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Motivations

The verification of a complex system can often be reduced to testing the satisfi-
ability of a logical formula encoding the properties of the system. If the system
is error-free, then the associated formula is unsatisfiable, which can be detected
by using an automated theorem prover in the considered logic, for instance a
SAT-solver (e.g. zChaff, SATO, MathSAT...) or an SMT-solver (Yices, Z3,
OpenSMT...) or a theorem prover for first order logic (E, Vampire, Prover9...).
Consequently, if the formula is satisfiable, this means that there is an error some-
where in the system, and then the main objective of the designers of the system
is to identify and correct this error. Usually, the detection of errors is done by
generating models of the formula and by analysing them. However, this method
possesses two major drawbacks: it can be difficult to distinguish the relevant
information from the noise; and the identified error may correspond to a single
case of a more general error that cannot be easily detected when considering
only the models. Accordingly, a more efficient way to identify errors would be
to directly find the most general explanations possible why the formula is sat-
isfiable, without relying on models. This kind of reasoning is called abduction.
It has been extensively studied in propositional logic because of its numerous
applications in domains of artificial intelligence like planning [Shanahan, 1988]
or truth-maintenance in knowledge bases [de Kleer and Reiter, 1987].

There are different ways to automate abduction. The most commonly used
consists in reducing the original problem to one of consequence-finding, by negat-
ing the formula. Even though this idea has been exploited a lot in propositional
logic, in more complex logics (that allow for the representation of more elaborate
systems) there exists, to the best of our knowledge, very few similar approaches
to abductive reasoning [Bienvenu, 2007; Mayer and Pirri, 1996]. In [Echenim
and Peltier, 2012], a variant of the superposition calculus [Bachmair et al., 1994],
was devised that is specifically tuned for generating ground consequences of sets
of axioms in equational logic. More precisely, the generated explanations can
be selected according to their relevance to the problem, by defining a set of in-
teresting symbols, called abductive constants, that will be the only ones allowed
to appear in the explanations. Given a set of first-order clauses S, this calculus
is able to generate a set of ground flat clauses T∞(S) built over abducible con-
stants, that describes all possible consequences of S that are of interest: if C is
an implicate of S built over abducible constants, then T∞(S) logically entails
C. Thus, the formula ¬T∞(S) can be viewed as a representation of the set of all
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plausible hypotheses ensuring the unsatisfiability of S. Each of these hypothe-
ses is a plausible explanation of an error in the original system, expressed as a
logical formula that can be easily understood by the designers of the system.

However, returning the set T∞(S) to the user is not fully satisfactory, since
this set may be very large and contain a lot of redundant information. In prac-
tice, it would be more useful to return only the most general clauses that are
logical consequences of T∞(S), which correspond to the most economical ex-
planations of S. Such clauses are the prime implicates of T∞(S). In [Echenim
and Peltier, 2012], the prime implicates of T∞(S) are generated by applying the
resolution calculus [Leitsch, 1997] to the set containing the clauses of T∞(S)
together with all the ground instances of the equality axioms. It is shown that
every prime implicate of T∞(S) can be obtained through this method. Yet,
applying the obtained algorithm is very inefficient since the potentially huge set
T∞(S) becomes substantially bigger with the addition of the numerous instan-
tiations of the equality axioms, which will themselves lead to the generation of
a lot of potentially uninteresting implicates. For instance, a clause a 6' b will
produce, together with the transitivity axiom a 6' c ∨ c 6' b ∨ a ' b, a clause
a 6' c ∨ c 6' b for each constant symbol c in the signature, even if there is no
logical connection between c and a or b.

To solve this problem, we devise another calculus called K-paramodulation1,
which is used to generate prime implicates more efficiently. This calculus can
be viewed as a relaxed form of the superposition calculus, in which equalities
are asserted instead of being proved. It is shown that this calculus permits
to generate all prime implicates, which is not the case with the superposition
calculus: for example, a prime implicate of the clauses a 6' b and c ' d is
c 6' a ∨ d 6' b, but there is no way of generating this clause by superposition,
even if the ordering conditions are relaxed. The advantage of this calculus is
that it is much more restrictive than the resolution calculus. We also present an
efficient way to store a set of equational clauses without redundancies thanks to
a carefully designed data-structure, the N -clausal tree. This data-structure and
the manipulations associated answer the need to efficiently detect and get rid of
redundancies during the computation of prime implicates. In addition, it offers
a compact way to store potentially huge sets of implicates. By combining the
K-paramodulation calculus with the data structure, we obtain an algorithm able
to compute the prime implicates of T∞(S) (or any other flat ground equational
set of clauses) in a new and efficient way.

This report begins by a chapter presenting a study of prime implicate com-
putation in propositional logic, basis of our work in equational logic. In a second
chapter, we introduce the data-structure storing sets of equational clauses, and
an entailment test specific to ground equational logic that allows for the de-
tection of redundancies. The third chapter is dedicated to the algorithms that
manipulate the data structure and the proof of their correctness. The last chap-
ter introduces the K-paramodulation calculus and the proof that it can generate
all the implicates of a formula in ground flat equational logic (up to redundancy).

1K stands for κoίµησις which means assumption in Greek
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Chapter 1

State of the art for prime
implicate generation in
propositional logic

In this chapter, we explain the link between abduction and prime implicates be-
fore providing a summary and an analysis of the main algorithms that compute
prime implicates in propositional logic.

1.1 Abduction and prime implicates in proposi-
tional logic

The terminology presented in the following section is mostly inspired from [Bit-
tencourt, 2008]

1.1.1 Basic definitions

Let Σp be a propositional signature, i.e. a set of propositional symbols or atoms
or variables, denoted by s, t, u... together with atoms representing the truth
values True and False, which are respectively noted > and ⊥. A propositional
logic language L(Σp) is the set of all well-formed formulas constructed from Σp

and logical connectives (¬,∧,∨,⇒,⇔) in the usual way. A literal L is either an
atom x or its negation ¬x. The complementary literal of L, noted L̄ is ¬x if
L = x and x if L = ¬x.

A clause C is a disjunction of literals: C = L1 ∨ · · · ∨ Ln and a term, or
dual clause, is a conjunction of literals: D = L1 ∧ · · · ∧ Ln. The symbol � will
denote an empty clause. Clauses and terms can also be seen as multisets of
literals (the distinction will be clear from the context). If C is a clause (resp. a
term), then ¬C is the term (resp. clause) such that ¬C = {L̄|L ∈ C}. Let C1

and C2 be two clauses. It is said that C1 subsumes C2 when C1 ⊆ C2. A logical
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formula S from L(Σp) is in conjunctive normal form (CNF) if it is a conjunction
of clauses: SCNF = C1 ∧ · · · ∧ Cm. It is in disjunctive normal form (DNF) if
it is a disjunction of terms: SDNF = D1 ∨ · · · ∨Dm. It is in negational normal
form (NNF) when all negations are at the atomic level, e.g. ¬(a ∨ b) is not in
NNF but ¬a ∧ ¬b is.

A propositional interpretation is a function from Σp to {>,⊥}.For now, we
will refer to propositional interpretations simply as interpretations. To extend
the notion of interpretation to formulas, a formula is evaluated to > or ⊥ in an
interpretation I according to the usual rules:

Definition 1 The following tables give evaluation rules for the complete system
{¬,∨}. Transformation rules are given for the remaining logical symbols, so that
all formulas can be evaluated:

• ¬⊥ ≡ >
¬> ≡ ⊥

• x ∨ ⊥ ≡ x
x ∨ > ≡ >

• x ∧ y ≡ ¬(¬x ∨ ¬y)

• x⇒ y ≡ ¬x ∨ y

• x⇔ y ≡ ¬(¬x ∨ ¬y) ∨ ¬(x ∨ y) ♦

A model of a formula S is an interpretation I, such that S is evaluated to
> in I. A tautology and a contradiction are formulas for which respectively
all interpretations are models and no interpretation is a model. A formula is
satisfiable if it possesses at least one model. Let S1 and S2 be two formulas. We
say that S1 entails S2 when every model of S1 is a model of S2. If C1 and C2

are non-tautological clauses, then the notions of entailment and subsumption
between C1 and C2 are indistinguishable (in propositional logic only). The
statement “S1 entails S2” is noted S1|=0S2, or, in this chapter where there is
no ambiguity, simply S1 |= S2. S1 and S2 are equivalent, noted S1 ≡ S2, if
S1 |= S2 and S2 |= S1. Algorithms exist for transforming any formula S into
equivalent formulas SCNF and SDNF in CNF and DNF respectively.

Definition 2 A clause C is an implicate of a formula S iff S |= C and C is not
a tautology. It is a prime implicate of S iff C is an implicate of S and for every
implicate C ′ of S, if C ′ |= C then C |= C ′. An equivalent definition of a prime
implicate is S |= C, C is not a tautology and ∀L ∈ C, S 6|= C − {L}. ♦

Definition 3 A term D is an implicant of a formula S iff D |= S and D is not
a contradiction. It is a prime implicant of S iff D is an implicant of S and for
every implicate D′ of S, if D |= D′ then D′ |= D. An equivalent definition is
D |= S and ∀L ∈ D, D − {L} 6|= S. ♦

Proposition 4 A clause C is a prime implicate of S iff ¬C is a prime implicant
of ¬S.
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These two notions are dual, as the previous proposition shows, and in this
way, any algorithm computing prime implicants can be used to compute prime
implicates. From this point on, we will only consider prime implicates, even if
the algorithms presented were originally designed for prime implicants.

1.1.2 Abduction using prime implicates

Before relating abduction to prime implicates, a formal definition is needed.
The notions and results of this paragraph are adapted from [Marquis, 1991]. In
what follows, a theory is a (finite) set of formulas.

Definition 5 Let T be a theory, and S be a formula. The formula H is an
abductive explanation of S with respect to T if T ∧H |= S. ♦

Of course, not all explanations are relevant, for example any formula H that
is unsatisfiable can be viewed as an explanation of S w.r.t. T . The properties
that make an explanation interesting are defined below:

Definition 6 Let T be a theory, S be a formula, and H an abductive explana-
tion of S w.r.t. T .

• H is consistent if T ∧H is satisfiable.

• H is minimal if for all H ′ abductive explanations of S w.r.t. T such that
H |= H ′, we have also H ′ |= H.

As of now, we will only consider abductive explanations that are both consistent
and minimal if they exist. ♦

What links abduction to prime implicate computation is the following result:

Theorem 7 Let T be a theory, and S be a formula. A term H is an abductive
explanation of S iff the clause ¬H is a prime implicate of T ∧ ¬S.

Proof. Since H is an abductive explanation of S, we have T ∧H |= S which
is equivalent to T ∧¬S |= ¬H. Moreover H is a minimal explanation, so ¬H is
a prime implicate of T ∧ ¬S.

This result shows that abduction can be done in a deductive way, by finding
all the consequences of the formula containing T and ¬S and by negating those
consequences.

1.2 Algorithms for prime implicate computation

This section contains a brief survey of existing algorithms for generating prime
implicates of propositional formula. We do not formally define every algorithm,
but we provide some insights on how they work and discuss the main ideas
underlying them, emphasising their common points and differences. We use
some simple but interesting examples to illustrate them.
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1.2.1 First approaches

Computing prime implicates is an NP-hard problem: a formula S is unsatisfi-
able iff � is a prime implicate of S and S is valid iff S has no prime implicate.
This shows that (unless P=NP) the complexity of computing prime implicates
is exponential. The notion of prime implicates was first introduced in [Quine,
1955]. From that point on, a lot of algorithms to compute them were developed.
Until the early seventies, they were all based on the minterm representation of
the formulas, which is the set of all the models of the formula. Each interpreta-
tion in this set is represented as a tuple of truth values 0 (for F ) and 1 (for T ),
giving the value of every variables occurring in the formula, in a given order.
For example, the formula SCNF = (x ∨ y ∨ z) ∧ (¬x ∨ y) would be represented
by the set {(0, 0, 1); (0, 1, 0); (0, 1, 1); (1, 1, 0); (1, 1, 1)} of minterms, where the
variables are considered in the alphabetic order. For instance, the tuple (0, 0, 1)
represents the interpretation {x 7→ ⊥, y 7→ ⊥, z 7→ >}, which is indeed a model
of SCNF . As can be seen, this notation is very space consuming, so even though
polynomial algorithms (w.r.t. the minterm representation, which is exponential
w.r.t. the size of the input formula) were found to compute prime implicates
(see [Strzemecki, 1992]), they were never efficient enough to be used in real-life
problems.

At the beginning of the seventies, methods directly using the formulas began
to appear. They can be roughly divided into two classes: the resolution-based
algorithms and the algorithms based on decomposition. In the following of this
section some of those algorithms are presented.

1.2.2 Resolution-based algorithms

The resolution calculus is an inference method made of one rule, called resolution
rule:

Definition 8 Let C1 = L∨ · · · ∨L∨α and C2 = L̄∨ · · · ∨ L̄∨β be two clauses.
The resolution rule is defined as:

C1 C2

α ∨ β

The clause α ∨ β generated (modulo associativity and commutativity of ∨) is
called a resolvent. ♦

All the methods computing prime implicates based on the resolution calculus
follow the same schema. The algorithm’s input is a formula in CNF, the two
steps below are applied recursively:

1. Produce the resolvent of two clauses.

2. Remove the clauses that are subsumed by another clause in the generated
clause set.

9



When the procedure leaves the resulting formula unchanged, the remaining set
of formulas is exactly the set of prime implicates of the original formula. This
method is introduced for the first time in [Tison, 1967] and an incremental
technique called IPIA inspired from it is presented in [Kean and Tsiknis, 1990].
IPIA and Tison’s method define an order on the literals to limit the number of
redundant resolution steps, as illustrated in Figure 1.1 (taken from [De Kleer,
1992]). In this example, the chosen order is x > y > z > t. All the resolutions
that can be applied on one literal are done in one go. Afterwards, even if the
clauses generated allow for new resolutions on this literal, these are not carried
out since it can be shown that they would be redundant. It is the case here,
where the resolution number 2 on z allows for a resolution on y which is not
done since y was already used at resolution number 1.

x v y ¬y v z ¬z v t

x v z ¬y v t

x v t x v t

1 2

3

Figure 1.1: Example of redundant resolution avoided by Tison’s method

Tison’s method was also adapted in [Jackson, 1992] into an incremental algo-
rithm called PIGLET (incremental version of PIG: Prime Implicate Generator),
able to handle the addition of several clauses at a time. This algorithm is more
efficient that IPIA because of an additional strategy in the selection of clauses
for the resolutions. This strategy privileges resolution between clauses that have
shared literals. This way, literals are merged in the resolvent, which becomes
smaller and so less likely to be subsumed later.

Another incremental algorithm inspired from IPIA is de Kleer’s CLTMS
(Complete Logic-based Truth Maintenance System), introduced in [De Kleer,
1992]. In addition to IPIA’s optimisations on the resolution step, CLTMS opti-
mises the subsumption step by using a new data structure to represent the prime
implicates generated. This data structure is called a trie or discrimination tree
[Fredkin, 1960]. All the literals of the formula are ordered and the clauses are
considered as ordered sets of literals. The trie is then built with respect to this
order. It has the following properties:

• Its edges are literals and its leaves are clauses.
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• The edges below each node are ordered by rank of the literals labelling
them.

• The set of literals labelling the path from the root to a leaf is the clause
labelling this leaf.

Figure 1.2 is an example of trie:

y v t

t

x

t

y

y

z

x v t

x v y v z

Figure 1.2: Trie representation of the set of clauses {x ∨ y ∨ z;x ∨ t; y ∨ t} with
order x > y > z > t

CLTMS builds the trie of all prime implicates of a formula in an incremental
way. The subsumption tests are performed directly on the trie which is modified
in accordance with the results of the tests. This algorithm is a lot more efficient
than the original IPIA algorithm. It is the first prime implicate generator fast
enough to handle non-trivial problems.

The last algorithm based on Tison’s method that will be presented here
comes from [Simon and Del Val, 2001]. Zres-tison is an algorithm based on
a compact representation of formulas called ZBDD (Zero-suppressed Binary
Decision Diagram) illustrated in Figure 1.3. A Zero-suppressed BDD represents
a clause set. Each clause is represented by a path in the diagram from the root
to the terminal node labelled by 1. On Figure 1.3, the dashed arrows mean
that the literal labelling the parent node is ignored and the full ones that this
literal belongs to the clause. Consequently, nodes for which the full arrow leads
to 0 may be dismissed (whence the name ”Zero-suppressed”). This algorithm
is also very efficient. It uses a variant of resolution called multiresolution which
may be applied directly on the ZBDD-representation. This technique makes
the algorithm’s complexity independent of the number of real resolution steps
performed, because it allows to perform all the resolutions on the same variable
at the same time. The output of Zres-tison is the set of all prime implicates
presented as a ZBDD.
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x

¬x

1

0

y

z

Figure 1.3: ZBDD of SCNF = (x ∨ y ∨ z) ∧ (¬x ∨ y)

1.2.3 Algorithms based on decomposition

The common point of all the algorithms that do not use an inference rule is that
they build the prime implicates of formulas by recursively decomposing them
into smaller pieces (be it literals, terms or clauses) and merging the results
obtained on those pieces. The oldest method of this kind (to the best of our
knowledge) was introduced in [Slagle et al., 1970] and is called Tree Method
(TM). It is based on a depth-first search of an ordered semantic tree, but with a
slightly different definition of a semantic tree. Here it is a tree where each edge
represents a literal and each node a formula in DNF, a leaf being called failure
node if the term > belongs to the formula it represents, and success node if the
formula is empty. Starting from a formula in DNF, TM produces a semantic tree
where all the prime implicates of the formula appear as paths from the root to a
leaf, but the tree can also contain some implicates that are not prime. One of its
main advantages compared to previous techniques is that it does not generate
the same prime implicate more than once. An improvement of TM based on a
generalisation of the notion of semantic trees (called Set Enumeration trees) is
presented in [Rymon, 1994].

In [Jackson and Pais, 1990] TM is compared with a new algorithm of the
same type called MM (for Matrix Method). The main difference between the
two algorithms is that MM does a breadth-first search of the tree. Another
difference is that TM focuses on the literals (each node performs a decomposition
according to the maximal literal occurring in the considered formula) while MM
focuses on the terms (each node corresponds to the maximal remaining term,
and the decomposition is performed according to the literal occurring in this
term). Jackson and Pais show through an experimental procedure that their
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new algorithm is more efficient than the previous one. The following example
will highlight the differences between the two algorithms.

Example 9 Let SDNF = (x ∧ y) ∨ (¬x ∧ y) ∨ (¬x ∧ z) ∨ (y ∧ z). (SDNF is
equivalent to the SCNF previously used to describe minterms at the beginning
of Section 1.2.1. Depending on the algorithm’s requirements, we will use one
or the other in all following examples.) The outputs of TM and MM for SDNF

are presented in Figure 1.4. For both graphs, success nodes are the squares
containing a ’o’ and failure nodes are those with a ’×’ inside. For TM (Figure
1.4a), the partial order of the literal is based on their number of occurrences,
so here we have y > z,¬x > x and we arbitrarily decide that z > ¬x. Starting
from T0 = {x ∧ y;¬x ∧ y;¬x ∧ z; y ∧ z}, deleting all the clauses containing y
allows to generate T1 = {¬x∧ z} and doing the same with clauses containing z,
plus removing ¬z and the literals greater than z produces T2 = {x;¬x}. The
same principle is applied to produce the terminal nodes. If the set is empty
after removing clauses the node is a success node and if a clause is empty after
removing literals, the node is a failure node. For MM (Figure 1.4b), the terms
themselves are ordered. Here the order used is ¬x∧ z > x∧ y > ¬x∧ y > y ∧ z.
The extension of paths is done clause by clause in this order, and subsumption
checks are done at each step to remove the implicates that are not prime (like
the first path in this example). ♣

T0

T1 T2 x x

xxoo

y z ¬x x

z ¬x ¬xx

(a) TM output for SDNF

T0

T1 T2

oo

x

y

z

y

¬x

x

T3

y

(b) MM output for SDNF

Figure 1.4: TM and MM output for SDNF

All previous methods need the input formulas to be in CNF or DNF. This
can prove to be a major inconvenience for some families of formulas (see [Ngair,
1993; Ramesh et al., 1997]). Several techniques were developed to overcome this
problem. In [Ngair, 1993], the incremental algorithm GEN-PI (for GENeration
of Prime Implicates) is introduced. It takes a conjunction of DNF formulas
as an input and generates the set of all prime implicates by closure operations
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defined in an order-theoretic framework. In fact, this technique stands at the
boundary between decomposition-based and resolution-based methods. Indeed,
the closure operation can also be seen as an extension of the resolution rule
from clauses to DNFs. Its creator shows that this algorithm is as efficient as
CLTMS on most formulas and a lot more powerful for those being difficult to
express in normal form. Another method developed with the same objective
is the path-dissolution approach of [Ramesh, 1995; Ramesh et al., 1997]. This
extension of MM to NNF formulas has nevertheless the drawback of needing a
lot of subsumption tests. Simply put, it looks for paths (representing prime im-
plicates) through a graph representing a formula in NNF, after having simplified
the graph as much as possible.

In [Coudert and Madre, 1992], the algorithm computing prime implicates is
in fact building a BDD representing them, using a meta-product representation
of the variables of the formula. This representation consists in replacing each
variable xi by two new variables oi and si, respectively denoting whether xi
occurs in the considered clause and indicating the sign of xi (taken into account
only if oi is true). For each variable of the formula, the algorithm has to consider
three recursive subcases:

• the case where the considered variable does not appear in the prime im-
plicate (oi is false);

• the case where the variable is positive in the prime implicate (oi and si
are both true);

• the case where the variable is negative in the prime implicate (oi is true
and si is false).

The biggest problem here is to consider the variables in an order that makes
the BDD as compact as possible. This is done through the use of heuristics,
like the dynamic weight assignment method in [Manquinho et al., 1998]. This
method orders the variables with regard to their number of occurrences in the
formula.

In [Manquinho et al., 1998] Coudert and Madre’s algorithm is compared
with a generally more efficient technique that uses integer linear programming
(ILP). This method is introduced in [Errico et al., 1995]. Contrarily to pre-
vious algorithms, in addition to computing all prime implicates, it can also
compute one prime implicate at a time and even establish preference criteria
about which literals the prime implicate computed first should contain. This
algorithm computes the prime implicates of DNF formulas by converting them
into ILP problems as shown in the example.

Example 10 Let us consider SDNF as defined in Example 9. Each variable of
this formula is associated with two new variables (one for the positive literal and
one for the negative literal). x becomes x1 and x2, y becomes y1 and y2 and z
becomes z1 and z2. Then the problem is to solve min(x1 +x2 +y1 +y2 +z1 +z2)
under a set of constraints C which is obtained in the following way: Each term of
the formula is converted into an inequation. The literals are converted into the
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corresponding variables and the ∧ become +. The sum obtained must be greater
than one. Additional constraints ensuring that a literal and its complement are
not selected at the same time are also added, for example x1 + x2 ≤ 1. In the
case of SDNF the constraints are:

C =



x1 + y1 ≥ 1
x2 + y1 ≥ 1
x2 + z1 ≥ 1
y1 + z1 ≥ 1
x1 + x2 ≤ 1
y1 + y2 ≤ 1
z1 + z2 ≤ 1

Using ILP, we can successfully recover the two prime implicates y ∨ ¬x and
y ∨ z as the solutions where respectively the variables {x2, y1} and {y1, z2} are
evaluated to 1 and all others are evaluated to 0. ♣

Any kind of ILP algorithm can solve the problem, but to have an efficient prime
implicate generator, it is better to use one specifically tuned for such a problem.
For example, in [Manquinho et al., 1998], the search algorithm used is one
that is inspired from an improvement of the DPLL algorithm called GRASP
[Nieuwenhuis et al., 2006; Marques-Silva and Sakallah, 1999].

Besides the ILP techniques, nearly all the most recent new algorithms for
prime implicate generation use the idea of splitting the problem in three subcases
for each variable that was introduced in [Coudert and Madre, 1992]. One of
them, in [Henocque, 2002], uses a DPLL-like algorithm with three branches for
each variable corresponding to these cases. In this algorithm, DNFs are used as
input and BDDs are used to store the prime implicates that are found, which
allows to deal with formulas having more than 1020 prime implicates. Another
recent algorithm based on the same principle but accepting CNF inputs comes
from [Matusiewicz et al., 2009], where the notion of trie is reused in the form
of pi-trie (or prime implicate trie, meaning the trie of all prime implicates of a
formula). The pi-tries, like the BDDs allow to store a great number of prime
implicates at the same time. Moreover, an improvement of the prime implicate
trie algorithm [Matusiewicz et al., 2011] allows it to run with a polynomial
memory-space occupation. Experiments have shown that this technique is at
least twice faster than those based on resolution.

The last technique presented here is based on [Bittencourt, 2008]. It com-
putes the prime implicates of a DNF formula through a new representation
called quantum notation. This technique consists in annotating each literal
with the identifiers of each clause it belongs to as seen in the following example:

Example 11 Lets number the terms of SDNF .

1. x ∧ y

2. ¬x ∧ y

3. ¬x ∧ z
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4. y ∧ z

It gives the set of quanta : {x{1},¬x{2,3}, y{1,2,4}, z{3,4}}. ♣

To obtain prime implicates of the formula, it suffices to select the smallest
sets of quanta that cover all terms. In the previous example, it would be
{¬x{2,3}, y{1,2,4}} and {y{1,2,4}, z{3,4}}.

1.3 Summary and conclusions

After presenting the link between abduction and prime implicates, we have
seen different algorithms computing these prime implicates in propositional
logic (PL), grouped in two families: the resolution-based methods and the
decomposition-based methods. In each family, efficient algorithms have been
found.

One of the strong points of the decomposition methods is that they can
be applied to all kind of formulas (not only to CNFs as the resolution-based
methods). On the other hand, a decomposition is possible only when the number
of propositional variables is finite, which impairs greatly the possibilities of
extending these methods to FOL. However, extending resolution-based methods
to FOL is not an easy task either. Indeed, some properties are lost when going
from PL to FOL, and this loss can jeopardise criteria that are critical to the
smooth running of the algorithms (like termination). Thus, such an extension
must be done very carefully.

The subject of the following chapters is generating prime implicates in the
context of flat ground equational logic through the adaptation of one of the
algorithms presented before. It is the step we chose to come closer to our goal of
extending abduction to equational first order logic. Solving this step is enough
to answer the needs of performance improvement originating from [Echenim
and Peltier, 2012], and it is also a good stepping stone to further extensions of
abductive problems involving more complex theories like for example arithmetic.
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Chapter 2

Reasoning in equational
logic

The notions introduced in this chapter and the following ones are an adaptation
to flat ground equational logic (EL) of the CLTMS algorithm presented in Sec-
tion 1.2.2. We chose the algorithm to adapt among resolution-based methods
only, because these methods seemed to us to be the most natural to extend into
EL. CLTMS was selected because its efficiency and clarity make it a good target
for extensions. Another algorithm could have been selected for its efficiency is
Zres-Tison, but considering the time limit of a master internship, only one could
be studied. Furthermore, Zres-Tison uses a very specific representation of the
clause sets that does not directly extend to the equational case, thus in hopes
of a more direct adaptation of the resolution calculus, we favoured CLTMS over
Zres-Tison.

In this chapter, we first give informal ideas about the work that has to be
done to go from PL to EL, and we present the formal notions derived from those
ideas.

2.1 An informal overview of our contribution

We denote by E the set of all ground flat clauses in equational logic, which is an
extension of PL to equality. Thus when working in E, the literals are equations
and disequations and the properties entailed by the equality (denoted by ')
must be taken into account. These properties are:

• reflexivity (∀x, x ' x),

• commutativity (∀x, y, x ' y ⇔ y ' x),

• transitivity (∀x, y, z, x ' y ∧ y ' z ⇒ x ' z).

To deal with reflexivity, it is enough to replace any literal of the form a ' a by >
and any literal of the form a 6' a by ⊥. Commutativity can be dealt with rather
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easily by identifying the atoms a ' b and b ' a or by establishing an order
on constants such that (for example), if we write a ' b, then it is implied that
a � b. Both methods are equivalent. The main problem arises from handling
the transitivity axiom. For instance A = a 6' b ∨ a 6' c, B = a 6' b ∨ b 6' c and
E = a 6' c ∨ b 6' c are equivalent. Considering explicitly all these variants leads
to a combinatorial explosion and should obviously be avoided in practice. Also,
with transitivity, subsumption is no longer equivalent to logical entailment. For
instance, C = a 6' b does not subsume D = a 6' c ∨ b 6' c, but it is clear
that C |= D. Hence, any subsumption test in CLTMS must be replaced by an
entailment test in the algorithm adapted to EL.

To deal with these problems, we define a normal form for clauses, so that
equivalent clauses (such as A, A′ and B above) have the same normal form.
We also devise a projection of one clause in normal form onto another to test
logical entailment efficiently, and define an extension of tries (a data-structure
commonly used to represent strings [Fredkin, 1960]), called N -clausal trees, to
optimise storage and entailment tests. As in CLTMS, we focus on the storage
and manipulation of the set of implicates generated. There are only three actions
to perform (once a new implicate C has been generated):

1. Check if an implicate already found entails C; if there is, discard C; if not

2. remove all the implicates entailed by C from the set,

3. finally, insert C into the set of implicates.

The last point is not much of a challenge, so we focus, in Chapter 3, on
the first two points and respectively design the algorithms isEntailed and
pruneEntailed that perform these actions efficiently.

Another major problem when going from PL to EL is that the resolution
calculus, used in PL to generate all the implicates of a formula, is unable to do
the same in EL without any adaptation. For example, from the formula S =
{a ' b, b ' c}, the resolution calculus can generate nothing, but by transitivity
a ' c is an implicate of S. A first solution, proposed in [Echenim and Peltier,
2012], is to instantiate the equality axioms and use resolution on the enriched
formula. However, as was explained in the introduction, this method leaves
room for improvement, especially in terms of efficiency and the number of useless
generated clauses. In Chapter 4, we consider a different solution to this problem,
namely, replacing resolution by a new calculus inspired from the superposition
calculus, the K-paramodulation calculus.

The remainder of this chapter is the formalisation of the aforementioned
notions as well as others necessary to prove the correctness of our algorithms
and calculus.

2.2 Clauses in equational logic

Let Σ be a signature, i.e., in this setting, a set of constants denoted by a, b, c . . . .
We assume given a total order ≺ on constants. A literal, usually denoted by l,
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is either an equation (or atom) a ' b, or an inequation a 6' b and when written
a ./ b it can denote either the equation or the inequation between a and b. The
literal l̄ denotes a 6' b (resp. a ' b) when l denotes a ' b (resp. a 6' b). A
literal of the form a 6' a is called a contradictory literal (or a contradiction) and
a literal of the form a ' a is a tautological literal (or a tautology).

Remark 12 In all examples (and only in the examples), the constants will be
ordered in the alphabetical order (a ≺ b . . . ).

We consider clauses in E as disjunctions (or multisets) of literals. If C is a
clause in E and l a literal, C\l denotes the clause C where all the occurrences
of l have been removed and ¬C denotes the conjunction of the literals l̄ for
l ∈ C. We first define a normal form for clauses, based on the ordering ≺ on
constant symbols. This form allows us to handle clauses modulo equivalence:
two equivalent clauses are reduced to the same syntactic object.

Definition 13 We define an equational interpretation I as a partition of Σ.
Given two constants a and b, we write a =I b if a and b belong to the same
class in I. A positive literal l = a ' b is evaluated to > in I, written I|=E l, if
a =I b; otherwise l is evaluated to ⊥. A negative literal l = a 6' b is evaluated
to > in I if a 6=I b, and to ⊥ otherwise. This evaluation is extended to clauses
and sets of clauses in the usual way. A model M of a clause C is an equational
interpretation in which C is evaluated to >. A tautological clause (or tautology)
is a clause for which all equational interpretations are models and a contradiction
is a clause that has no model. ♦

For technical reasons, we also need to consider interpretations of the clause
sets that do not satisfy the equality axioms. Propositional interpretations are
extended to formulas as in propositional logic. As in propositional logic, proposi-
tional interpretations are functions that associate a truth value to equations (and
consequently to inequations). We write I|=0S if I is a propositional interpre-
tation validating S and S1|=0S2 if every propositional interpretation validating
S1 also validates S2. A propositional interpretation is also an equational inter-
pretation iff the axioms of equality are satisfied. For example, by transitivity, if
I|=Ea ' b and I|=Ea ' c, then I is an equational interpretation iff1 I|=Eb ' c.
From this point on, we will use the term interpretation to refer to equational
interpretations, and the propositional interpretations will be explicitly referred
to as such. In the same way, the symbol |= will now refer to the equational
entailment |=E and not to the propositional entailment |=0.

Definition 14 Let C be a clause in E, we define for any constant a the C-
equivalence class of a as:

[a]C = {b ∈ Σ | a 6' b |= C} .
1Note that a propositional interpretation necessarily respects reflexivity (a ' a is a tautol-

ogy) and commutativity (a ' b and b ' a denote the same literal)
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The C-representatives of a constant a, a literal l and a clause D are respectively
defined as:

a�C = min
≺

([a]C)

l�C = a�C ./ b�C , for l = a ./ b

D�C = {l�C | l ∈ D} ♦

If the considered clause C is non-tautological, then it is easy to check that the
notion of C-representative only depends on the set of negative literals occurring
in C.

Proposition 15 The following properties hold:

1. Two non-tautological clauses containing the same negative literals generate
the same equivalence classes.

2. If a non-tautological clause C contains no negative literal, then for any
constant a, [a]C = {a}.

Example 16 Let us consider the clause C = d 6' a∨d 6' c∨e 6' b∨e ' a∨b ' c.
Then we have [c]C = {a, c, d}, so a�C = d�C = c�C = a. Moreover (e ' a)�C =
(b ' c)�C = b ' a and for D = d ' c ∨ e ' f , D�C = a ' a ∨ b ' f . ♣

However this property does not hold for tautological clauses. The reason
is that if C is a tautological clause, then any negative literal u 6' v is such
that u 6' v |= C. Thus all the constants are in the same C-equivalence class,
regardless of the negative literals in C. This explains why in the following
properties and definitions, we are only concerned with non-tautological clauses.
No loss of generality is entailed, since in practice, tautological clauses will be
automatically removed by redundancy detection, as we will see later. To single
out a tautological clause C, it suffice to compute C�C . Since all the constants
are C-equivalent and C contains at least one positive literal l, the literal l�C has
to be of the form a ' a in the clause C�C , which makes it easily recognisable as
a tautological clause(notice that a clause containing no positive literal cannot
be tautological because it is falsified by any interpretation in which all constant
symbols are in the same class).

Proposition 17 Let a be a constant, l be a literal and C and D be two clauses
in E, then:

¬C |= a ' a�C ,
¬C |= l⇔ l�C ,

¬C |= D ⇔ D�C .

These two propositions (as well as most of the following ones) emphasise
properties that will be useful for proving the correctness of the forthcoming
algorithms. But before presenting these algorithms, we need to introduce more
theoretical notions like the normal form or projection, which are used afterwards.
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Definition 18 The total order < on literals is defined as follows:

• the equations are all greater than the inequations;

• for inequations and equations separately, the order ≺ on constants is used
by first comparing the greatest constants of the (in)equalities with each
other, then (if the greatest constants are identical) their other constants.♦

Example 19 The literals c ' b, c 6' b, b 6' a and c ' a are ordered in the
following way:

b 6' a < c 6' b < c ' a < c ' b ♣

This order allows us to introduce a normal form for clauses, which will be
used to handle one of the problems generated by the transitivity axiom.

Definition 20 A clause C ∈ E is in <-normal form (or simply in normal form)
if:

1. every literal a 6' b it contains is such that b = a�C ;

2. every literal a ' b it contains is such that a = a�C and b = b�C ;

3. it contains no literal of the form a 6' a or a ' a;

4. and the literals it contains occur exactly once in it.

A clause C ∈ E is in <-relaxed normal form (or relaxed normal form) if all
the literals it contains satisfy conditions 1 and 2 above, and all negative literals
satisfy conditions 3 and 4. ♦

Intuitively, a clause in relaxed normal form may contain tautologies and
multiple occurrences of the same literal. This relaxed normal form is introduced
because our algorithms use transformations on clauses that preserve the relaxed
normal form but not the normal form.

Immediate consequences of this definition are the following propositions:

Proposition 21 The only unsatisfiable clause in relaxed normal form is � and
a tautological clause cannot be in normal form.

Proposition 22 Let C be a clause in relaxed normal form. For any constant
a, we have a�C = a iff for all literals l occurring in C, if l is of the form a 6' b
then b � a.

Proof. Let a be a constant and C be a clause in relaxed normal form. Assume
a�C = a, if l ∈ C is of the form a 6' b with a � b, then b = a�C by definition of a
clause in relaxed normal form. But it means that l is a contradiction, which is
impossible in a relaxed normal clause. Now assume that there exists an l ∈ C
such that l is of the form a 6' b with a � b. By definition b = a�C , thus a � a�C .

Remark 23 In the following section, we will prove that two equivalent clauses
have the same normal form.
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2.3 Theoretical basis: projection and conse-
quences

This section introduces the operation of projection that permits to test logi-
cal entailment. This projection test provides a purely syntactic (and efficient)
criterion allowing one to check whether an implication C |= D holds.

In Proposition 26 and Theorem 27, we work on clauses built over literals
involving equivalence classes (in addition to the normal clauses), because it
allows for clearer proofs. These literals are defined as follows:

Definition 24 Given two clauses C and D in E, we denote by [D]C the clause
built over the set of propositional symbols {[a]C | a ∈ Σ} and defined by [D]C =
{[a]C ./ [b]C | a ./ b ∈ D}. ♦

Remark 25 If C = d 6' a∨d 6' c∨ e 6' b∨ e ' a∨ b ' c and D = d ' c∨ e ' f
then [D]C = {a, d, c} ' {a, c, d} ∨ {e, b} ' {f}. But this can also be written as
[D]C = [a]C ' [a]C ∨ [b]C ' [f ]C . The symbols [a]C , [b]C , and [f ]C can be seen
as the representatives of their respective classes. However, these classes already
have their own representatives, namely a�C(= a), b�C(= b) and f�C(= f). Thus,
even though we use the sets for technical reasons in our demonstrations, our
results also hold with the sets representatives.

Proposition 26 Assume C is a non-tautological clause in E, and [a]C ' [b]C /∈
[C]C . Then C ∨ a 6' b is not a tautology.

Proof. Let D = C ∨ a 6' b and I be the interpretation constituted of all
the C-equivalence classes on Σ (i.e. c =I d iff c 6' d |= C). We define J =
I\ {[a]C , [b]C} ∪ {[a]C ∪ [b]C}. It is clear that J is an interpretation (i.e. a
partition of the constant symbols). Note that in particular, if a =I b, then
I = J . J 6|= a 6' b since a =J b and for any negative literal c 6' d ∈ C, by
definition c =I d, thus c =J d and J 6|= c 6' d. For the positive literals of C,
several cases must be examined. Let c ' d ∈ C,

• if c =J a and d =J a, then J |= c ' d, but, as we will see, this case never
occurs:

– if c =I a and d =I a, then by definition c 6' a |= C and d 6' a |=
C, hence c 6' d |= C, but c ' d |= C so C is a tautology which
contradicts our hypothesis;

– if c =I a and d =I b, then c ∈ [a]C and d ∈ [b]C , hence [a]C ' [b]C ∈
[C]C which also contradicts our hypothesis;

– the other cases are symmetrical to the ones already developed;

• if c =J a and d 6=J a then c 6=J d, thus J 6|= c ' d (the same holds when
c 6=J a and d =J a);

• if c 6=J a and d 6=J a, then c 6=I d since I 6|= c ' d. Indeed we would
otherwise have c 6' d |= C hence C would be a tautology. Thus by
definition of J , c 6=J d and J 6|= c ' d.
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Theorem 27 Let C and D be two non-tautological clauses in E. D |= C iff
every negative literal in [D]C is a contradiction and every positive literal in [D]C
is also in [C]C .

Proof. First assume that D |= C. Consider a negative literal a 6' b ∈ D,
since D |= C, we must have b ∈ [a]C , i.e., [a]C = [b]C , and the corresponding
literal in [D]C is a contradiction. Now consider a positive literal a ' b ∈ D and
assume [a]C ' [b]C /∈ [C]C . Then C ∨ a 6' b is not a tautology by Proposition
26. But D ∨ a 6' b |= C ∨ a 6' b, and D ∨ a 6' b is a tautology, which yields a
contradiction.

For the converse implication, we prove that every literal in D entails C.
Let a 6' b ∈ D, then by hypothesis we have [a]C = [b]C , and by definition
a 6' b |= C. Let a ' b ∈ D, then by hypothesis [a]C ' [b]C ∈ [C]C . By
construction there is a literal c ' d ∈ C such that c ∈ [a]C and d ∈ [b]C . By
definition ¬C |= a ' c ∧ b ' d, hence {a ' b} ∪ ¬C |= c ' d. But c 6' d ∈ ¬C
therefore {a ' b} ∪ ¬C is unsatisfiable. Thus a ' b |= C.

By replacing equivalence classes by their representatives, we obtain the fol-
lowing corollary:

Corollary 28 Let C and D be two non-tautological clauses in E. D |= C iff
every negative literal in D�C is a contradiction and every positive literal in D�C

is also in C�C .

Example 29 Let C = a 6' b ∨ b 6' c ∨ e ' a ∨ b ' b and D = a 6' c ∨ e ' c. As
in the other examples, the constants are ordered alphabetically. By projection,
we have D�C = a 6' a ∨ e ' a, because a�C = {a, b, c}. The literal a 6' a is
a contradiction and e ' a = e ' a�C ∈ C�C , thus D |= C. Conversely, when
projecting C on D, the result is C�D = a 6' b ∨ b 6' a ∨ e ' a ∨ f ' b, thus
C 6|= D. Indeed, a 6' b is not a contradiction, and f ' b 6= e ' a = e ' b�D. ♣

Remark 30 From now on in this document, testing the projection of a clause
D on a clause C will refer to the act of verifying whether every negative literal
in D�C is a contradiction and every positive literal in D�C is also in C�C .

The main idea behind the algorithms presented in Sections 3.1.1 and 3.2.1
that test whether a clause D entails a clause C is based on Corollary 28. Infor-
mally, it consists in testing the projection of D on C by using the representatives
of C to rewrite D. The projection succeeds when the C-equivalence classes of D
are subsets of the C-equivalence classes of C (“every negative literal in D�C is a
contradiction”) and the equalities in D are C-equivalent to those in C (“every
positive literal in D�C is also in C�C”).

Corollary 28 is also useful in the proof of the uniqueness of the normal form
of a clause, which also relies on the following lemma:

Lemma 31 Let C and D be two non-tautological clauses in normal form. If
C 6= D then C 6≡ D.
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Proof. Assume that C 6= D and C ≡ D. Let l = a 6' b ∈ C where a � b,
and assume that l 6∈ D. Then b = a�C , and b 6= a�D since a 6' b does not
occur in D (and D is in normal form), hence [a]C 6= [a]D. But since C ≡ D,
we have [a]C = [a]D for every a, which raises a contradiction. By symmetry,
we can assume that all negative literals of D occur in C, thus the negative part
of C is equal to that of D. By Proposition 15(1), we deduce that [a]C = [a]D,
for every constant symbol a. Now let l = a ' b ∈ C, and assume that l 6∈ D.
Since C is in normal form and C ≡ D, we have l = l�C = l�D. By hypothesis
l |= C, hence l |= D and by Corollary 28 l�D ∈ D�D. Since D is in normal form,
we conclude that l ∈ D which contradicts our hypothesis. The case where D
contains a literal not occurring in C is symmetric.

Theorem 32 For any non-tautological clause C in E, there exists a unique
clause C↓ in normal form equivalent to C.

Proof. Let C be a clause. We show that the set (not a multiset) C↓ =
{a 6' a�C | a occurs in C ∧ a 6= a�C} ∪ {a�C ' b�C | a ' b ∈ C} is the unique
clause in normal form that is equivalent to C. If ¬C and C↓ are both true
in a given interpretation I, then at least one literal l ∈ C↓ must be true in I. If
l is a negative literal l = a 6' a�C , then by Proposition 17, a ' a�C must also be
true in I since ¬C |= a ' a�C , a contradiction. If l = a�C ' b�C with a ' b ∈ C,
then by Proposition 17, since ¬C |= a ' b ⇔ a�C ' b�C , necessarily a ' b is
also true in I, and this interpretation cannot satisfy ¬C. Thus C↓ |= C. Now
assume ¬C↓ and C are true in an interpretation I’ and let l ∈ C be a literal
evaluated to true in I’. If l is a negative literal a 6' b, then a�C = b�C and
¬C↓ |= a ' a�C ∧ b ' b�C by definition, so a ' b is true in I’ and this is
impossible. If l is a positive literal a ' b, then a�C ' b�C is also true in I’, since
a ' a�C and b ' b�C are both true in I’, which is in contradiction with ¬C↓.
Thus C ≡ C↓ and C↓ is unique by Lemma 31.

Example 33 Let C1 = b 6' a ∨ c 6' b ∨ e 6' d ∨ d ' b ∨ e ' a and C2 = c 6'
a∨ c 6' b∨ e 6' d∨ e ' c∨ e ' b. These two clauses have the same normal form:
C1↓ = C2↓ = b 6' a ∨ c 6' a ∨ e 6' d ∨ a ' d, thus they are equivalent. ♣

The construction provided in the proof of this theorem has given us an easy
way to compute the normal form of any clause when it exists. This will be
useful in the implementation of our algorithms.

Example 34 Let us consider, as in Example 16 the clause C = d 6' a ∨ d 6'
c∨ e 6' b∨ e ' a∨ c ' b. Then C↓ = d 6' a∨ c 6' a∨ e 6' b∨ b ' a is the normal
form of C, and C↓ ∨ b ' a is a relaxed normal form of C. ♣

Notation 35 From this point on, we will refer to the set of ground flat equa-
tional clauses in normal form as E↓. Note that this set contains no tautological
clause. ♦
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2.4 Data structures to represent sets of clauses

We introduce the notion of a clausal tree as a tree that permits a compact
representation of a set of clauses in E. The edges of a clausal tree are labelled
with the literals of the represented clauses, and each leaf represents the clause
composed of the literals appearing in the path from the root to this leaf. A
clausal tree also allows an efficient detection of logical entailment between a
clause and the clausal tree. The formal definition follows.

Definition 36 A clausal tree is either �, or a set of pairs (l, T ′), with l a literal
and T ′ a clausal tree. The set of clauses represented by a clausal tree T is
denoted by C(T ) and defined inductively as follows:

• C(T ) = {�} if T = �,

• C(T ) =
⋃

(l,T ′)∈T

( ⋃
D∈C(T ′)

l ∨D

)
otherwise. ♦

Notation 37 Let T be a clausal tree distinct from �. Br(T ) denotes the set
of literals Br(T ) = {l | (l, T ′) ∈ T} and B(T ) is the set of literals inductively
defined by B(�) = ∅ and B(T ) = Br(T ) ∪

⋃
(l,T ′)∈T B(T ′) otherwise. ♦

Remark 38 A pair (l, ∅) represents no clause at all. Such pairs can be viewed
as failure nodes, and can always be discarded from clausal trees. We assume
that no such pair appears in our clausal trees, except when they are explicitly
introduced.

Example 39 Let T be the clausal tree in Figure 2.1.

a=ba=e a≠c d≠c d≠c

a=b a=b b≠c a≠e a≠c

e≠d e=c d=b

Figure 2.1: A clausal tree
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Then C(T ) = {a ' e ∨ a ' b ∨ d 6' e, e ' a ∨ a ' b ∨ c ' e, a 6' c ∨ a '
b, d 6' c ∨ b 6' c, d 6' c, a ' b ∨ a 6' e ∨ d ' b, a ' b ∨ a 6' c}. This data
structure is not really storage-efficient. For example, nothing prevents a clause
to be represented twice, like the clause a 6' c∨ a ' b. An other problem is that
redundant clauses can be represented, like d 6' c ∨ b 6' c which is subsumed by
d 6' c. Fortunately, these problems can be sidestepped by adding constraints to
the definition of clausal trees, which will be done later in this document. ♣

Notation 40 Let l be a literal and T be a clausal tree. We denote by T |↑l the

clausal tree such that T |↑l = {(l, T )}. ♦

The following property holds:

Proposition 41 If T is a clausal tree not reduced to �, then:

C(T ) =
⋃

(l,T ′)∈T

C(T ′|↑l )

Similarly to the clauses in (relaxed) normal form that we defined previously,
we introduce two categories of clausal trees whose aim it will be to represent
such clauses.

Definition 42 A relaxed normal clausal tree (or RN -clausal tree) T is a
clausal tree such that:

• for any pair (l, T ′) ∈ T , if l is a negative literal then:

– l is not of the form a 6' a;

– ∀l′ ∈ B(T ′), l < l′;

– if l = a 6' b, with a � b, then for all l′ ∈ B(T ′), the constant a does
not occur in l′;

• for any pair (l, T ′) ∈ T , T ′ is an RN -clausal tree. ♦

Definition 43 A normal clausal tree (or N -clausal tree) T is an
RN -clausal tree such that:

• for any pair (l, T ′) ∈ T , there is no T ′′ 6= T ′ such that (l, T ′′) ∈ T ;

• for any pair (l, T ′) ∈ T , if l is a positive literal then:

– l is not of the form a ' a;

– for all l′ ∈ B(T ′), we have l < l′;

• for any pair (l, T ′) ∈ T , T ′ is an N -clausal tree. ♦
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Example 44 Figure 2.2 illustrates the different notations defined previously
on an N -clausal tree. Figure 2.2a represents the N -clausal tree T such that
C(T ) = {c 6' a, c 6' b ∨ b ' a, c 6' b ∨ d ' b, d 6' b}. In this N -clausal tree,
B(T ) = {c 6' a, c 6' b, b ' a, d ' b, d 6' b} and Br(T ) = {c 6' a, c 6' b, d 6' b}.
If l = c 6' b, Figure 2.2b represents T ′ a subtree of T and Figure 2.2c represents
T ′|↑l a tree included in T . ♣

d=bb=a

c≠a d≠bc≠b

(a) N -clausal tree T

d=bb=a

(b) N -clausal tree T ′

d=bb=a

c≠b

(c) N -clausal tree T ′|↑l

Figure 2.2: N -clausal trees

Proposition 45 If T is an N -clausal tree (resp. an RN -clausal tree) then
C(T ) is a set of clauses in normal form (resp. a set of clauses in relaxed normal
form).

As with clauses in relaxed normal form, RN -clausal trees are introduced only
to be used inside algorithms. Outside the algorithms, the implicates, being rep-
resented by clauses in normal form, will naturally be stored in N -clausal trees.
It is straightforward to use Definition 42 to verify the following result:

Proposition 46 The two following properties hold.

• Let (l, T ) be an RN -clausal tree. If l is a positive literal, then all the
literals of B(T ) are also positive.

• If T1, . . . , Tn are RN -clausal trees that are not leaves, then
n⋃

i=1

Ti is also

an RN -clausal tree.

Proof. The first item of this proposition is justified by the fact that if l and
l′ are literals such that l′ < l and l is a positive literal, then l′ is also a posi-
tive literal by definition of <. The second item is a direct consequence of the
definition of a RN -clausal tree.
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2.5 Rewriting constant symbols

The rewriting of a constant into another is at the core of projections. We
introduce some notations for denoting the replacement of a constant symbol
inside a clause or a clausal tree and we establish some basic properties of this
operation.

Notation 47 Let a and b be two constants such that a � b, C be a clause in E
and T be a clausal tree. We note C[a := b] (resp. T [a := b]) the clause C (resp.
the tree T ) where all the occurrences of a have been replaced b. ♦

Note that if C is not tautological, C[a := b] and C�{a 6'b} can be identified.

Remark 48 Obviously, this operation does not necessarily need to be explicitly
realised, especially when the transformation is not meant to be definitive, as is
the case in our algorithms. Instead, it is preferable to store the set of rewrite
rules that have been applied on a considered clausal tree, so that they can be
applied on demand, in a lazy way.

Proposition 49 For any clausal tree T , C(T [a := b]) = C(T )[a := b]

Proposition 50 Let C be a clause in E and l = a 6' b with a � b be a negative
literal in C, then C[a := b] ≡ C\l

Proof. By definition, C ≡ (l ∨ C\l) and by Proposition 17, a ' b |= C ⇔
C�{a 6'b}, and so C ≡ a 6' b ∨ C[a := b], hence the result.

Proposition 51 Let C and D be two clauses in E, let a and b be two constants
such that a � b. If D |= C then D[a := b] |= C[a := b]

Proof. LetM be a model ofD[a := b] and I be the interpretation that coincide
with M on all constants except on a which is such that a =I b. Since a does
not appear in D[a := b], I is also a model of D[a := b]. Moreover I |= a ' b,
hence by Proposition 17, I |= D, and by hypothesis I |= C. Then, again by
Proposition 17, I |= C[a := b] and finally M |= C[a := b] because a does not
appear in C[a := b].

Proposition 52 Let C and D be two clauses in E, such that D[a := b] |= C,
then D |= C ∨ a 6' b.

Proof. LetM be a model of D. If a 6=M b, thenM |= a 6' b, soM |= C∨a 6'
b. If a =M b, then M |= D[a := b], so M |= C and finally M |= C ∨ a 6' b.
Hence the result.

All the notions necessary to formalise our work have been introduced. The
prominent ones are the projection test defined in Corollary 28 and the normal
form exposed in Definition 20. These key notions are used extensively in the
next two chapters.
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Chapter 3

Manipulating
N -clausal trees

In this chapter, we present the algorithms isEntailed and pruneEntailed,
that manipulate N -clausal trees. The algorithm isEntailed tests efficiently if
a clause is entailed by one of the clauses contained in a set of clauses. The
algorithm pruneEntailed does the contrary test (does a clause entail one of
the clauses contained in a set of clauses) and removes at the same time from the
set of clauses all the ones that are entailed by the given clause. Each algorithm is
described informally and in pseudo-code. Proofs of termination and correctness
are presented for both algorithms.

3.1 Entailment by an N -clausal tree

3.1.1 Algorithm description

In this section, we introduce an algorithm that tests whether a given clause is
logically entailed by a clause stored in a given N -clausal tree, even though in
practice, the use of projections inside the algorithm recursive calls compels us
to always consider an RN -clausal tree instead.

Let C be a clause in normal form and T be an RN -clausal tree. The al-
gorithm isEntailed called on C and T returns > if and only if there exists a
clause D in C(T ) such that D entails C. To test this entailment, the algorithm
runs through clause C, and at the same time performs a depth-first traversal of
T , attempting to project every encountered literal on C. If a literal in Br(T )
cannot be projected, the exploration of the subtree associated to this literal is
useless, so the algorithm switches to the following literal in Br(T ). As soon as a
clause entailing C is found, the exploration halts and > is returned. Note that
in an actual implementation of isEntailed, the projections do not have to be
explicitly computed (cf Remark 48).
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Algorithm 1 isEntailed(C, T )

Require: C is a clause in normal form and T is an RN -clausal tree.
Ensure: isEntailed(C, T ) = > ⇔ ∃D ∈ C(T ), D |= C

if T = � then
return >

end if
if C = � then

return ⊥
end if
l1 ← min

<
{l ∈ C}

for all (l, T ′) ∈ T such that l ≥ l1 do
if l1 = a 6' b, with a � b then

if l = l1 then
if isEntailed(C\l1, T ′) then

return >
end if

else if ¬(l = a 6' c), with a � c then

if isEntailed(C\l1, (T ′|↑l )[a := b]) then
return >

end if
end if

else if l ∈ C then
if isEntailed(C, T ′) then

return >
end if

end if
end for
return ⊥

Termination of the algorithm is proved by induction on |C|+ |T |, where |C|
is the number of literals in C, and |T | represents the height of T (note that |T |
can also be viewed as the size of the biggest clause in C(T )).

Theorem 53 isEntailed(C, T ) terminates for any normal clause C and
RN -clausal tree T .

Proof. If there are no recursive calls, the algorithm terminates in all cases. In
the recursive calls, either |C| or |T | is decremented (and neither |C| nor |T | can
increase), so by induction on |C|+ |T | the algorithm terminates.

3.1.2 Soundness proof

Before proving that the algorithm is correct, we must verify that its requirements
are always respected, namely, that for all recursive calls, the input clause is in
normal form and the input tree is an RN -clausal tree. For the clauses, this
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is obvious because no rewriting operation is ever performed, and literals are
deleted from the smallest to the greatest. This ensures that the resulting clause
remains in normal form. For the clausal trees, the proof is more involved:

Lemma 54 Let C be a clause and T an RN -clausal tree. All the trees appear-
ing in the recursive calls of isEntailed(C, T ) are also RN -clausal trees.

Proof. For any (l, T ′) ∈ T , T ′ is an RN -clausal tree by definition. It is also

straightforward to see that T ′|↑l is anRN -clausal tree. The only case to consider
is when l1 is of the form a 6' b with a � b, l > l1 and l is not of the form a 6' c
with a � c. We then show by induction that (T ′|↑l )[a := b], the argument of the
recursive call, is an RN -clausal tree.

We suppose that: ∀(l′, T ′′) ∈ T ′, (T ′′|↑l′)[a := b] is an RN -clausal tree. By
Proposition 46, T ′[a := b] is an RN -clausal tree and if l is a positive literal, so is

any l′ ∈ B(T ′) thus (T ′|↑l )[a := b] is also an RN -clausal tree. If l is of the form
u 6' v with u � v, then necessarily u � a, because l > a 6' b and l 6= a ' c with
a � c, thus l[a := b] is not a contradiction. Furthermore, for all l′ ∈ Br(T ′),
if l′ is positive, by definition of the order on literals, l[a := b] < l′[a := b].
If l′ is negative, then l′ = s 6' t with s � u (and s � t), so s � a, hence
l[a := b] < l′[a := b]. In addition, since u does not appear in T ′, it also does not
appear in T ′[a := b] (because u 6= b). Since all the properties are verified, we

conclude that (T ′|↑l )[a := b] is an RN -clausal tree.

Lemma 54 proves that the requirements of the isEntailed algorithm are
met at every recursive call. This validates the use of induction in the algorithm’s
proof of soundness. Note that, unlike RN -clausal trees, N -clausal trees do not
verify Lemma 54, their properties are not preserved by the projection operation,
which justifies the introduction of a formal definition for RN -clausal trees to
reason by induction.

Theorem 55 isEntailed(C, T ) = > iff ∃D ∈ C(T ), D |= C

Proof. We first assume that isEntailed(C, T ) = > and show by induction
that there exists a clause D ∈ C(T ) such that D |= C. We examine all the
cases in which isEntailed(C, T ) returns > in their order of appearance in the
algorithm.

• If T = � then it represents the empty clause and since � |= C, the
property holds.

• Assume l1 = min
<
{li ∈ C} is of the form a 6' b with a � b.

– If there exists a (l1, T
′) ∈ T such that isEntailed(C\l1, T ′) is true,

then by induction, there exists a D ∈ C(T ′) such that D |= C\l1.
Therefore l1 ∨D |= C and since l1 ∨D ∈ C(T ), we have the result.

– Assume there exists a (l, T ′) ∈ T such that l is not of the form

a 6' c with a � c and isEntailed(C\l1, T ′|↑l [a := b]) = >. Then by
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induction there exists a D′ ∈ C(T ′|↑l [a := b]) such that D′ |= C \ l1.

By Proposition 49, there exists a D ∈ C(T ′|↑l ) such that D[a := b] |=
C \ l1. Thus, D |= C by Proposition 52 and since C(T ′|↑l ) ⊆ C(T ),
the property is verified.

• Now assume that l1 = a ' b with a � b, that there exists a pair (l, T ′) ∈ T
with l ≥ l1 such that l ∈ C and isEntailed(C, T ′) is true. By induction
there exists a D ∈ T ′ such that D |= C. Hence l ∨D |= l ∨ C, and since
l ∈ C, l ∨D |= C so the property is verified.

To prove the converse implication, we suppose that isEntailed(C, T ) = ⊥
and prove that there is no D ∈ C(T ) such that D |= C. The first case where
isEntailed(C, T ) returns ⊥ is when T 6= � and C = �. All the clauses in
T are satisfiable by Proposition 21, so for all D ∈ C(T ), D 6|= �, i.e. the
property is not verified. The other case is when T 6= � and C 6= �. Then,
since C(T ) =

⋃
(l,T ′)∈T C(T ′|

↑
l ) by Proposition 41, showing that the property

does not hold for T is equivalent to showing that is does not hold for all T ′|↑l
where (l, T ′) ∈ T . Let (l, T ′) ∈ T , we distinguish several cases depending on
the natures of l and l1 = min< {l ∈ C}, and their relative order. The first case
prevents the loop from being entered; the second one prevents the first two
recursive calls from being made; the third one prevents the last recursive call
from being made, and the fourth one corresponds to the case where there is a
recursive call. More formally:

1. l < l1;

2. l ≥ l1, l1 is of the form a 6' b and l is of the form a 6' c with a � c � b;

3. l ≥ l1, l1 is of the form a ' b, and l 6∈ C;

4. none of the conditions above hold.

We prove each point separately:

1. Assume l < l1, we distinguish two cases depending on whether l1 is positive
or negative.

• If l1 = a 6' b with a � b, then l must be a negative literal and is
therefore of the form l = u 6' v where u � v. By definition of an
RN -clausal tree, l cannot be a contradiction, and since li > l for
all literals li in C, l�C is not a contradiction. Indeed, since l < li,
v cannot be the maximal constant of a negative literal in C, thus
by Proposition 22, v = v�C ; furthermore if u�C = v, then C would
contain the literal u 6' v which contradicts our hypothesis. Since
every clause D ∈ T ′|↑l contains l and l�C is not a contradiction, by

Corollary 28 we conclude that: ∀D ∈ T ′|↑l , D 6|= C.

• If l1 = a ' b,then C can contain no negative literal, thus for every
literal l′, we have l′�C = l′ by Proposition 15(2). If l = u 6' v, then
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l�C is not a contradiction since l is not, and if l = u ' v, then for all
li ∈ C, l�C < (li)�C so l�C 6∈ C. Again by Corollary 28, we conclude

that ∀D ∈ T ′|↑l , D 6|= C.

2. If l1 = a 6' b and l = a 6' c with a � c � b, then a�C = b because C is in
normal form and c�C = c by Proposition 22. Therefore l�C = b 6' c is not
a contradiction since c � b and we obtain the result by Corollary 28.

3. Assume that , l1 is of the form a ' b, and l 6∈ C. Since l ≥ l1, necessarily
l is of the form l = c ' d and since C contains no negative literal, l�C = l
by Proposition 15(2). If there exists a clause D ∈ T ′ such that l∨D |= C,
then by Corollary 28, l�C ∈ C�C . But C�C = C by the definition of a
clause in relaxed normal form, so l ∈ C, which is impossible.

4. In all remaining cases, a recursive call is necessarily performed and we
distinguish the call that is made.

(a) Assume that l1 = a 6' b and l = l1, and let C1 = C\l1. Then the call
to isEntailed(C1, T

′) must have returned ⊥. Suppose that there
exists a clause D′ ∈ C(T ′) such that l∨D′ |= C. By Corollary 28, for
all l′ ∈ D′, if l′ is negative then l′�C is a contradiction and otherwise
l′�C ∈ C�C . But by definition of an RN -clausal tree, constant a
does not appear in any l′, hence, for all l′ ∈ D′, l′�C = l′�C1

. Thus,
for all l′ ∈ D′, if l′ is negative then l′�C1 is a contradiction. In the
case where l′ is positive, since C is in normal form by hypothesis,
l′�C ∈ C and l′�C = l′. By assumption, l1 is negative, thus l′ ∈ C1

and l′�C1
∈ C1�C1

. By Corollary 28, we deduce that D′ |= C1, which
by induction, implies that isEntailed(C1, T

′) returns > and this
contradicts our hypothesis.

(b) If l1 = a 6' b with a � b, l > l1 and l is not of the form a 6' c with a �
c, then the recursive call that is made is isEntailed(C\l1, T ′|↑l [a :=

b]) and since it returns ⊥, by induction, ∀D ∈ C(T ′|↑l [a := b]), D 6|=
C\l1. Now assume that there exists a clause D′ ∈ C(T ′|↑l ) such that
D′ |= C. Then, D′[a := b] |= C[a := b] by Proposition 51, and since
C[a := b] ≡ C\l1 by Proposition 50, we have also D′[a := b] |= C\l1.

But D′[a := b] ∈ C(T ′|↑l [a := b]) which raises a contradiction.

(c) Assume l1 is a positive literal, l ≥ l1 and l ∈ C. Then the call to
isEntailed(C1, T

′) must have returned ⊥ . The proof is identical to
case 4a: we assume that there exists a clause D′ ∈ C(T ′) such that
l ∨D′ |= C and derive a contradiction.

Since all trees T ′|↑l contained in T verify one of these conditions, it is clear that
T represents no clause entailing C, which prove the result.

We have proven that the algorithm isEntailed is sound. We now provide
a short informal complexity analysis.
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Assume that the rewriting of the constant a with the constant b performed
in the recursive call isEntailed(C\l1, T ′|↑l [a := b]) is not carried out by going

through the whole tree T ′|↑l , but simply taken into account in the following
recursive calls (with a constant cost1). We can estimate that in the worst case,
we have one recursive call per edge in the tree T , plus one recursive call per
literal in the clause C for each branch of T . Moreover, there are at most as many
edges in T than there are literals in the clauses of C(T ). Thus, in the worst of all
cases, the complexity of isEntailed(C, T ) is in O(|{l ∈ D |D ∈ C(T )}|+ |C| ×
|C(T )|). Obviously, this upper bound should not be reached very often since the
algorithm is built to explore as little of T as is necessary. Furthermore, T itself
should have in general less edges than there are literals in C(T ), since a literal
appearing in several clauses can be represented by a unique edge.

3.2 Pruning an N -clausal tree

In this section, we present an algorithm that permits to delete from a set of
clauses represented by an N -clausal tree all those that are entailed by a given
clause. This algorithm is similar in its structure to the previous one, but with
the roles of the clause and the tree reversed, thus, this time, C will be in relaxed
normal form and T will be an N -clausal tree. Moreover, this time the tree is
pruned by the algorithm.

3.2.1 Algorithm description

Let C be a clause in relaxed normal form and T be an N -clausal tree. The
algorithm pruneEntailed called on C and T removes from T all clauses en-
tailed by C. To do so, it performs a depth-first traversal of T and attempts to
project C on every clause in C(T ), deleting those on which such a projection
succeeds. As soon as a projection is identified as impossible, the exploration
of the associated subtree associated halts and the algorithm moves to the next
clause. When every literal in C has been projected, all the clauses represented
in the corresponding subtree are entailed by C, thus they are removed.

1because necessarily b = b�C , thus each a is rewritten at most only once; and assuming a
constant access to each rewritting, stored for example in a hashtable
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Algorithm 2 pruneEntailed(C, T )

Require: C is a clause in relaxed normal form, T is an N -clausal tree and
isEntailed(C, T ) = ⊥

Ensure: ∀D ∈ C(T ), C 6|= D
if C = � then

T ← ∅
exit

end if
if T = � then

exit
end if
l1 ← min

<
{li ∈ C}

for all (l, T ′) ∈ T such that l ≤ l1 do
if l1 = l then

pruneEntailed(C\l1, T ′)
else

if l = a ' b then
pruneEntailed(C, T ′)

else if l = a 6' b, with a � b and @c, l1 = a 6' c, with a � c then
pruneEntailed(C[a := b], T ′)

end if
end if

end for

Remark 56 If this is not done by a built-in mechanism of the data structure,
the pairs (l, ∅) introduced in T during the execution of the algorithm can be
directly removed by adding the following loop at the end of the algorithm:

for all (l, T ′) ∈ T do
if T ′ = ∅ then

T ← T\ {(l, T ′)}
end if

end for

The recursive nature of the algorithm ensures that the removals will be done in
an incremental and efficient way

The termination proof of pruneEntailed is similar to that of isEntailed
by induction on |T |.

3.2.2 Soundness proof

As with the previous algorithm, before proving the soundness, we must ensure
that the requirements of the algorithm are met by all the recursive calls.

Notation 57 Let C be a clause in relaxed normal form and T an
N -clausal tree. We will denote by Tout the N -clausal tree T after the call of
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pruneEntailed(C, T ) (and T will denote the N -clausal tree before the call).
It will always be clear from the context which call of pruneEntailed generated
Tout (i.e. the main call or one of the recursive calls). ♦

Proposition 58 Let C be a clause in relaxed normal form and T an
N -clausal tree. If pruneEntailed(C, T ) is called, then Tout is an
N -clausal tree.

Proof. It is clear that no element is added to T and no literal in Br(T ) is
modified during the execution of pruneEntailed(C, T ). The only operations
allowed by the algorithm are replacing subtrees with empty sets and removing
elements from T . Thus, the order constraints required by an N -clausal tree are
preserved from T to Tout.

Lemma 59 Let C be a clause in relaxed normal form and T an N -clausal tree.
All the clauses arguments of a recursive call in pruneEntailed(C, T ) are in
relaxed normal form.

Proof. Since C is in relaxed normal form, clearly for any literal li ∈ C, C\l1
is also in relaxed normal form. The only case that must be detailed is when
l < l1 (with (l, T ′) ∈ T and l1 = min< {li ∈ C}), l = a 6' b, with a � b and
¬(l1 = a 6' c, with a � c), where C[a := b] is an argument of a recursive call of
pruneEntailed.

If l1 is a positive literal, then all the literals of C and C[a := b] are positive.
Thus by Proposition 15(2), for all li ∈ C[a := b], li = li�C[a:=b], and so C[a := b]
is in relaxed normal form. In the case where l1 is a negative literal (of the form
u 6' v with u � v), we prove by induction on the size of clauses that if C is in
relaxed normal form, so is C[a := b]. By definition, C\l1 is in relaxed normal
form and by induction (C\l1)[a := b] is too. The literal l1[a := b] (denoted by
l′1 in the rest of the proof) verifies the following properties:

• l′1 = u′ 6' v′ is not a contradiction. Since l1 = u 6' v is not a contradiction,
and u � a by hypothesis, l′1 cannot be a contradiction. Indeed, u 6= a,
thus u′ = u and v′ ≤ v < u hence u′ 6= v′.

• l′1 is unique in C[a := b]. The literal l′1 is smaller than all the positive
literals in C[a := b]. Moreover, for any negative literal l′2 ∈ C\l1[a := b],
the corresponding literal l2 ∈ C\l1 is of the form s 6' t (where s � t), with
s � u, so s � a and l′1 < l′2 (since u = u′).

• l′1 = u′ 6' v′ with u′�C[a:=b] = v′. To respect the minimality of l′1 in
C[a := b] (proven in the previous point), necessarily v′�C[a:=b] = v′. Since
u′�C[a:=b] = v′�C[a:=b], the property holds.

In addition, since u does not appear in any literal in C\l1 and since b 6= u, for
all literal li ∈ C\l1, li�C[a:=b] = li�(C\l1)[a:=b]. Thus, the properties verified by
induction by the literals of (C\l1)[a := b] are also verified in C[a := b].
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As with the previous algorithm, the use of induction in the soundness proof
is valid, because Proposition 58 and Lemma 59 ensure that the requirements of
the algorithm are respected in the recursive calls; and as with RN -clausal trees
in the soundness proof of isEntailed, the definition of a relaxed normal form
for clauses is necessary to preserve the invariant of the induction.

Theorem 60 Let C be a relaxed normal clause and T an N -clausal tree
such that isEntailed(C, T ) = ⊥. The following result holds: C(Tout) =
{D ∈ C(T ) | C 6|= D}

Proof. If D 6∈ C(T ), then D 6∈ C(Tout), because Tout is merely the tree T with
less branches. Thus, this proof will focus only on clauses in C(T ). If C = �, then
we have C |= D for every clause D, thus any clause in C(T ) must be removed
and in this case, the algorithm ensures that Tout = ∅. Now assume that C 6= �.
We prove that C(Tout) = {D ∈ C(T ) | C |= D} by proving the two inclusions
successively:

Let D ∈ C(T ) such that C |= D. We show by induction that D 6∈ C(Tout). If
D = � (i.e. T = �), then C is a contradiction and since C is in relaxed normal
form, C = �. Thus, Tout = ∅ and D 6∈ C(Tout). From now on, we assume
that C 6= � and D 6= �. We write l1 = min< {li ∈ C}, l = min< {l′ ∈ D} and
D′ = D\l. Since T is an N -clausal tree and D ∈ C(T ), by definition there exists
a unique N -clausal tree T ′ such that (l, T ′) ∈ T and D′ ∈ C(T ′). There are
several cases to consider:

1. l > l1, in which case no recursive call is done,

2. l = a 6' b and l1 = l, in which case pruneEntailed(C\l1, T ′) is called,

3. l = a 6' b and l1 = a 6' c, with a � c � b, in which case no recursive call
is done,

4. l = a 6' b and l1 > l with l1 not of the form a 6' c with a � c � b, in which
case pruneEntailed(C[a := b], T ′) is called,

5. l = a ' b and l1 = l, in which case pruneEntailed(C\l1, T ′) is called,

6. l = a ' b and l1 > l, in which case pruneEntailed(C, T ′) is called.

As can be seen, those cases cover all the possible relations between l and l1.

1. Assume l > l1. Since C |= D, the two following implications hold:

• If l1 = c 6' d with c � d, then l1�D is a contradiction by Corollary
28, so c�D = d�D. But for all l′ ∈ D, l′ > l1, thus by Proposition 22,
d�D = d (or else d 6' d�D ∈ D which is impossible because d 6' d�D <
l1 and l, greater than l1, is the minimal literal of D, by definition of
an N -clausal tree). Therefore c�D = d and by definition of a clause
in normal form, c 6' d ∈ D which contradicts our hypothesis.
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• If l1 is positive, then l1�D ∈ D�D by Corollary 28, and because D is
in normal form, l1�D ∈ D. But since for all l′ ∈ D, the inequation
l′ > l1 holds, D has only positive literals. Hence by Proposition
15(2), l1�D = l1, thus l1 ∈ D which contradicts our hypothesis.

2. Assume l = a 6' b with a � b and l1 = l. In this case,
pruneEntailed(C\l1, T ′) is called. Since C |= D, by Corollary 28, for
any literal l′ ∈ C, with l′ 6= l1:

• Either l′ is negative and l′�D is a contradiction. By definition of a
clause in relaxed normal form, the constant a cannot appear in any
literal of C other than l1, hence C\l1�D = C\l1�D′ . Thus l′�D′ is also
a contradiction.

• Or l′ is positive and l′�D ∈ D�D. But by definition of an
N -clausal tree, the positive literals of D�D are the same as those
of D, D′ and D′�D′ . Hence l′�D′ ∈ D′�D′ .

By Corollary 28, C\l1 |= D′ and by induction D′ 6∈ C(T ′out), thus D 6∈
C(Tout).

3. If l = a 6' b and l1 = a 6' c, with a � c � b, then l1�D = b 6' c is not
a contradiction. Thus by Corollary 28, C 6|= D, which contradicts our
hypothesis.

4. If l = a 6' b with a � b and l1 > l where l1 is not of the form a 6' c with
a � c � b, then pruneEntailed(C[a := b], T ′) is called. By Proposition
51, C[a := b] |= D[a := b], and D[a := b] ≡ D′ by Proposition 50, hence
C[a := b] |= D′. By induction D′ 6∈ C(T ′out), so D 6∈ C(Tout).

5. Assume l = a ' b and l1 = l. In this case, both C and D contain only
positive literals, thus for any l′ ∈ C such that l′ 6= l1, by Proposition
15(2), l′�D = l′�D′ = l′ and D�D = D. Furthermore, by Corollary 28,
l′ ∈ D�D, hence l′ ∈ D′. Again by Corollary 28, C\l1 |= D′, so by
induction D′ 6∈ C(T ′out) and finally D 6∈ C(Tout).

6. If l = a ' b and l1 > l, the same reasoning as for the previous point holds
for any l′ ∈ C, including l1, thus C |= D′ and D′ 6∈ C(T ′out) by induction.

Now assume that D ∈ C(T ) such that C 6|= D (note that necessarily C 6= �).
We show by induction that D ∈ C(Tout). If D = �, then T = � and Tout = T ,
so D ∈ C(Tout). As before we write l1 = min< {li ∈ C}, l = min< {li ∈ D},
D′ = D\l and we consider the unique couple (l, T ′) ∈ T . By Corollary 28, there
must be a literal l′ ∈ C that cannot be projected on D. We must consider the
same cases as before:

1. If l1 < l, no recursive call is done on T ′, and T ′ 6= ∅ because D′ ∈ C(T ′),
thus D ∈ C(Tout).
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2. Assume l = a 6' b with a � b and l1 = l. Clearly, l′ 6= l1 since l1 ∈ D,
thus l′ ∈ C\l1 and l′ also cannot be projected on D′, because D′�D′ =
(D�D)\(l�D). Hence C\l1 6|= D′ and by induction D′ ∈ C(T ′out). By
definition, D ∈ C(Tout).

3. If l = a 6' b and l1 = a 6' c, with a � c � b, as seen before, C 6|= D. No
recursive call is done, so T ′out = T ′, thus D ∈ C(Tout).

4. Assume l = a 6' b with a � b and l1 > l where l1 is not of the form a 6' c
with a � c � b. The constant a does not occur in l′ by Proposition 15(2),
thus l′[a := b] = l′ and l′�D = l′�D′ . This allows us to conclude that l′ ∈
C[a := b] and l′ cannot be projected on D′ because D′�D′ = (D�D)\(l�D),
hence by Corollary 28, C[a := b] 6|= D′. By induction D′ ∈ C(T ′out) and so
D ∈ C(Tout).

5. If l = a ' b and l1 = l, then as in Point 2, l′ 6= l1, hence l′ ∈ C\l1.
Furthermore, all the literals in D are positive, thus D′�D′ = D\l. It
implies that l′ cannot be projected on D′ and by Corollary 28, C\l1 does
not entail D′. By induction D′ ∈ C(T ′out) and so D ∈ C(Tout).

6. If l = a ' b and l1 > l, the proof is the same as in Point 5, except that
it is possible that l′ = l1, thus it is C that does not entail D′ instead of
C\l1.

Like with the algorithm isEntailed, we have proven the soundness of
pruneEntailed and are now concerned with the efficiency of this algorithm,
that we will consider through a short complexity analysis. The two algorithms
isEntailed and pruneEntailed have a similar structure in terms of recursive
calls, hence they also have a similar complexity. However, as mentioned in the
termination proof of pruneEntailed for which the induction is based solely
on |T |, even in the worst case the recursive calls of pruneEntailed always
reduce the tree, which is not the case in isEntailed. Thus these recursive
calls are not influenced by the number of literals in C, which ensure a slightly
better theoretical complexity for pruneEntailed than for isEntailed (it is
in O(|{l ∈ D |D ∈ C(T )}|) in the worst case). In practice, it is very likely that
isEntailed will be more efficient in general, because it is more constrained
than pruneEntailed by the number of literals in C, which is likely to be small
compared to that of T . To verify this hypothesis, the most practical way is to
run the algorithms on a benchmark and analyse the results (which will be done
if this master leads to a PhD).

We have presented efficient storage data-structures and algorithms to test
the entailment of equational clauses. In the context of the generation of prime
implicates adapted from CLTMS, these two algorithms are completed by a third
one, which takes care of inserting a new clause into an N -clausal tree. The three
algorithms put together permit an update of the implicates stored in T :

• isEntailed(C, T ) tests whether an implicate C is entailed by a set of
implicates C(T ); if it is not,
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• pruneEntailed(C, T ) removes from C(T ) the implicates that are entailed
by C; and finally,

• the last algorithm inserts C into C(T ).

These three steps allow for an efficient storage and manipulation of the impli-
cates of a formula, until only the prime implicates remain.

The remaining problem to solve is that of the generation of C and the other
implicates to be (or not to be, depending on the result of isEntailed) inserted
in C(T ). It is the subject of the next chapter.
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Chapter 4

Generating implicates in
equational logic

In this chapter, we introduce a new calculus inspired from the superposition
calculus and prove that it generates all the implicates of a given formula.

4.1 Definition of the K-paramodulation calculus

Remark 61 In the previous chapters, the notions of propositional and equa-
tional entailment where never intertwined, it was always clear from the context
which one was being referred to. It is not so in this chapter, hence the in-
troduction of the following notations to clarify the different uses of the symbol
|=.

Notation 62 Let I be an interpretation and S be a formula. When we write
I |= S, we mean that I is a model of S, and the context is sufficient for us to
know whether I is a propositional or an equational interpretation. We will now
distinguish explicitly these two kinds of interpretations by always writing I|=0S
when I is a propositional interpretation, and I|=ES when I is an equational
interpretation. Similarly, if S and S′ are two formulas, then S|=0S

′ means that
every propositional model of S is also a propositional model of S′, and S|=ES′
means that every equational model of S is also an equational model of S′. ♦

Note that if S|=0S
′, then S|=ES′, since the equational models of S are a subset

of the propositional models of S. For example, if S = {a ' b; b ' c} and S′ =
{a ' b}, then S|=0S

′, thus S|=ES′. In this case, I that evaluates a ' b, b ' c
and a 6' c to > is a propositional model of both S and S′. I is not an equational
interpretation because it does not respect transitivity between a, b and c. On
the contrary, an equational interpretation J that puts a, b and c in the same
equivalence class is an equational model of S and S′ but also a propositional
model of these formulas that evaluates a ' b, b ' c and a ' c to >. The
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converse (if S|=ES′, then S|=0S
′) is not true. For example, with C = e ' f and

D = a 6' b ∨ b 6' c ∨ a ' c, it is clear that C|=ED because D is an instantiation
of the axiom of transitivity, thus is always true in equational logic; but C 6|=0D
since it is possible to define a propositional interpretation that evaluates e ' f ,
a ' b, b ' c and a 6' c to >.

4.1.1 Intuition of the calculus

Our objective is to create a calculus operating on clauses in E (the set of all
ground flat equational clauses) that computes all the implicates of a formula.
To achieve this, we define the K-paramodulation calculus in E.

The principle underlying this calculus is to assert equalities rather than prov-
ing them contrary to the superposition calculus. For example, let us consider the
formula S = {a ' b, c ' d}. By superposition, nothing can be generated from
this formula since no constant occurs in both clauses. On the contrary, with
K-paramodulation, we want to be able to generate clauses like a 6' c ∨ b ' d,
which is a prime implicate of S and can also be seen as the superposition of a
into c under the assumption that a and c are equal. To do so, we must allow
the superposition of constants that are not known to be equal, like a and c in S,
by adding into the generated clause a hypothesis justifying this superposition,
here, the literal a 6' c.

4.1.2 Formal definition

Definition 63 The K-paramodulation is defined in E by three inference rules:

• K-paramodulation1:
a ' b ∨ C a′ ./ c ∨D
a 6' a′ ∨ b ./ c ∨ C ∨D

• K-equational factorisation:

a ' b ∨ a′ ' b′ ∨ C
a 6' a′ ∨ b 6' b′ ∨ a ' b ∨ C

• Reflexion:
a 6' a ∨ C

C ♦

Remark 64 Intuitively, the rules of K-paramodulation can be interpreted as:

• K-paramodulation: Under the assumption that the constants a and a′ are
equal, a superposition can be performed between a ' b∨C and a′ ./ c∨D.

• K-equational factorisation: Under the assumption that a ' b and a′ ' b′

are equal, one of these two literals can be removed from the clause.

1recall that ./ stands for ' or 6'
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• Reflexion: This rule is used to remove from clauses the contradictory lit-
erals (literals of the form a 6' a). Notice that the Reflexion rule is actually
not needed for completeness. However, it is useful to simplify the generated
clauses

Lemma 65 The K-paramodulation calculus is sound, i.e., the clauses generated
by this calculus are logical consequences of their premises.

Example 66 By K-paramodulation, we have a ' b, c ' d `K a 6' c ∨ b ' d as
we wanted. Note also that K-equational factorisation associated with Reflexion
simulates the standard factorisation (of the superposition calculus), and can thus
be used to get rid of duplicate literals. For example, we have a ' b∨a ' b `K a 6'
a∨b 6' b∨a ' b by K-equational factorisation and a 6' a∨b 6' b∨a ' b `K a ' b
by Reflexion. ♣

4.2 Completeness of the K-paramodulation cal-
culus for implicate generation

Since the K-paramodulation calculus simulates the superposition calculus, it
is refutationaly complete: if a set of clauses S is closed2 and does not contain
the empty clause, then S is satisfiable. But refutational completeness is not
enough to ensure that this calculus can generate all implicates of a set of clauses.
This is why we prove the following stronger result: if S is closed, C is not a
tautology and S|=EC, then there exists a clause D ∈ S such that D|=EC. The
proof proceeds as follows. We assume that S is closed, S|=EC and S contains
no clause D such that D|=EC and we construct an equational interpretation
satisfying S ∪ ¬C – thus contradicting the fact that S|=EC. This construction
is done in two steps. First, in Section 4.2.1, we associate each pair (C, S) with
a propositional interpretation I(C, S), constructed by induction on a suitably
chosen ordering <C . Then, in Section 4.2.2, we show that I(C, S) is actually
an equational model of S ∪¬C if S is saturated and contains no implicant of C.

4.2.1 Construction of a fitting order and interpretation

What we want to prove is that every clause entailed by a formula can be gen-
erated by K-paramodulation. To do so, we first define a new ordering <C on
literals that allows us to distinguish the literals entailing a given clause C (by
ensuring that these literals are smaller than the other ones), and to order all
the literals according to their projection on C.

Definition 67 Let C be a non-tautological clause in E. The partial order on
literals <C is defined as follows: let l1, l2 be two literals, then l1 <C l2 iff one of
the conditions below holds:

• l1|=EC and l2 6|=EC;

2this concept will be defined formally in Definition 72
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• or else l1�C = a1 ./ b1, with a1 � b1; l2�C = a2 ./ b2, with a2 � b2 and

– a1 ≺ a2, or

– a1 = a2 and b1 ≺ b2. ♦

This order is extended to clauses in the usual way for multisets.

Proposition 68 <C is transitive, hence is a partial order.

Example 69 Let C = b 6' c ∨ b ' d. The inequality c ' d <C a ' b holds
because c ' d|=EC and a ' b 6|=EC. Moreover, since a 6' b 6|=EC, the literals a ' b
and a 6' b cannot be compared, which can also be written as a ' b 6<C a 6' b
and a 6' b 6<C a ' b. ♣

From now on, all atoms are considered modulo commutativity. For example
a ' b and b ' a are assumed to represent the same atom.

Definition 70 Let C be a clause in E and S be a set of clauses in E. We
assume w.l.o.g. the set of constants to be finite, thus the set of literals is also
finite. We create the finite enumeration of atoms p1, . . . , pn such that:

• for any atom l, there exists a unique i ∈ {1 . . . n} such that l�C = pi,

• for any i, j ∈ {1 . . . n}, if i < j, then pi <C pj .

We define inductively the following propositional interpretations. For all i ∈
{1 . . . n}, let Ii(C, S) be the propositional interpretation such that:

1. for any atom l such that l�C = pj with j < i, Ii(C, S)|=0l iff Ii−1(C, S)|=0l,

2. for any atom l such that l�C = pj with j > i, Ii(C, S) 6|=0l,

3. for any atom l such that l�C = pi, Ii(C, S)|=0l iff

(a) either pi is of the form a ' a
(b) or pi does not occur in the normal form of C (pi 6∈ C↓) and there

exists a clause D ∨ l′ ∈ S such that:

∗ l′�C = pi,

∗ D <C l′,

∗ Ii−1(C, S)6|=0D.

We note I(C, S) the interpretation In(C, S). For all i ∈ 1 . . . n, I(C, S) coincides
with Ii(C, S) for all atoms l such that l�C = pj with j ≤ i. ♦

Remark 71 By definition, for two atoms l and l′ such that l�C = l′�C , neces-
sarily, either I(C, S)|=0l and I(C, S)|=0l

′, or I(C, S)6|=0l and I(C, S) 6|=0l
′.

The proof of the completeness theorem consists in showing that this propo-
sitional interpretation is actually an equational interpretation, that satisfies the
formula S ∪¬C when S is closed, entails C and contains no clause D such that
D|=EC. This is done in the next section.
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4.2.2 Validating the interpretation I(C, S)

Definition 72 Let S be a set of clauses in E. S is closed iff every clause C
deducible from S by the K-paramodulation calculus is either a tautology or an
element of S. ♦

The following theorem expresses the fact the K-paramodulation calculus is
complete in terms of implicate generation.

Theorem 73 Let S be a closed set of clauses in E and C ∈ E be a non-
tautological clause. If S|=EC, then there exists a clause D ∈ S such that D|=EC.

Proof. Let S be a closed set of clauses in E. Assume C ∈ E is a non-
tautological clause such that S|=EC and for all clauses D ∈ S, D 6|=EC. We
prove that this hypothesis cannot hold by exhibiting an interpretation I such
that I|=ES and I6|=EC. Let I = I(C, S) as defined in Definition 70. Note that
I was constructed as a propositional interpretation. We prove first that I6|=0C,
which, if I is an equational interpretation, is the same as proving that I6|=EC.
Then, we prove by induction that I is an equational interpretation such that
I|=ES.

Assume that I|=0C, in this case there is a literal l ∈ C such that I|=0l.

• If l is a positive literal, then there exists an i in {1 . . . n} such that l�C = pi.
By definition of I, either pi is of the form a ' a, thus C↓ and C are
tautologies which is impossible; or pi 6∈ C↓ hence l 6|=EC, which contradicts
the hypothesis l ∈ C. In both cases, this situation cannot happen.

• Otherwise l is a negative literal and there exists an i in {1 . . . n} such that
l�C = p̄i. In this case, pi is not a tautology by Condition 3a of the definition
of I. This is impossible by Corollary 28, indeed l is of the form a 6' b with
a � b and l|=EC, thus a�C = b�C and consequently pi = a�C = a�C . This
proves that I6|=0C.

To prove that I is an equational interpretation and that I|=ES, we go back to
the definition of I (see Definition 70). By induction, we assume that Ii−1(C, S)
is an equational interpretation when restricted to the literals l such that pi−1 6<C

l, and that for all clauses D ∈ S whose literals verify this relation with pi, we
have Ii−1(C, S)|=ED. We show that the same condition holds for Ii(C, S) and
pi.

We first show that Ii(C, S) |= D, with D such that every literal l ∈ D
is not greater than pi (∀l ∈ D, pi 6<C l). If D contains only literals l such
that l <C pi then the proof follows from the induction hypothesis, since by
definition Ii(C, S) coincide with Ii−1(C, S) on such atoms. Thus we assume
that D contains literals such that their projection on C is either pi or p̄i. Several
cases must be distinguished.

1. In the case where there are two literals l and l′ in D such that l�C =
pi and l′�C = p̄i, by definition, if Ii(C, S)6|=0l, then Ii(C, S)|=0l

′ and if
Ii(C, S)6|=0l

′, then Ii(C, S)|=0l. Thus in both cases Ii(C, S)|=0D
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2. In the case where there is no literal in D that can be projected to pi on
C, there are two possibilities to consider:

• If there is only one literal l ∈ D such that l�C = p̄i, then we write
D = l ∨D′ with D′ <C l. If Ii(C, S)|=0p̄i, then the result is direct,
thus we assume Ii(C, S)|=0pi and by definition, there are two cases
to examine:

– If pi is a tautology, then l�C is a contradiction, and by Corollary
28, l|=EC. Then by definition of <C , we have l′|=EC for every
l′ ∈ D′, hence D|=EC, which contradicts our hypothesis.

– If pi is not a tautology, then pi 6∈ C↓ and there exists a clause
D′′∨l′ ∈ S, where l′�C = pi, D

′′ <C l′ and I6|=0D
′′. Let l = a ' b

and l′ = a′ ' b′ with a�C = a′�C and b�C = b′�C . We write
E = a 6' a′ ∨ b 6' b′ ∨ D′ ∨ D′′, note that E <C pi because
a 6' a′, b 6' b′|=EC and D′, D′′ <C pi. By K-paramodulation,
l ∨ D′, l′ ∨ D′′ `K E, and since S is closed, E ∈ S or E is a
tautology. If E is a tautology, then Ii(C, S)|=0E, and if E ∈ S,
we reach the same conclusion by induction, because E <C pi.
Moreover, since Ii(C, S) 6|=0a 6' a′, b 6' b′, D′, D′′ by definition,
we have Ii(C, S) 6|=0E, which raises a contradiction.

• If there are several literals that can be projected to p̄i in D, the
same disjunction of cases can be applied as with only one literal
projected on p̄i, with the difference that in the second case, the
K-paramodulation is applied several times until a clause E of the
form l1∨· · ·∨ lk∨D′∨· · ·∨D′∨D′′∨· · ·∨D′′ with l1, . . . , lk negative
literals equationally entailing C. The same contradiction can then
be raised on E.

3. In the case where there is no literal in D that can be projected to p̄i on
C, there are again two possibilities to consider:

• If l is the only atom in D such that l�C = pi, then we write D = D′∨l
with D′ <C pi. If Ii−1(C, S)|=0D

′, then by definition Ii(C, S)|=0D.
In the other case, Ii−1(C, S) 6|=0D

′ and if pi ∈ C↓, then l|=EC by
Corollary 28. Hence by definition of <C , for all literals l′ ∈ D′,
necessarily l′|=EC, meaning that D|=EC which contradicts our hy-
pothesis. Thus pi 6∈ C and l verifies Condition 3b of Definition 70,
hence Ii(C, S)|=0l.

• Assume there are two maximal atoms in D that are projected to pi on
C, then we write D = l∨l′∨D′ with D′ <C l, l′. The proof is similar if
there are more than two maximal atoms (by applying several time the
K-equational factorisation rule instead of just once). Let l be of the
form a ' b, l′ be of the form a′ ' b′, with a�C = a′�C and b�C = b′�C .
Let E = a 6' a′∨b 6' b′∨ l∨D′. By K-equational factorisation, D `K
E. Since S is closed, E is a tautology or E ∈ S. If E is a tautology,
then Ii(C, S)|=0E, and since Ii(C, S)6|=0a 6' a′, Ii(C, S)6|=0b 6' b′ and
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Ii(C, S)6|=0D
′, necessarily Ii(C, S)|=0l, thus Ii(C, S)|=0D. If E ∈ S,

we go back to the previous case to obtain the result.

Finally, we prove that the restriction of Ii(C, S) to the atoms lower or equal
to pi (with regard to <C) is an equational interpretation By induction, it is
already true for the literals that are strictly lower than pi, since Ii(C, S) coincide
with Ii−1(C, S) on those literals. Let l be a literal such that l�C = pi.

• Reflexivity: if l is a tautology, then pi is one too, so Ii(C, S)|=0l.

• Commutativity: since we identify a ' b and b ' a, it is naturally respected
by Ii(C, S).

• Transitivity: if l = a ' b, Ii(C, S)|=0l and Ii(C, S)|=0a ' c with c ≺ b,
then we prove Ii(C, S)|=0b ' c.

1. If (a ' b)�C and (a ' c)�C are both of the form a�C ' a�C , then
(b ' c)�C is too, thus Ii(C, S)|=0b ' c.

2. Assume (a ' b)�C is of the form a�C ' a�C , (a ' c)�C 6∈ C and there
exists a clauseD∨a′ ' c′ ∈ S, such that (a ' c)�C = (a′ ' c′)�C , with
D <C (a′ ' c′) and I6|=0D. Since b�C = a�C , the inequality D <C

(b ' c) holds, and (b ' c)�C = (a′ ' c′)�C , thus Ii(C, S)|=0b ' c.
3. The same reasoning applies if (a ' c)�C is of the form a�C ' a�C and

(a ' b)�C 6∈ C.

4. Assume (a ' b)�C 6∈ C, (a ' c)�C 6∈ C, and there exist two clauses
D∨d ' e and D′∨d′ ' f both in S such that (a ' b)�C = (d ' e)�C ,
(a ' c)�C = (d′ ' f)�C (w.l.o.g. a�C = d�C = d′�C , b�C = e�C and
c�C = f�C), D <C (a ' b), D′ <C (a ' c), Ii−1(C, S)6|=0D and
Ii−1(C, S) 6|=0D

′. We denote E = d 6' d′ ∨ e ' f ∨ D ∨ D′; in this
case, S `K E and E is a tautology or E ∈ S by saturation. If E is a
tautology, then Ii(C, S)|=0E; and if E ∈ S:

– if e ' f <C l then E <C l and by induction Ii(C, S)|=0E,

– if (e ' f)�C = l�C , then f�C = a�C , thus c�C = a�C and we are
not in Case 4 but in Case 3 so the result holds,

– if l <C e ' f , then we are outside of the bounds of what we want
to prove, so this case can be ignored.

Hence, in the case considered here, we always have Ii(C, S)|=0E.
Moreover, Ii(C, S)6|=0D,D

′, d 6' d′ by definition, thus, necessarily
Ii(C, S)|=0e ' f . Since (e ' f)�C = (b ' c)�C , the two literals e ' f
and b ' c both verify the conditions for which Ii(C, S) is a model of
e ' f , hence Ii(C, S)|=0b ' c.

5. The last case necessary to prove transitivity has different hypotheses.
It corresponds to one of the cases that were rejected as out of bound
in the previous point. In this cases, the two atoms a ' c and b ' c are
such that Ii(C, S)|=0a ' c, Ii(C, S)|=0b ' c and a ' c, b ' c <C pi
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with pi = (a ' b)�C . We show that Ii(C, S)|=0a ' b. We consider
only the case where (a ' c)�C 6∈ C and (b ' c)�C 6∈ C, because the
others are similar to the points 1, 2 and 3 of this proof. By hypothesis,
there exist two clauses D ∨ d ' f and D′ ∨ e ' f ′ with d�C = a�C ,
e�C = b�C and f�C = f ′�C = c�C , such that D <C d ' f , D′ <C

e ' f ′, Ii(C, S)6|=0D and Ii(C, S) 6|=0D
′. By saturation, the clause

E = f 6' f ′ ∨ d ' e ∨ D ∨ D′ is a tautology or E ∈ S. Moreover,
max<CE = pi, thus, in the case where E ∈ S, as proved previously in
this demonstration, Ii(C, S)|=0E. Obviously, if E is a tautology, then
Ii(C, S)|=0E is also true. By hypothesis Ii(C, S)6|=0D, Ii(C, S)6|=0D

′

and by definition Ii(C, S) 6|=0f 6' f ′, thus Ii(C, S)|=0d ' e. As in
Point 4, this allows us to conclude that Ii(C, S)|=0a ' b.
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Conclusion

From a study of prime implicates generation in propositional logic, we have se-
lected an algorithm and adapted it into a method for prime implicate generation
in ground flat equational logic. This method is composed of two main parts. One
is the storage of ground flat equational clauses modulo equivalence, through the
definition of a new and relatively compact data structure, the N -clausal tree.
To manipulate an N -clausal tree, we have also provided algorithms that allow
to update this data structure and get rid of the redundancies it may contain,
and we proved the soundness and termination of these algorithms. The other
part of the method deals with the generation of the implicates that will be
stored in the N -clausal tree. We have devised a variation of the superposition
calculus, the K-paramodulation calculus, that can generate all the implicates
of a formula in ground flat equational logic, and we proved that it is complete,
namely that any implicate C of a formula S is entailed by a clause D generated
from S by the calculus.

There are still many interesting problems to solve and we are currently work-
ing on some of them. A natural way to improve the calculus would be to handle
normal clauses instead of standard ones. Since equivalent clauses all have the
same normal form, this would significantly reduce the number of clauses to con-
sider. Another interesting improvement would be to define a redundancy crite-
rion for clauses preserving the completeness of the calculus. Handling normal
clauses instead of standard ones will require a modification of the completeness
proof, and for the time being, a suitable redundancy criterion has proved dif-
ficult to find: the ones being examined are either not restrictive enough or do
not preserve the completeness of the calculus. However we believe that these
problems will be solved fairly quickly. It can also be noted that the current
version of the K-paramodulation calculus has no ordering restrictions whatso-
ever. Even though this lack of order constraints is in some ways unavoidable
to ensure the generation of all implicates, it is clear that enforcing some partial
ordering conditions that preserve the completeness of the K-paramodulation
calculus would also improve its efficiency. We intend to investigate in detail
what kind of ordering conditions can be imposed.

This theoretical work will be followed by an implementation of the whole al-
gorithm, integrating both an efficient generation of implicates and their storage,
which will allow us to ascertain the efficiency of our method and verify how it
scales up to concrete problems.
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There are many interesting ways to extend the research in this area in the
long term. The first two directions we intend to explore are the following:
One is to adapt other algorithms from propositional logic, and more specifically
those based on the decomposition method, to which one is the more efficient.
Another is to investigate the possible extensions of the method described here
to more expressive logics, first by considering ground abducible terms and not
simply abducible constants thus working with non flat clauses and afterwards
considering non-ground abducible terms and clauses.
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