not
enough processors for all the jobs (i.e. whose utilization ratio
r is greater than 1).

Table I gives, for each solver, the number of runs that
reached the 30 seconds time limit. We distinguish instances
solved by at least one solver from unsolved instances7. It is
clear that CSP2+(D-C) is here the best approach: only 12
out of 295 instances are solved by another algorithm and
not by CSP2+(D-C). Interestingly, all CSP2 approaches are
equally bad when it comes to unsolved problems.

overruns CSP1 CSP2 +RM +DM +(T-C) +(D-C) Total
solved 202 133 115 111 34 12 295

unsolved 205 189 189 189 189 189 205

Table I
NUMBER OF RUNS REACHING THE 30S TIME LIMIT

Table II details the results for unsolved instances by
distinguishing those instances that could have been pruned
out from other instances because r > 1. A positive point

7The fact that no solver found a solution in 30 seconds does not mean
necessarily that no solution exist.

is that a large proportion of unsolvable instances (183 out
of 205) can be easily detected. A negative point is that, out
of the 22 unfiltered — and unsolved — instances, only 3
are provably unsolvable (the algorithm stopped before the
30 seconds for all other instances).

overruns CSP1 CSP2 +RM +DM +(T-C) +(D-C) Total
filtered 183 170 170 170 170 170 183

unfiltered 22 19 19 19 19 19 22

Table II
NUMBER OF unsolved RUNS REACHING THE 30S TIME LIMIT

An interesting observation is that most executions not
reaching the 30 seconds limit last less than 1 second. In
particular, a number of instances lead to an overrun with
some solvers but are treated (solved or proved unsolvable)
in less than a second by other solvers.

D. Where are Difficult Problems

Table III shows how the utilization ratio r is distributed
over the 500 generated problems and how the average
resolution time (over all solvers) evolves with r.

rmin–rmax #instances tres.

0.0–0.4 0 –
0.4–0.5 2 5.0
0.5–0.6 4 2.1
0.6–0.7 29 6.5
0.7–0.8 79 7.7
0.8–0.9 98 10.7
0.9–1.0 105 18.7
1.0–1.1 87 28.5
1.1–1.2 51 29.1
1.2–1.3 35 28.1
1.3–1.4 7 30.0
1.4–1.5 1 30.0
1.5–1.6 1 30.0
1.6–1.7 1 30.0
1.7–2.0 0 –

Table III
DISTRIBUTION OF THE 500 INSTANCES ACCORDING TO THEIR

UTILIZATION RATIO AND AVERAGE RESOLUTION TIME

The distribution of problem instances is clearly centered
around the 0.9–1.0 interval. This could be changed by
modifying the random generation (e.g. by increasing or
decreasing m). More related to the solvers is the fact that
the average resolution time increases with r. This reflects
the fact that the systematic search i) is less and less likely
to find a feasible solution early and ii) has more and more
difficulties to quickly prove that a problem is unsolvable.

E. Increasing the Number of Tasks

In this second set of experiments, we consider problems
with a larger maximum period Tmax = 15 and a varying
number of tasks (n ∈ {4, 8, 16, 32, 64, 128, 256}). For each

problem, the number of processors is chosen as the minimum
value such that the problem is not pruned out:

mmin =
⌈∑

i

Ci

Ti

⌉
.

We limit our study to CSP1 and CSP2+(D-C), running them
on 100 instances in each setting.

Table IV presents the numerical results. The first columns
give, for each n, the average utilization ratio r, the average
number of processors m and the average hyperperiod T of
the generated problems. One can observe that r converges to
1, the average number of processors growing linearly with
the number of tasks. The average hyperperiod also converges
to the maximum value Tmax = 23×32×51×71×111×131 =
360360.

n r m T CSP1 CSP2+(D-C)
(×1000) solved tres. solved tres.

4 0.74 2.15 2.60 29% 19.52 81% 0.01
8 0.84 3.56 2.79 1% 29.58 66% 0.05

16 0.93 6.87 111.21 0% 30.00 10% 0.02
32 0.96 13.02 285.29 – – 0% 0.00
64 0.98 25.82 345.95 – – 0% 0.00

128 0.99 51.07 360.36 – – 0% 0.00
256 0.99 101.28 360.36 – – 0% 0.00

Table IV
EXPERIMENTS WITH A GROWING NUMBER OF TASKS

The CSP1 solver quickly shows its limits: it suffers from
many overruns and runs out of memory on “large” instances.
CSP2+(D-C) scales much better: it does not suffer from any
overrun. The decreasing success reflects the fact that less
instances are solvable when n increases (probably due to r
converging to 1). It would be interesting to use an algorithm
which incrementally searches for the smallest number of
processors m required to schedule a given set of tasks.

Note that increasing the largest period should not be done
without taking special care as the hyperperiod increases at
a very fast rate.

VIII. DISCUSSION AND FUTURE WORK

This work is a first step towards efficiently applying
classical search techniques to MGRTS problems. They can
be restated as Constraint Satisfaction Problems in various
ways, leaving us with the task of finding the most efficient
encoding and search strategy. The experimental results show
that this approach already gives satisfying results on many
instances. But experiments on larger problems and/or real-
world problems would, of course, be a plus.

The search algorithms employed here are systematic
searches, meaning that they stop if and only if a solution
is found or the problem is proved infeasible (not men-
tioning time limits). No formal study of the space and
time complexity of both encodings and of there respective

search algorithms has been conducted. But one can expect
to observe a combinatorial explosion with the number of
tasks, the number of processors and the hyperperiod. So,
it is unlikely that such approaches are reasonable for hard
instances, so that future work should consider alternatives
such as:
• using the same CSP formalizations with local search

algorithms, although they won’t be able to prove that
a given instance is infeasible;

• considering the problem from a different viewpoint,
e.g. searching for a feasible priority assignment among
the n! possible orderings of n tasks. The experiments
presented here indicate that CSP2+(D-C) is the best ap-
proach. This implies that an optimal priority assignment
algorithm could be built starting from a first ordering
based on a (D-C) criterion.

• looking at partitioning or mixed approaches.
In a longer term, one of our objectives is to move from the

usual deterministic setting — where worst-case execution
times are considered — to probabilistic settings — e.g.
where a probability distribution over execution times is
known for each task τi. This is a very different problem that
requires different approaches, but it seems to be a natural
prerequisite to first study the deterministic case.

REFERENCES

[1] C. Liu and J. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” Journal of the
ACM, vol. 20, no. 1, pp. 46–61, 1973.

[2] C. Liu, “Scheduling algorithms for multiprocessors in a hard
real-time environment,” JPL Space Programs Summary 37-
60(II), pp. 28–31, 1969.

[3] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson,
and S. Baruah, “A categorization of real-time multiprocessor
scheduling problems and algorithms,” Handbook of Schedul-
ing, 2005.

[4] S. Dhall and C. Liu, “On a real-time scheduling problem,”
Operations Research, vol. 26, pp. 127–140, 1978.

[5] A. D. P.E. Hladik, H. Cambazard and N. Jussien, “Solving
a real-time allocation problem with constraint programming,”
Journal of Systems and Software, vol. 81, no. 1, pp. 132–149,
2008.

[6] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach. Englewood Cliffs, NJ: prentice Hall, 1995.

[7] V. Kumar, “Algorithms for constraint-satisfaction problems:
A survey,” AI magazine, vol. 13, no. 1, 1992.

[8] L. Cucu and J. Goossens, “Feasibility intervals for fixed-
priority real-time scheduling on uniform multiprocessors,”
Proceedings of the 11th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA’07),
2007.

[9] ——, “Feasibility intervals for multiprocessor fixed-priority
scheduling of arbitrary deadline periodic systems,” Proceed-
ings of the 10th Design, Automation and Test in Europe
(DATE’07), 2007.

[10] The Choco Team, “Choco: An open source java constraint
programming library,” Ecoles des Mines de Nantes, Tech.
Rep., August 2008, http://choco.emn.fr/.

