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Visibility in Image Synthesis and Computational Geometry

Computer Graphics oldest goal: create images of virtual worlds.

[Wonka et al. 2006]
Let's look at some examples of visibility problems. . .

Example in the plane: given polygonal scene description and viewpoint V
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Visibility in Image Synthesis and Computational Geometry

Example in the plane: given polygonal scene description and viewpoint V

V

Ordered around the viewpoint: table, bottle, lamp
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Visibility in Image Synthesis and Computational Geometry

Compute objects visible from V

V

Ordered around the viewpoint: table, bottle, lamp
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Visibility in Image Synthesis and Computational Geometry

Compute segments visible from V

V

Possibly ordering the segments circularly
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Visibility in Image Synthesis and Computational Geometry

Compute parts visible from V . E.g. lit/shadowed parts if V is a light source

Adding discontinuity positions (◦), to clip the invisible parts
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Visibility in Image Synthesis and Computational Geometry

Further, the observer might vary (from-cell visibility)

V

Precomputation of visible sets, or area-lights
[Durand et al. 00, Haumont et al. 05]
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Visibility in Image Synthesis and Computational Geometry

V (or the objects) might move: update visibility during motion

E.g., if no preprocessing is available
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Kinetic Data Structures (KDS)

Framework for design & analysis of algo. for maintaining an attribute of
continuously moving items [Basch et al. 97].

Event queue

Samuel Hornus () Soutenance de thèse lundi 22 mai 4 / 37



Kinetic Data Structures (KDS)

Framework for design & analysis of algo. for maintaining an attribute of
continuously moving items [Basch et al. 97].

Event queue

Samuel Hornus () Soutenance de thèse lundi 22 mai 4 / 37



Kinetic Data Structures (KDS)

Framework for design & analysis of algo. for maintaining an attribute of
continuously moving items [Basch et al. 97].

time

Event queue
Samuel Hornus () Soutenance de thèse lundi 22 mai 4 / 37



Kinetic Data Structures (KDS)

Framework for design & analysis of algo. for maintaining an attribute of
continuously moving items [Basch et al. 97].

time

Event queue
Samuel Hornus () Soutenance de thèse lundi 22 mai 4 / 37



Kinetic Data Structures (KDS)

Framework for design & analysis of algo. for maintaining an attribute of
continuously moving items [Basch et al. 97].

time

Event queue
Samuel Hornus () Soutenance de thèse lundi 22 mai 4 / 37



Kinetic Data Structures (KDS)

Framework for design & analysis of algo. for maintaining an attribute of
continuously moving items [Basch et al. 97].

time

Event queue
Samuel Hornus () Soutenance de thèse lundi 22 mai 4 / 37



Kinetic Data Structures (KDS)

Framework for design & analysis of algo. for maintaining an attribute of
continuously moving items [Basch et al. 97].

time

Event queue
Samuel Hornus () Soutenance de thèse lundi 22 mai 4 / 37



Contributions on Visibility Maintenance

In the �rst part, we consider three problems on:

Exact and continuous object-visibility maintenance.

With moving point observer (viewpoint).

And possibly continuously moving objects.

... and a property of the visibility complex.
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Contrib #1: Vis. Maintenance among Points in the Plane

Goal: maintain the ordering of n points
around V , as V moves along line
segment trajectories given on-line.

Optimal algorithm.

V

Canadian Conference on Computational Geometry 2005; O. Devillers, V.
Dujmovi¢, H. Everett, S. Hornus, S. Whitesides, and S. Wismath.
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Contrib #2: Vis. Maintenance Among Convex Sets in 2D
Exposition of Hall-Holt's Visible Zone algorithm

Tangents through V describe the
visibility polygon (in green).

Goal: maintain the visibility polygon
as V moves along algebraic
trajectory given on-line.

V

O0

O2

O3

O1

∞

∞
Under mild assumptions, the Visible Zone algorithm is optimal.

We explain the algorithm and give a new and simpler proof of a crucial
property used for the algorithm.
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Contrib #3: Vis. Maintenance Among Polytopes in Space

The visibility polyhedra encodes the set of objects visible from V

Goal: maintain the visibility polyhedra as V moves along arbitrary

pseudo-algebraic trajectory.

Give a non-optimal algorithm to do so, together with hints at how to
improve it. More on that in a few minutes.
Early results presented at DIMACS Workshop, 2002.
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Contrib #4: Connectedness in the 3D Visibility Complex

3D Visibility complex = 4D set encoding visibility relationships between
objects in space. Current algorithms for constructing it seem di�cult
[Durand] or are not (yet) implementable [Goaoc 04].

1 We prove a topological property of the 3D visibility complex.

2 And apply this property to a simple algorithm to construct the
visibility complex. More on that in a few minutes.
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Graphics Contributions

Computer graphics applications, related to visibility and motion:

real-time rendering of large indoor scenes

real-time rendering of shadows
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Contrib #5: Automatic Cells-and-Portals Decomposition

Given an input polygonal scene, we give an algorithm that builds a
cells-and-portals graph suitable for portal rendering (well sized cells).

()

INRIA Research Report 4898 (2003), S. Lefebvre and S. Hornus.
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Contrib #5: Automatic Cells-and-Portals Decomposition

Given an input polygonal scene, we give an algorithm that builds a
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Invisible polygons (portals) separate cells (�rooms�)
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Contrib #5: Automatic Cells-and-Portals Decomposition

Given an input polygonal scene, we give an algorithm that builds a
cells-and-portals graph suitable for portal rendering (well sized cells).

()Cells and portals de�ne a graph
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Contrib #5: Automatic Cells-and-Portals Decomposition

Given an input polygonal scene, we give an algorithm that builds a
cells-and-portals graph suitable for portal rendering (well sized cells).

�Portal rendering� is a graph traversal

V

INRIA Research Report 4898 (2003), S. Lefebvre and S. Hornus.
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Contrib #7: ZP+, Correct Z-pass Stencil Shadows

Corrects a �aw in well-known algorithm. Generally faster than previous
work. [Laine 05] combines best of ZP+ and previous work.

Doom 3
[HHLH05] ACM Symposium on Interactive 3D Graphics 2005; S. Hornus,
J. Hoberock, S. Lefebvre and J. C. Hart.
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Connexity in the 3D Visibility Complex
The Visibility Complex

3D visibility complex:

All visibility relationships.

Structures the 4D set of �light rays� between objects.

My contributions:

1 Theorem: boundaries of its 4-dimensional �cells� are path-connected.

2 Applied to a simple algorithm to construct the visibility complex.
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Connexity in the 3D Visibility Complex
The Visibility Complex

Consider a set O of pairwise disjoint
convex sets in space in 3D (�gures are
2D).

The free space F is outside the objects.

Free segments (in green).

Maximal free segments (in blue).

Let S be the set of maximal free
segments. Each maximal free segment
has 2 blockers in (O ∪ {∞})2
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The visibility Complex (2/4)

The visibility complex partitions S in
maximal sets of segments having the
same set of blockers.

And each set is separated in connected
components.
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The visibility Complex (3/4)

In 2D, the visibility complex VC is a 2-dimensional cellular complex over S.
Each k-cell, of dimension k ≤ 2, is homeomorphic to a k-disc. [Pocchiola
and Vegter 96].

a part of a 1-cell

one 2-cell, cell or facetwo 0-cells

bi
ta
ng
en
ts

tangents non-tangents
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The visibility Complex (4/4)

In 3D, the visibility complex VC is not a cellular complex over S.
Intuitively, tiny objects `create' tunnels through 4-cells [Durand et al. 02].

A

B
The green loop of segments
is not contractible
in the 4-cell AB
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Our result

Theorem

Let C be a 4-cell of the visibility complex. Let ∂C be its boundary. Then,

∂C is path-connected.

A

B

Remarks:

The visibility complex is not a cell-complex, but S is (e.g., arangement
in Plücker space [Goa04]).

S is a Haussdorf space: in which tools from algebraic topology work
well.

The proof of the theorem uses 3 sub-lemmas. . .
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Lemmas for the proof of theorem

In order to prove the theorem, we manipulate homology groups.

Let X be a topological space.

H0(X ) is the zeroth homology group. H0(X ) = Zk ; k is the number of
connected components.

H1(X ) is the �rst homology group. We have H1(X ) = 0 if X is
1-connected.

Each lemma translates in an homological identity:

1 Segment space S is path-connected ⇒ H0(S) = Z
2 Segment space S is one-connected ⇒ H1(S) = 0

3 The complement CC of 4-cell C is path-connected⇒ H0(C
C ) = Z

We have H0(∂C ) = Zk . We want to prove that k = 1.
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Proof of theorem

We enlarge ∂C a little to obtain an open neighborhood B of ∂C with

H0(∂C ) = H0(B) = Zk , k ≥ 1

De�ne U = B ∪ C , V = B ∪ CC (C , U and V are connected).

C B U V

∂C

Using Mayer-Vietoris sequence on U and V , we obtain the following
short exact sequence of morphisms of groups:

0
φ3−→ Zk φ2−→ Z2 φ1−→ Z φ0−→ 0

Generally, such a sequence 0→ A→ B → C → 0 is said to split,
which means B ≈ A⊕ C .
In our case: Z2 ≈ Zk ⊕ Z ≈ Zk+1, therefore k = 1, that is, ∂C is
path-connected.
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Application to the construction of the visibility complex

Assume we have constructed the 3-skeleton VC(3) of the visibility complex
VC (its cells of dimension 3 and lower, see manuscript).

3-cell <3-cells
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Application to the construction of the visibility complex

We see VC(3) as a graph whose edges are the 3-cells, and nodes are cells of
dimension < 3.

3-cell <3-cells
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Application to the construction of the visibility complex

We label each 3-cell with its three adjacent 4-cells.

3-cell <3-cells
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Application to the construction of the visibility complex

Let C be a 4-cell. Its boundary is connected. So we can retrieve it as a
connected component in the graph VC(3).

3-cell <3-cells
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Application to the construction of the visibility complex

()

3-cell <3-cells
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Visibility Maintenance among Convex Polytopes in Space
Problem statement

k disjoint convex polytopes in
space.

Viewpoint V .

Viewmap: partition of the
sphere of directions around V .

Goal: maintain the viewmap as
V moves continuously.

V

The motion of V is given on-line as pseudo-algebraic trajectories.
Polytopes can move too.
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Visibility Polyhedra

The viewmap, alone, does not contain
enough information for its maintenance.
We need additional information.

The viewmap is the same as the visibility
polyhedron: the set of all visible points

V

We extend the visibility polyhedron into a radial decomposition RV of the
freespace, centered on V .
Let us �rst describe the radial decomposition in 2D. . .
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Radial Decomposition in 2D

V

(a) (c)(b)

(a) Draw tangents at each silhouette points.
(b) Tangents (or walls) partition freespace in faces. Blue faces form the
visibility polygon.
(c) Each cell can be seen as a one-dimensional set of segments.
The 2D radial decomposition can be maintained without further data
stucture.
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Radial Decomposition in 3D

We add walls in free space, supported by silhouette edges.

2 radial walls

V

t-vertex

silhouette edge supporting 2 radial walls

These walls partition the free space into 3D faces. . .

Samuel Hornus () Soutenance de thèse lundi 22 mai 27 / 37



Radial walls and 3D Faces of the Radial Decomposition

B

A
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Faces of RV

A face f of RV is

a 3D set of points (blue)

a 2D set of segments

V

Each face has a front blocker (A), and a back blocker (B):

The front blocker is a polytope or the viewpoint V

The back blocker is a polytope or the sky, ∞
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Maintenance of RV

Together, the faces of RV are self-maintenable.

Therefore RV is maintenable.

The visibility polyhedron (or viewmap) of V is a subset of RV .

Therefore the viewmap can be maintained by maintaining RV .
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Maintaining a Face

Each face of RV is also a 2D set of segments, each with a unique
direction: A face of RV can be described as a spherical polygon on the
sphere of directions.

t-vertex

A
B

Perspective view from V The face AB
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Faces of RV as Spherical Polygons

V is in the middle of the lot. Sphere of directions around V .
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Maintaining Each Face

EEE events (3 edges visually meet at a same point) are easy to detect.

VE events (1 vertex crosses an edge) are di�cult to detect and
correspond to topological change in a face.

In order to detect VE events, we triangulate each face:
VE event ⇔ collapse of a triangle.
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Maintaining Each Face by triangulation

t-vertex

f

f

High triangle count in the triangulation of RV .

Yields a large event queue: approximately
O(s(silhouette edges) + m(t-vertices)).

We present �rst steps to reduce the number of events.
Samuel Hornus () Soutenance de thèse lundi 22 mai 34 / 37



Towards A Scene Sensitive Pseudo-Triangulation

t-vertex

f

f

Number of pseudo triangles: O(m + k)+ separation sensitive term.
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Conclusions

Exact visibility maintenance:
1 2D with points: optimal algorithm.
2 2D with convex objects: new simpler proof.
3 3D with convex objects: arbirary motion.

3D visibility complex:
1 New connexity result.
2 Applied to visibility complex construction.

First (to my knowledge / together with [Haumont 03]) automatic
decomposition of indoor scene suitable for real-time rendering.

Stencil shadows: new technique (ZP+), �symmetrical� to previous
work (Z-fail) � take advantage of triangle-strips for large meshes �
generally faster � instrumental to new techniques [Laine 05].
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Future Work

3D visibility maintenance: More work to do on maintaining
pseudo-triangulation (e.g., canonical pseudo-triangulation)

3D visibility complex: More to do on the topology of the 3D visibility
complex ? maybe helpful for optimal visibility maintenance in 3D.

The end
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