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Abstract—The difficulties encountered in sequential decision-
making problems under uncertainty are often linked to the
large size of the state space. Exploiting the structure of the
problem, for example by employing a factored representation,
is usually an efficient approach but, in the case of partially
observable Markov decision processes, the fact that some state
variables may be visible has not been sufficiently appreciated.
In this article, we present a complementary analysis and
discussion about MOMDPs, a formalism that exploits the fact
that the state space may be factored in one visible part and
one hidden part. Starting from a POMDP description, we dig
into the structure of the belief update, value function, and the
consequences in value iteration, specifically how classical algo-
rithms can be adapted to this factorization, and demonstrate
the resulting benefits through an empirical evaluation.

I. INTRODUCTION

Sequential decision-making under uncertainty is an im-

portant research field. There has been extensive work on

Markov Decision Processes (MDPs) [1] and variants such as

Partially Observable MDPs (POMDPs) [2]. Often the diffi-

culties are linked to the size of the state (and action) space,

which typically suffers from a combinatorial explosion when

increasing the problem size. Then, possible approaches often

rely on exploiting the structure of the problem at hand, e.g.,

by using appropriate heuristics or function approximators,

or, if possible, an exact compact representation.

Here, we focus on partially observable Markov decision

processes, which are all the more important that numerous

real-world decision problems are made difficult by imperfect

knowledge about the state of the system at hand (due

to partial and noisy observations), e.g., medical diagnosis,

surveillance, or machine maintenance [3]. As for MDPs, the

most common resolution techniques rely on Dynamic Pro-

gramming, which implies computing the optimal expected

value from each (belief) state, as in the Witness or Incre-

mental Pruning algorithms [4]. Also, a number of advanced

approaches rely on the fact that problems often exhibit

some structure and can be efficiently modeled as factored

POMDPs (fPOMDPs) [5], where states and observations are

represented by multiple random variables.

In this paper, we strengthen the analysis of Mixed Observ-

ability MDPs (MOMDPs) [6], a formalism that exploits an

important property satisfied by many problems: that usually

part of the state is “fully” observable. This means that

the problem is in-between MDPs and “classical” POMDPs,

which can be exploited to reduce the dimensionality of

the value function being computed, and therefore speed up

various existing algorithms.

In general terms, Zhang and Zhang’s informative

POMDPs [7] exploit a similar idea of reducing the dimen-

sionality of the value function by using information from

the observation function to restrict the belief space at each

time step. Hsu et al. [8] present a theoretical discussion

about fully observed state variables, but MOMDPs where

formally presented only recently by Ong et al. [6]. We

have independently developed the same idea with different

notations, and we present here an improved analysis through

a closer look at the consequences of MOMDPs starting

directly from the POMDP model.

After presenting background knowledge on POMDPs in

Section II, Section III introduces the MOMDP model and

shows how it makes it possible to adapt algorithms—in

particular Incremental Pruning in Section IV—and make

them more efficient. The benefit of this approach is then

evaluated empirically in Section V before a discussion and

conclusion.

II. BACKGROUND ON POMDPS

POMDPs are usually defined [9] by a tuple

〈S,A,O, T, O, r, b0〉 where, at any time step, the system

being in some state s ∈ S (the state space), the agent

performs an action a ∈ A (the action space) that results

in (1) a transition to a state s′ according to the transition

function T (s, a, s′) = Pr(s′|s, a), (2) an observation

o ∈ O (the observation space) according to the observation

function O(s′, a, o) = Pr(o|s′, a) and (3) a scalar reward

r(s, a). b0 is the initial probability distribution over states.

Unless stated otherwise, the state, action and observation

sets are finite [4].

The problem is for the agent to find a decision policy π

choosing, at each time step, the best action based on its past

observations and actions to maximize its future gain (which

can be measured for example through the total accumulated

reward or the average reward per time step). Compared to

classical deterministic planning, the agent has to face the

difficulty to account for a system not only with uncertain

dynamics but also whose current state is imperfectly known.
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The agent can typically reason about the hidden state of

the system by computing a belief state b ∈ B = Π(S) (the

set of probability distributions over S) using the following

update formula (based on the Bayes rule) when performing

action a and observing o:

ba,o(s′) =
O(s′, a, o)

Pr(o|a, b)

∑

s∈S

T (s, a, s′)b(s),

where Pr(o|a, b) =
∑

s,s′′∈S
O(s′′, a, o)T (s, a, s′′)b(s).

Using belief states, a POMDP can be rewritten as an MDP

over the belief space, or belief MDP, 〈B,A, T , ρ〉, where

the new transition and reward functions are both defined

over B × A × B. With this reformulation, a number of

theoretical results about MDPs can be extended, such as the

existence of a deterministic policy that is optimal. An issue

is that, even if a POMDP has a finite number of states, the

corresponding belief MDP is defined over a continuous—

and thus infinite—belief space.

For now we only consider finite horizon problems (t ∈
0..T ), maximizing the cumulative reward and looking for

a policy taking the current belief state as input. The ob-

jective is then to find an optimal policy verifying π∗ =
argmaxπ∈AB Jπ(b0) with

Jπ(b0) = E

[

T−1
∑

t=0

rt

∣

∣

∣

∣

∣

b0, π

]

,

where b0 is the initial belief state and rt the reward obtained

at time step t. Bellman’s principle of optimality [10] lets us

compute this function recursively through the value function

Vn(b) = max
a∈A

[

ρ(b, a) + β
∑

b′∈B

φ(b, a, b′)Vn−1(b
′)

]

, (1)

where, for all b ∈ B, V0(b) = 0, and Jπ(b) = Vn=T (b).
This recursive computation has the property to generate

piecewise-linear and convex (PWLC) value functions for

each horizon [2], i.e., each function is determined by a set

of hyperplanes (each represented by a vector), the value at

a given belief point being that of the highest hyperplane

(see Figure 1-b). For example, if Γn is the set of vectors

representing the value function for horizon n, then Vn(b) =
maxγ∈Γn

∑

s b(s)γ(s).
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Figure 1. Γ-set representation of a value function in a 1D belief space
with (a) and without (b) unnecessary hyperplanes (see Sec. IV). (c) shows
the actual value function.

Using the PWLC property, one can perform the Bellman

update using the following factorization of Equation 1:

Vn(b) = max
a∈A

∑

o

∑

s

b(s)

[

r(s, a)

|O|
+

∑

s′

T (s, a, s′)O(s′, a, o)χn−1(b
a,o, s′)

]

(2)

with χn(b) = argmaxγ∈Γn
b · γ.1 If we consider the term

in brackets in Equation 2, this generates |O| × |A| Γ-sets,

each one of size |Γn−1|. These sets are defined as

Γn
a,o

= {
ra

|O|
+ P a,o · γn−1, ∀ γn−1 ∈ Γn−1},

where P a,o(s, s′) = T (s, a, s′)O(s′, a, o), ra(s) = r(s, a).
Yet, these Γn

a,o
sets are non-parsimonious: γ-vectors

whose corresponding hyperplanes are below the value func-

tion are useless (see Fig. 1-a and b). Pruning phases are then

required to remove dominated vectors.

There are several pruning algorithms for exactly solving

POMDPs like Batch Enumeration [11] or more efficient

algorithms such as Witness or Incremental Pruning [4]. On

the other hand, advanced resolution techniques have been

developed to tackle the high computational complexity of

POMDPs [12], for example by approximating the value

function as in Point-Based Value Iteration (PBVI) [13],

Heuristic Search Value Iteration (HSVI) [14], PERSEUS

[15] or SARSOP [16].

III. MIXED OBSERVABILITY MDPS

Classical POMDPs are essentially an indirectly observable

MDPs, because the information about the state is obtained

indirectly through instant observations. On the other hand,

in an MDP the current state is directly observed at each step.

MOMDPs propose a middle-ground scenario, where some of

the state variables can be directly observed—namely visible

variables—and the remaining ones are hidden variables.

The rest of this section presents our theoretical results

of distinguishing between visible and hidden state variables

starting directly from the POMDP formalization, explaining

step by step how MOMDPs can be derived. This is a com-

plementary result to Ong et al.’s work [6], where MOMDPs

are presented in a practical fashion to solve robotic tasks

using approximation algorithms.

A. A Closer Look at the MOMDP Formalization

Factored POMDPs present the state s (and possibly the

observation o) as a vector of variables in a view to exploit

the underlying structure of the problem as typically done in

probabilistic graphical models. Following a similar idea, in

MOMDPs the state s is decomposed only into two variables:

sv which is the visible part of the state, and sh which

is the hidden part. This simple distinction triggers several

1The χ function returns a vector, so χn(b, s) = (χn(b))(s).
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interesting results in the POMDP framework and in their

solution techniques.

If we examine more closely the idea of splitting the

state into hidden and visible states, we will see that the

observation can also be divided in two, as illustrated by

Fig. 2 as a dynamic influence diagram (DID) [17]. In

this factorization, the visible state variable is redundantly

included in both state and observation, because this is the

standard way of modeling visible variables in POMDPs.

Therefore, the “visible” counterpart of the observation ov
is the same as the visible state sv . On the other hand, the

rest of the observation, ow, can depend on the whole system

state and the last action taken.

sv
sh

o-v o-w

s′v
s′h

ov ow

a r

Figure 2. A MOMDP viewed as a dynamic influence diagram

Formally, the state and observation spaces can both

be partitioned in two: S = Sv × Sh, O = Ov ×
Ow. The transition and observation functions both remain

the same, but can be expressed in terms of hidden and

visible state variables: T (s, a, s′) = T (sv, sh, a, s
′
v, s

′
h),

O(s′, a, o) = O(s′v, s
′
h, a, ov, ow). The visible part of

the state is duplicated in the observation, so if these

parts do not match, then the observation probability

goes to zero. This can be formally expressed by divid-

ing the joint probability in two: Pr(ov, ow|a, s
′
v, s

′
h) =

Pr(ov|a, s
′
v, s

′
h, ow)Pr(ow|a, s

′
v, s

′
h), i.e.:

O(s′, a, o) = δ(ov, s
′
v)Ω(s

′
h, s

′
v, a, ow), (3)

where Ω(s′h, s
′
v, a, ow) =

∑

ov
O(s′v, s

′
h, a, ov, ow) and

δ(x, y) = 1 if x = y and 0 otherwise.

The Ω function is the marginal observation function over

the ow observation given an action a, a hidden state s′h
and a visible state s′v . Usually, this function can be directly

obtained from the problem definition, but if not, it can be

computed at very low cost.

B. A Closer Look at the Belief Update

The belief-state for a visible variable will be always a

probability distribution completely concentrated (i.e. prob-

ability of 1) on the last observed value of that variable.

Therefore, a belief-state point in the proposed framework

can be represented by a tuple b = (sbv, bh), where sbv is the

last observed value of the visible state, and bh the belief-

state for the hidden variable. This representation is a fair

compression of the same information that a standard belief-

state contains for a problem with visible state variables.

As a belief state is a probability distribution over the

states, Pr(s|b), the joint distribution Pr(sv, sh|s
b
v, bh) can

be written as Pr(sv|s
b
v)Pr(sh|bh), i.e.:

b(s) = δ(sbv, sv)bh(sh). (4)

Consequently, the belief state update can be done sepa-

rately for sbv and bh, so that b
a,ow,ov
t+1 is computed as follows:

sbv,t+1 = ov

bh,t+1(s
′
h) = Pr(s′h|a, ow, ov, s

′
v, s

b
v,t, bh,t), ∀s

′
h ∈ Sh

(= Pr(s′h|a, o, b)), (5)

where the s′v term can be removed from the belief update

of the hidden state, because Equation 3 obliges s′v = ov .

The presented hybrid representation of a belief state

point—half probability distribution and half state value—is

the main reason why the MOMDP approach is a middle-

ground technique between POMDPs and MDPs. Fig. 3

provides a graphical explanation of this issue. The first

image (on the left) shows an (hyper)plane representation of

a value function in normal POMDPs, where both the sv
and sh variables2 are considered hidden, and are therefore

represented by continuous belief state variables bv and bh.

The third image (on the right) lays out the MDP represen-

tation of the same value function, where both variables are

directly observable, so that there is no need to summon belief

state variables. Here, the value function is represented by

a discrete set of points (in this case 4) rather than a set

of planes like in the first image. The MOMDP approach is

illustrated by the center image, where one of the dimensions

is the belief state over sh like in POMDPs, but the other is

directly the sv variable like in MDPs. With this approach,

the belief state over sh is a continuous variable, but the

visible variable’s state space (for sv) is discrete. As a

result, the value function is represented as a set of sets

of lower dimensionality hyperplanes, which can be seen

graphically as slices (also called “cuts”) of the normal

POMDP hyperplanes in Fig. 3.

C. A Closer Look at the Value Function

The hybrid belief state representation and the marginal

observation function presented above lead to a more efficient

computation of the value function knowing the visible state

variables. Specifically, we now present how to compute the

value function in terms of a set of parsimonious representa-

tions of low-dimensional Γ-sets, rather than one unique set

as in the classical solution techniques.
The main idea is to use the results of the past sections

in order to rewrite Equation 2 in terms of Equations 3, 4

2For plotting purposes sv and sh are simple binary variables.
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(b)

V(sv,bh)

sv
bh
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(c)

V(s)

sv
sh

Figure 3. The same value function viewed in a POMDP, a MOMDP, and an MDP. – Note: This is a convenient but abusive representation: a value
function over 4 states requires a 4D plot.

and 5, the hybrid representation of b = (sbv, bh), and the
basic result

∑

a δ(a, b)f(a) = f(b):

Vn(s
b
v, bh) = max

a∈A
V

a
n (sbv, bh)

V
a
n (sbv, bh) =

∑

ow

∑

ov

V
a,ow,ov
n (sbv, bh)

V
a,ow,ov
n (sbv, bh) =

∑

sh

bh(sh)γ
a,ow,ov,s

b

v
,bh

n (6)

γ
a,ow,ov,s

b

v
,bh

n =
r(sbv, sh, a)

|Ow||Ov|
+

∑

s′
h

Ω(s′h, ov, a, ow) (7)

× T (sbv, sh, a, ov, s
′
h)χn−1(b

a,ow,ov
h , ov, s

′
h)

with χn(bh, sv, sh) = argmax
γsv

∈Γ
sv
n

γsv · bh. (8)

If for normal POMDPs the value function can be repre-

sented, at each time-step, as a set of |S|-dimensional vectors,

in the MOMDP approach the same value function can be

represented as |Sv| sets of |Sh|-dimensional vectors. This

can be explained considering Equation 8, which is a selector

function of a γ-vector from the set Γsv
n . The superscript

sv denotes that for each value iteration there are |Sv| sets

of parsimonious representations, each one representing the

optimal value function given the visible state sv for the belief

values of sh.

This leads to forming a set of Γ-sets, that we will call

Ψn = {Γsv
n |sv ∈ S}, where each γ ∈ Γsv

n has |Sh|
dimensions. Taking into account the structure of Equation 6,

the Ψn set is a natural way of expressing the value function

in terms of both visible states and belief states of the hidden

variables.

Each Γsv
n of the Ψn set is constructed independently in

the same fashion as for normal POMDPs. Equation 7 now

generates |Ow| × |Ov| × |A| non-parsimonious sets that

must be cross-summed and pruned to obtain each Γsv
n . It

is important to notice that the complete set Ψn−1 is needed

to calculate each Γsv
n ∈ Ψn. In the next section we will show

the advantages of pruning within the MOMDP framework.

IV. UNDERSTANDING MOMDPS THROUGH IP

In order to study what is the real contribution of modeling

visible state variables in the POMDP framework—through

the MOMDP formalism—we will use a classical exact

algorithm rather than bleeding edge algorithms. This is

because new algorithms use approximation techniques that

could conceal the real impact of MOMDPs.

Monahan’s Batch Enumeration algorithm [11] uses the

update rule followed by a single pruning phase at each

iteration:

Γn = PRUNE

(

⋃

a

⊕

o

Γn
a,o

)

,

where
⊕

is the cross-sum between Γ-sets. In the same form,

Cassandra et al.’s Incremental Pruning algorithm (IP) [18]—

which is computationally more efficient—can be written:

Γn = PRUNE

(

⋃

a

PRUNE

(

⊕

o

PRUNE

(

Γn
a,o
)

))

.

The computation bottleneck of pruning-based algorithms

is the resolution of large linear programs (LPs). Each prun-

ing of a non-parsimonious Γ-set requires to solve an LP

with |Γ| constraints. Therefore, the size of Γ and the vectors’

dimensionality determine the time complexity of an LP. Due

to Equation 8, it is clear that MOMDPs work with lower

dimensionality vectors, at the cost of having more Γ-sets to

prune.

 0

 1

 0

 1-1
 0
 1
 2
 3
 4
 5

(a)

V(b)

bv
bh

 0

 1

 0

 1-1
 0
 1
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 4
 5

(b)

V(sv,bh)

sv
bh

Figure 4. The bottom hyperplane of the POMDP value function (a)
disappears in the MOMDP value function (b)

Furthermore, MOMDPs provide more opportunities to

prune vectors based on the discrete nature of the visible

variables. In Fig. 3-b, the lower vector in the slice sv = 0 is

completely dominated, and can be harmlessly removed from

the set Γ0. Fig. 4 shows the case of an horizontal hyperplane
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that is part of the parsimonious set of a standard POMDP, but

is completely removed from all Γ-sets of the MOMDP. This

additional vector pruning allows maintaining smaller Γ-sets,

and therefore improving the scalability of the algorithms.

With this background, we have enough tools to solve

MOMDPs using slight modifications of classical exact

POMDP algorithms, in our case Incremental Pruning (IP).

Our modifications consist in running one IP-step for each

visible state value, starting from a Ψ-set that represents

the complete last step value function within the hybrid

belief representation. Concretely, the Mixed Observability

Incremental Pruning (MOIP) extension can be written as

∀sv ∈ Sv, Γsv
n =

PRUNE

(

⋃

a

PRUNE

(

⊕

ov

⊕

ow

PRUNE

(

Γn
a,ov,ow,sv

)

))

.

The solution of the MOIP—or more generally of any

mixed-observability-vector-pruning algorithm—is a Ψn set

of Γ-sets that fully describes the value function. This rep-

resentation is equivalent to the single Γ-set that the normal

IP algorithm returns. A policy graph can be obtained from

both, so from end to end MOMDPs are equivalent to—but

more efficient than—POMDPs.

Conducting a complexity analysis for a POMDP algorithm

being a hard task, we will just mention some important facts.

90–95% of the computation time is spent solving LPs [4],

so that we should focus on the number of LPs and on their

size. In the worst case, for each LP solved by IP, MOIP

solves |Sv| similar LPs (same number of constraints), this

increase being compensated for by the decreased number of

variables (|Sh| instead of |S|). A major issue is to estimate

how many hyperplanes disappear by focusing on cuts. This is

a difficult question to answer, but a degenerate case that can

easily be analyzed is that of point-based algorithms with a

grid discretization [19]. The belief space being a |S|-simplex

(e.g., a point, a segment, a triangle or a tetrahedron if we

have 1, 2, 3 or 4 states), a natural discretization is that which

generates a polytopic number of points (see Fig. 5), that is:

Pr(n) =

(

n+ r − 1
r

)

=
n(r)

r!
,

where n = |S| and r is the resolution (number of points on

an “edge”, i.e., between two states). When using visible state

variables, there is a dramatic saving as this value becomes:

p · Pr(m) = p ·

(

m+ r − 1
r

)

= p ·
m(r)

r!
,

where m = |Sh| and p = |Sv|.

V. UNDERSTANDING MOMDPS THROUGH EXAMPLES

We have implemented a mixed observability version

of Incremental Pruning using Cassandra’s pomdp-solve

software.3 For each experiment several statistics were

3http://www.cassandra.org/pomdp/code/index.shtml

Figure 5. For an n-simplex, the r-th polytopic number Pr(n) is obtained
by adding Pr(n− 1) to Pr−1(n). In the above case of triangular number,
this means adding r to Tr . As can be observed, one obtains a discretization
of a tetrahedron by stacking up this increasingly large triangles.

gathered—such as time, number of LPs, number of con-

straints, number of vectors, etc.—but we will present only

the two more significant ones: time and solution size.

Time is the empirical time that Cassandra’s solver takes to

compute the optimal value function for a given experiment.

The time limit for these experiments was 7200 seconds (2

hours).

The solution size is the number of elements that a solution

file contains. The solution size in the case of the POMDP

modeling is |Γn| · (|S| + 1), meanwhile in MOMDPs it

corresponds to
∑

sv
|Γsv

n | · (|Sh| + 1). The +1 term was

included because, for each vector, the solution provides an

action value in order to construct the policy.

To investigate the scalability of MOIP compared to IP, ex-

periments have been conducted with two kinds of problems.

The first one is the hide and seek problem characterized

by stochastic transitions and a deterministic observability,

the second one is the lost robot problem characterized by

deterministic transitions but a stochastic observability.

A. The Hide and Seek Problem

This problem involves 2 agents—a hider and a seeker—

initially randomly placed on an n×m grid environment in

which b cells are empty and n.m − b cells are walls. The

hider has a fixed random behavior. The problem is then for

the seeker to maintain an eye contact with the hider, the

visibility being computed by a ray-tracing algorithm (see

Fig. 6).

Wall

Hidden Cell

Visible Cell

Figure 6. Viewing ability of the seeker agent.

Noting L = {l1, . . . , lb} the set of empty locations, the

state is defined by both agents’ locations: s = (ls, lh), hence

S = L × L. Both agents have 9 possible actions corre-

sponding to the 8 chess-king moves plus stay, only the

seeker’s actions being controlled. The instant (deterministic)

observation is o = (ls, l
∗
h) where ls is the seeker’s location ls
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and l∗h is the hider’s location if visible, lunknown otherwise

(l∗h ∈ L∗ = (L ∪ {lunknown})). The transition, observation

and reward functions all depend on the map topology.

This problem is easily modeled as an MOMDP by writing

s = (ls, lh) = (sv, sh) and o = (ls, l
∗
h) = (ov, ow). The new

observation function is derived trivially.

Experiments Description For this problem we have used

character-based topologies (letters and numbers, as shown

on Fig. 7). These maps are very simple mazes, yet computing

the optimal policy for them is not trivial because it depends

on the hider’s strategy.

L U E O 6 8

Figure 7. The L, U, E, O, 6 and 8 topologies used to play hide and seek
(here on a 3× 5 grid).

For these experiments we have used three different strate-

gies for the hider: (1) a static strategy where the hider never

moves; (2) a random strategy, where the hider randomly

walks in the maze without considering the seeker position;

and (3) an omniscient reactive strategy, where the hider

deterministically flees from the always known seeker’s po-

sition. We have analyzed the influence of the horizon, map

size, topology complexity and stochastic transition function.

B. The Lost Robot Problem

In this problem, a robot is lost in a toroidal space station

made of n identical floors of m rooms each. The floors can

be distinguished thanks to the room colors. The goal is to

go to the ground level with a minimum number of moves

and stop there.

The state of the robot s = (r, l) indicates the current

level l and room r (r = −1 if a terminal state has been

reached). The current observation o = (r, c) gives the room

number r and the (noisy) room color c. The possible actions

are to move to a neighboring room or floor, or to stop.

The reward function associates a negative reward rmove (−1)

for each move, a large positive reward rsucc (+100) for a

right stop in the ground level and a null rfail reward for

a wrong stop. After the stop, the agent receives no more

rewards. To obtain the MOMDP model, we simply have to

write sv = ov = r, sh = l and ow = c.

In these experiments, only circular floors are considered

(see Fig. 8), with 2 possible moves: right (r′ = (r + 1)
mod m) and up (l′ = (l + 1) mod n).

Experiments Description For this problem, we have used

two testing sets: (1) randomized two-color maps of different

sizes with deterministic observations, and (2) hand-made 2×
2 two-color maps with stochastic observations. Because of

topology and color symmetries, the second problem set is

1

210 3

0

2

Figure 8. A toroidal space station of size 4× 3.

reduced from 16 to only to 6 different problems (see Fig. 9).

With the stochastic observations, there is a 0.9 probability

of seeing the right color, and a 0.1 probability of seeing the

wrong one. Here, we have analyzed the influence of the map

size, topology complexity and stochastic observability.

a b c d e f

Figure 9. Six 2× 2 topologies used for the lost robot problem.

C. Results

Among all the hide and seek problem experiments, we

have decided to present only the results with a random

strategy for the hider, because the nature of the results is

very similar for all the strategies.4 For the lost robot problem

we have used only two-color maps for the same reason.

Table I summarizes some interesting results for both

problems. The top part shows time and size for several

variations of map topologies and map sizes for the hide

and seek problem (Fig. 7). The bottom part—the lost robot

problem—presents the whole set of hand-made 2× 2 maps

(Fig. 9), and the lowest (-l) and highest (-h) speedup values

for various sizes of random maps. The horizon for all

these experiments was 10, but larger horizons maintain the

solution size and mean time per step for each experiment.

This is because the optimal γ-vector’s structure becomes

stable very quickly in problems with small state spaces (3

or 4 steps for most experiments).

It is natural to expect that the solution size increases with

the map complexity and size, but the growth of normal

IP is considerably faster than for MOIP, as can be seen

in the last column (× |Sol.|). The execution time is also

smaller for MOIP in general, and the speedup column (×

4The results are slightly different in terms of scale and form, but the
conclusions about them are the same.
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Table I
EXECUTION TIME AND SOLUTION SIZE FOR THE HIDE AND SEEK

PROBLEM AND THE LOST ROBOT PROBLEM.

Map
IP MOIP × factor

Time |Sol.| Time |Sol.| Time |Sol.|

Hide and Seek

L-3x3 0.16 52 0.06 30 2.7 1.7
L-4x4 0.60 100 0.22 56 2.7 1.8
L-5x5 1.71 164 0.60 90 2.9 1.8
L-6x6 4.56 244 1.47 132 3.1 1.9
L-7x7 10.74 340 3.08 182 3.5 1.9

U-3x3 2.71 600 1.06 144 2.6 4.2
U-4x4 40.74 5151 4.18 374 9.8 13.8
U-5x5 246.43 16320 8.91 560 27.7 29.1
U-6x6 1303.40 54227 18.31 816 71.2 66.5
U-7x7 5669.39 153488 36.01 1120 157.4 137.0

O-3x3 587.16 49920 5.62 576 104.5 86.7

E-3x5 – – 19.26 888 – –
O-3x5 – – 80.00 3640 – –
6-3x5 – – 197.87 13440 – –
8-3x5 – – 687.51 41760 – –

Lost Robot

2x2-a 0.01 42 0.01 15 1.0 2.8
2x2-b 0.01 42 0.01 15 1.0 2.8
2x2-c 70.82 4704 0.31 117 228.5 40.2
2x2-d 71.09 4697 0.30 117 237.0 40.2
2x2-e 1355.61 13013 0.96 225 1412.1 57.8
2x2-f 1334.47 12964 0.95 225 1404.7 57.6

3x3-l 0.04 247 0.03 56 1.3 4.4
3x3-h 0.78 1274 0.03 56 26.0 22.8
4x4-l 0.36 1155 0.06 115 6.0 10.0
4x4-h 279.17 5733 0.3 135 930.6 42.5

5x5-l – – 0.14 144 – –
5x5-h – – 0.52 720 – –

Time) shows how many times faster is the MOIP algorithm.

For simpler problems MOIP doubles the speed of IP, and

when the problem gets more complex (in size, topology or

stochastic observability), MOIP behaves even better, with

several orders of magnitude improvement at the end.

A good example of the improvement is the O-4×4 case

of the hide and seek problem (not shown in Tab. I), where

the normal IP did not finish before the two hours even for an

horizon of 10, meanwhile MOIP ends up with a solution in

a few minutes for an horizon of 100. In the same direction,

we explored some cases where the IP algorithm did not

finish—E, O, 6 and 8 topologies for hide and seek, and 5x5

random maps for the lost robot—meanwhile MOIP finished

in a reasonable time. This shows clearly that MOIP scales

much better with the complexity than IP without visible

states awareness.

In summary, for all horizons, map topologies, map sizes,

stochasticity of the transition function, stochasticity of the

observation function, and problem types, MOIP significantly

improves over the original IP both in terms of computation

time and memory consumption. Also, MOMDPs scale better

with the growth of each of the variables we have looked at.

VI. DISCUSSION AND FUTURE WORK

A difference between Ong et al.’s formulation and ours is

that we also present the observation space with a factored

representation. The proposed factorization is a simple way

of expressing the fact that a part of the state space can

be fully disambiguated by any observation value, but the

representation is not limited to this one-to-one relationship.

In a more general setup, MOMDPs could be extended

to represent disambiguation rather than visibility (i.e., sv
may not be identical to part of the observation, but may

be unambiguously inferred from o: sv = f(o)), which is

a much more generic concept for exploiting the structure

of the problem. Nevertheless, the proposed factorization is

very useful for the analysis, because it permits converting

a POMDP with visible state variables into an MOMDP

directly, showing that this new formalism has the same

properties as POMDPs, but with a reduction in the time

and space complexity. A factored observation space also

permits showing the exact shape of the value function (see

Eq. 6), which allows applying the MOMDP viewpoint to

any technique based on value iteration. Ong et al.’s work

is focused specifically on the robotics field, showing that

visible state variables are a common property in robotics.

However, it is clear that MOMDPs can be applied to other

areas, because visible state variables are common in numer-

ous domains. In the same direction, robotic applications are

well addressed by fast approximation algorithms (such as

SARSOP) and Ong et al.’s results show that they do better

with explicit visible state variables. Nevertheless, we show

that the MOMDP formalism can be generalized to be applied

to other algorithms, and is not restricted to the algorithms

presented by Ong et al.

We empirically know that MOMDP versions of Incremen-

tal Pruning and SARSOP [16] help decrease time complexity

and thus speed up computations. Yet, these algorithms do

not benefit from the mixed observability in the exact same

way, as we will now see, comparing exact algorithms (as

Incremental Pruning), point-based algorithms (as PBVI or

SARSOP), and online algorithms (which rely on Monte-

Carlo simulations to estimate the action-value function at

the current belief state [20]):

• About belief-point selection: Let us notice that online

algorithms, as well as many point-based algorithms,

sample reachable belief points. This means that these

classical algorithms naturally focus on the reachable

cuts of the belief space. On the contrary, normal

(POMDP) point-based algorithms selecting points so as

to reduce the error between a lower and an upper-bound

will select many non-reachable belief points where not

necessary. The latter family of algorithms is therefore

more likely to benefit from working on cuts only.

• About pruning: MOMDP versions of exact and point-

based algorithms both benefit from an efficient pruning
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in each cut. Experiments are still missing for MO-

SARSOP to measure this phenomenon. This is not

relevant for online algorithms as they do not rely on

γ-vectors.

It is also important to notice that MOMDPs not only

provide an improvement in time complexity, but also in

space complexity. The set of γ-vectors, that represent the

value function plus their respective action, fully describes

the policy to execute. Therefore, MOMDPs usually provide

a more compact representation of this policy, as can be seen

in Tab. I.

The idea of reducing the dimensionality of the belief

space has also been considered in informative POMDPs

(iPOMDPs) [7]. Here, the starting point is the idea that,

given only the last action-observation pair (a, o), the set

of possible states Sao may be of small size. If this is the

case for all pairs (a, o), we have an informative POMDP,

which makes it possible to efficiently work with belief

spaces of reduced dimensionality. Considering for example

an agent in a maze, looking at the walls surrounding it

is sufficient to significantly reduce the number of possible

cells it may be standing in. There are notable similarities

between iPOMDPs’ dimensionality reduction based on the

last action-observation pair and MOMDPs’ dimensionality

reduction through a factorization. Digging the comparison

between these approaches or trying to combine them are

very promising directions for future work.

VII. CONCLUSION

In this paper we discussed an important fact about

POMDPs: in a number of problems, part of the state is fully

observable, so that a large part of the belief space is irrel-

evant. MOMDPs have been introduced to exploit this fact

[6]. We take here a closer look at this formalism, showing

how the value function can be modified to account for visible

state variables. Our experiments demonstrate a dramatic gain

in time complexity of exact algorithms, complementing the

results of approximation algorithms presented by Ong et al.

As discussed, some algorithms can be adapted to benefit

from the MOMDP point of view (e.g. exact and point-based

algorithms), whereas others can probably not (e.g. online

algorithms). An interesting research direction is to unify

MOMDPs with Zhang and Zhang’s informative POMDPs

and to push them further.
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