- 1
-
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors.
Large-Scale Kernel Machines.
The MIT Press, Cambridge, MA, 2007.
- 2
-
K. Crammer and Y. Singer.
On the algorithmic implementation of multiclass kernel-based vector
machines.
Journal of Machine Learning Research, 2:265-292, 2001.
- 3
-
J. A. Cuff and Barton G. J.
Evaluation and improvement of multiple sequence methods for protein
secondary structure prediction.
Proteins, 34(4):508-519, 1999.
- 4
-
M. Frank and P. Wolfe.
An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95-110, 1956.
- 5
-
Y. Guermeur and E. Monfrini.
A quadratic loss multi-class SVM for which a radius-margin bound
applies.
Informatica, 22(1):73-96, 2011.
- 6
-
C.-W. Hsu and C.-J. Lin.
A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks, 13(2):415-425, 2002.
- 7
-
F. Lauer and Y. Guermeur.
MSVMpack: a multi-class support vector machine package.
Journal of Machine Learning Research, 12:2269-2272, 2011.
http://www.loria.fr/~lauer/MSVMpack.
- 8
-
Y. Lee, Y. Lin, and G. Wahba.
Multicategory support vector machines: Theory and application to the
classification of microarray data and satellite radiance data.
Journal of the American Statistical Association,
99(465):67-81, 2004.
- 9
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical recipes in C: the art of scientific computing.
Cambridge University Press, Cambridge, MA, 2nd edition, 1992.
- 10
-
J. B. Rosen.
The gradient projection method for nonlinear programming. Part I.
Linear constraints.
Journal of the Society for Industrial and Applied
Mathematics, 8(1):181-217, 1960.
- 11
-
J. Weston and C. Watkins.
Multi-class support vector machines.
Technical Report CSD-TR-98-04, Royal Holloway, University of London,
1998.
lauer
2014-07-03