- Emmanuel Hainry
- LORIA - B214 - Mocqua
- BP 239
- 54506 Vandœuvre-lès-Nancy
Maître de conférences à l’Université de Lorraine (dans le département R&T de l’IUT Nancy Brabois) et au Loria.
Recherche
Je fais partie de l’équipe Mocqua. Je travaille sur la complexité dans divers modèles de calcul (informatique quantique, modèles d’ordre supérieur, analyse récursive…).
Publications
Liste sur Archives-Ouvertes.fr
Articles récents :
- Quantum Programming in Polylogarithmic Time.
Florent Ferrari, Emmanuel Hainry, Romain Péchoux, and Mário Silva,
MFCS 2025, Mathematical Foundations of Computer Science. - Branch Sequentialization in Quantum Polytime.
Emmanuel Hainry, Romain Péchoux et Mário Silva,
FSCD 2025, Formal Structures for Computation and Deduction. - Complete and tractable machine-independent characterizations of second-order polytime (Journal Link).
Emmanuel Hainry, Bruce M. Kapron, Jean-Yves Marion et Romain Péchoux,
Logical Methods in Computer Science, vol 21, issue 1, 2025. - Declassification Policy for Program Complexity Analysis (ACM Library)
Emmanuel Hainry, Bruce M. Kapron, Jean-Yves Marion et Romain Péchoux,
LICS’24: Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science. - A Programming Language Characterizing Quantum Polynomial Time (SpringerLink)
Emmanuel Hainry, Romain Péchoux et Mário Silva,
FoSSaCS 2023, Foundations of Software Science and Computation Structures
Lecture Notes in computer Science, vol. 13992, 2023. - A General Noninterference Policy for Polynomial Time (ACM Library)
Emmanuel Hainry et Romain Péchoux,
POPL 2023, 50th ACM SIGPLAN Symposium on Principles of Programming Languages
Proceedings of the ACM on Programming Languages, vol. 7, art. 28, pp. 806–832, 2023. - Complete and tractable machine-independent characterizations of second-order polytime (SpringerLink)
Prix EATCS: Best Theory Paper at ETAPS
Emmanuel Hainry, Bruce M. Kapron, Jean-Yves Marion et Romain Péchoux
FoSSaCS 2022, Foundations of Software Science and Computation Structures
Lecture Notes in Computer Science, vol. 13242, pp. 368-388, 2022.
Enseignements
- IUT Nancy Brabois. Documents et Arche (restreint)