Bibliography

1
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors.
Large-Scale Kernel Machines.
The MIT Press, Cambridge, MA, 2007.

2
K. Crammer and Y. Singer.
On the algorithmic implementation of multiclass kernel-based vector machines.
Journal of Machine Learning Research, 2:265-292, 2001.

3
J. A. Cuff and Barton G. J.
Evaluation and improvement of multiple sequence methods for protein secondary structure prediction.
Proteins, 34(4):508-519, 1999.

4
M. Frank and P. Wolfe.
An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95-110, 1956.

5
Y. Guermeur and E. Monfrini.
A quadratic loss multi-class SVM for which a radius-margin bound applies.
Informatica, 22(1):73-96, 2011.

6
C.-W. Hsu and C.-J. Lin.
A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks, 13(2):415-425, 2002.

7
F. Lauer and Y. Guermeur.
MSVMpack: a multi-class support vector machine package.
Journal of Machine Learning Research, 12:2269-2272, 2011.
http://www.loria.fr/~lauer/MSVMpack.

8
Y. Lee, Y. Lin, and G. Wahba.
Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data.
Journal of the American Statistical Association, 99(465):67-81, 2004.

9
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical recipes in C: the art of scientific computing.
Cambridge University Press, Cambridge, MA, 2nd edition, 1992.

10
J. B. Rosen.
The gradient projection method for nonlinear programming. Part I. Linear constraints.
Journal of the Society for Industrial and Applied Mathematics, 8(1):181-217, 1960.

11
J. Weston and C. Watkins.
Multi-class support vector machines.
Technical Report CSD-TR-98-04, Royal Holloway, University of London, 1998.



lauer 2014-07-03