
NTCC model checker for Oz

The following is the specification of the functionality exposed in this module. Presently, there are 4 interfaces
implemented: Linear Time Logic formulae, NTCC processes, NTCC kripke structures and NTCC model
checker.

Usage

You need to include the module at the beginning of any code that uses it so mozart can direct the calls to
the pre-compiled library:

functor

import NTCC at ’ntccModelChecker.ozf’

define

Formula = {New NTCC.ltlFormula init(...)}
Process = {New NTCC.ntccProcess init(...) }
MC = {New NTCC.ntccModelChecker init(Formula Process)

Answer = {MC modelCheck($)}
end

Remember to place the ozf-extension library into the location specified after the at statement(in the above
case the same directory as the oz code).

ltlFormula Interface

’<=’ stands for default parameter value and ’$’ means the method produces an output.

init

{NTCC.ltlFormula init(LTLFormula <= preposition(constraint:’x=0’#[x ’=:’ 0]))

)}

initializes the internal formula with the constructed formula LTLFormula. The value of LTLFormula
is by default the constraint preposition x = 0, a constraint is constructed as a pair where the first element is
the string representation of the constraint and the second is a triplet of the form [variable relation value].
The possible relations are =:, \\=:, >:, <:, >=: and =<:.

disjunction

{NTCC.ltlFormula disjunction($ FormulaLeft<=@formula FormulaRight)}

outputs a disjunction(∨) between FormulaLeft and FormulaRight, both are constructed LTL formulas.
FormulaLeft is by default the internal formula.

conjunction

{NTCC.ltlFormula conjunction($ FormulaLeft<=@formula FormulaRight)}

outputs a conjunction(∧) between FormulaLeft and FormulaRight, both are constructed LTL formu-
las. FormulaLeft is by default the internal formula.

implication

{NTCC.ltlFormula implication($ FormulaLeft<=@formula FormulaRight)}

outputs an implication(→) between FormulaLeft and FormulaRight, both are constructed LTL for-
mulas. FormulaLeft is by default the internal formula.

negation

{NTCC.ltlFormula negation($ Formula<=@formula)}

outputs the negation(¬) of the constructed LTL formula Formula. The internal formula is the default
value of Formula.

next

{NTCC.ltlFormula next($ Formula<=@formula)}

outputs the constructed LTL formula Formula being true in the next time unit(◦). The default value
of Formula is the internal formula.

eventually

{NTCC.ltlFormula eventually($ Formula<=@formula)}

outputs the constructed LTL formula Formula being true eventually in the future(♦). The default
value of Formula is the internal formula.

always

{NTCC.ltlFormula always($ Formula<=@formula)}

outputs the constructed LTL formula Formula being true in all present and future time units(�).
The default value of Formula is the internal formula.

getFormula

{NTCC.ltlFormula getFormula($)}

outputs the current internal formula.

setFormula

{NTCC.ltlFormula setFormula(Formula)}

sets the internal formula to Formula.

showFormula

{NTCC.ltlFormula showFormula($ Formula<=@formula)}

outputs the constructed LTL formula Formula in a human readable form. The default value of
Formula is the internal formula.

removeSquare

{NTCC.ltlFormula removeSquare($ Formula<=@formula)}

outputs the constructed LTL formula Formula with every always operators(�) removed. Remember
that �f ≡ ¬ (♦¬f).

removeDisjunction

{NTCC.ltlFormula removeDisjunction($ Formula<=@formula)}

outputs the constructed LTL formula Formula with every disjunction operators(∨) removed. Re-
member that f1 ∨ f2 ≡ ¬ (¬f1 ∧ ¬f2).

removeImplication

{NTCC.ltlFormula removeImplication($ Formula<=@formula)}

outputs the constructed LTL formula Formula with every implication operators(→) removed. Re-
member that f1 → f2 ≡ ¬f1 ∨ f2.

equalFormulas

{NTCC.ltlFormula equalFormulas($ Formula1 Formula2<=@formula Process<=nil)}

outputs whether Formula1 is equal to Formula2 by using the constraint entailment of the NTCC
process Process. By default Formula2 is the internal formula and if Process is nil then prepositions are
compared by list equality.

calculateClosure

{NTCC.ltlFormula calculateClosure($ Formula<=@formula)}

outputs the closure of the constructed LTL formula Formula. The closure are all the sub-formulas
whose truth value can influence the truth value of the formula. By default Formula is the internal formula.

getClosure

{NTCC.ltlFormula getClosure($)}

outputs the internal closure.

setClosure

{NTCC.ltlFormula setClosure(Closure)}

sets the internal closure to Closure.

calculateBasicFormulas

{NTCC.ltlFormula calculateBasicFormulas($ Closure<=@closure)}

outputs the basic formulas of the closure Closure. Basic formulas are formulas that are satisfied in a
specific time unit, mainly prepositions and formulas inside next operators. The default value of Closure is
the internal closure.

getBasicFormulas

{NTCC.ltlFormula getBasicFormulas($)}

outputs the internal basic formulas.

setBasicFormulas

{NTCC.ltlFormula setBasicFormulas(BasicFormulas)}

sets the internal basic formulas to BasicFormulas.

calculateCombinations

{NTCC.ltlFormula calculateCombinations($ Formulas)}

outputs all possible combinations of the basic formulas Formulas.

getCombinations

{NTCC.ltlFormula getCombinations($)}

outputs the internal combinations of some basic formulas.

setCombinations

{NTCC.ltlFormula setCombinations(Combinations)}

sets the internal combinations to Combinations.

prepositionInCombination

{NTCC.ltlFormula prepositionInCombination($ Preposition Combination Process)}

outputs whether the preposition Preposition is entailed by the formulas in the list Combination using
the constraint entailment of the NTCC process Process.

formulaConsistentCombination

{NTCC.ltlFormula formulaConsistentCombination($ Formula Combination Process)}

outputs whether the formula Formula is consistent(including entailment of its prepositions) with the
list of formulas Combination using the constraint entailment of the NTCC process Process.

formulaInCombination

{NTCC.ltlFormula formulaInCombination($ Formula Combination Process)}

outputs whether the formula Formula is inside the list of formulas Combination using the constraint
entailment of the NTCC process Process.

nonBasicFormulasInCombination

{NTCC.ltlFormula nonBasicFormulasInCombination($ Closure<=@closure

Combinations<=@combinations Process)}

outputs the list of formulas Combinations plus the non-basic formulas of the closure Closure that are
consistent with all the formulas from the combination. It uses the constraint entailment of the NTCC process
Process. By default, the values of Closure and Combinations are the internal closure and combinations
respectively.

ntccProcess Interface

init

{NTCC.ntccProcess init(Process<=tell([x ’=:’ 0] Variables<=[x] Range<=0#1)}

initializes the internal process with the constructed NTCC process Process. The default value of
Process is telling the constraint x = 0. The constraint is a triplet with the same characteristics as the
constraints in the ltlFormula interface.

when

{NTCC.ntccProcess when($ Constraint<=[x ’=:’ 0] ProcessRight<=@process)}

outputs the NTCC process ProcessRight conditioned by the constraint Constraint. Constraint de-
faults to the constraint x = 0 and ProcessRight defaults to the internal process.

unless

{NTCC.ntccProcess unless($ Constraint<=[x ’=:’ 0] ProcessRight<=@process)}

outputs the NTCC process ProcessRight conditioned by the absence of the constraint Constraint.
Constraint defaults to the constraint x = 0 and ProcessRight defaults to the internal process.

parallel

{NTCC.ntccProcess parallel($ Process<=@process Processes)}

outputs the NTCC process Process in parallel execution with the list of NTCC processes Processes.
Process defaults to the internal process.

sumation

{NTCC.ntccProcess sumation($ Process<=@process Processes)}

outputs the NTCC process of a non-deterministic choice between Process and the list of NTCC
processes Processes. Process defaults to the internal process.

next

{NTCC.ntccProcess next($ Process<=@process)}

outputs the NTCC process Process where its execution is delayed by one time unit. Process defaults
to the internal process.

replication

{NTCC.ntccProcess replication($ Process<=@process)}

outputs the NTCC process Process where its execution is replicated on every present and future time
units. Process defaults to the internal process.

eventually

{NTCC.ntccProcess eventually($ Process<=@process)}

outputs the NTCC process Process where its execution is delayed by a non-deterministic number of
time units. Process defaults to the internal process.

getProcess

{NTCC.ntccProcess getProcess($)}

outputs the internal process.

setProcess

{NTCC.ntccProcess setProcess(Process)}

sets the internal process to Process.

showProcess

{NTCC.ntccProcess showProcess($ Process<=@process)}

outputs the NTCC process Process in a human readable form. Process defaults to the internal
process.

processToProcedure

{NTCC.ntccProcess processToProcedure($ Process<=@process)}

outputs the NTCC process Process where all its constraints are transformed to Mozart/Oz procedures.
Process defaults to the internal process.

constraintEntailment

{NTCC.ntccProcess constraintEntailment($ C1 C2 NotEntailed<=false)}

outputs whether the constraint C1 entails (or not entails, depending on the value of NotEntailed)
the constraint C2. The constraints are in the same form of triplets mentioned above.

ntccStructure Interface

init

{NTCC.ntccStructure init(Process)}

initializes, creates, reduces and renames the kripke structure based off the NTCC process Process.

getStructure

{NTCC.ntccStructure getStructure($)}

outputs the internal structure.

setStructure

{NTCC.ntccStructure setStructure(Structure)}

sets the internal structure to Structure.

showStructure

{NTCC.ntccStructure showStructure(Structure<=@structure)}

prints in the standard output the structure Structure. By default the value of Structure is the internal
structure.

createStructure

{NTCC.ntccStructure createStructure($ Process)}

outputs the kripke structure based off the ntcc process Process.

reduceStructure

{NTCC.ntccStructure reduceStructure($ ExtendedStructure<=@structure)}

outputs the minimal kripke structure(external transitions only) from the extended kripke structure
ExtendedStructure. By default the value of ExtendedStructure is the internal structure.

renameStructure

{NTCC.ntccStructure renameStructure($ ReducedStructure<=@structure)}

outputs the renamed(ordered nodes and edges) kripke structure from the reduced kripke structure
ReducedStructure. By default the value of ReducedStructure is the internal structure.

ntccModelChecker Interface

init

{NTCC.ntccModelChecker init(Formula Process)}

initializes the model checker object with the LTL goal formula Formula and the NTCC base process
Process.

getFormula

{NTCC.ntccModelChecker getFormula($)}

outputs the internal LTL goal formula.

getProcess

{NTCC.ntccModelChecker getProcess($)}

outputs the internal base NTCC process.

setFormula

{NTCC.ntccModelChecker setFormula(Formula)}

sets the internal LTL goal formula to Formula.

setProcess

{NTCC.ntccModelChecker setProcess(Process)}

sets the internal NTCC base process to Process.

modelCheck

{NTCC.ntccModelChecker modelCheck($ Structure<=@structure

Formula<=@formula Process<=@process)}

outputs the model checking of the LTL goal formula Formula on the NTCC base process Process w.r.t
the reduced and renamed kripke structure Structure. The default values of Formula, Process and Structure
are the internal formula, process and structure. The result is a pair where the first element is true or false
and the second element is a possible trace of the states(counter-example) if the model check bears false.

